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Matematický časopis 22 (1972), No. 4 

CONNECTIVITY OF REGULAR GRAPHS 
AND THE EXISTENCE OF 1-FACTORS 

JAN PLESNIK, 

Bratislava 

The notions and denotations not defined heie can be found in [3]. A graph G 
(always finite and loopless) will be denoted by (V,H) where V and H are 
the sets of its points and lines, respectively. If M c V, then G(M) denotes 
the induced subgraph of G on the points of M. By a u-v path we mean a path 
from the point u to the point v. An r-regular graph is a regular graph of degree r. 
1(G) and x(G) denote the line-connectivity and the point-connectivity of G, 
respectively. G is k-line-connected if 1(G) ^ k (where k is a non-negative 
integer). 

The problem of the existence of factors is very old. For example, J . P e t e r 
s e n [5] has shown that every bridgeless cubic graph has a \-factor. 

Further, T. S c h o n b e r g e r (see [4], p. 192) in 1934 has proved t h a t every 
bridgeless cubic graph has a \-factor not containing two arbitrarily prescribed 
lines. 

F . B a e b l e r [1] has observed that there is some relationship between the 
connectivity and the factorisation of graphs, namely: 

If G is a (2m -f- \)-regular graph with 1(G) ^ 2n (where m and n are positive 
integers), then G has a 2n-factor; particularly, if 1(G) ^ 2m, then G has a 2m 
-factor and therefore also a 1-factor. 

C. B e r g e ([2], Chapter 18, Theorems 6 and 7) m the two following results 
has generalized Petersen's result and Baebler's one (as for the existence of 
a 1-factor): 

Every r-regular graph G (where r > 0) with an even number of points and 
with KG) ^ r — 1 has a \-factor. 

Every (2m + \)-regular graph G with 1(G) > 2m has a \-factor containing 
an arbitrarily prescribed line. 

A. K o t z i g (oral communication) has conjectured the following generali
zation of the abovementioned results of S c h o n b e r g e r and B e r g e : 

Every r-regular graph G with an even number of points and with 1(G) ^ 
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^ r — 1 (which holds e. g. if x(G) > r — 1) Aas a \-factor not containing 
r — 1 arbitrarily prescribed lines. 

In this paper this conjecture is proved and moreover it is shown that for 
x(G) < r — 1 the assertion does not hold in general. 

Lemma 1. ( T u t t e [6].) A graph G —- (V,H) has a \-factor if and only if 
| V| is even and there is no set S of points such that the number of odd components 
of the induced subgraph G (V — S) exceeds \S\. (By an odd component of G 
we mean that with an odd number of points.) 

Theorem 1. Let G = (V,H) be an (r — \)-line-connected regular graph of 
degree r > 0, with an even \ V\ and let IT c H be an arbitrary set of r — 1 lines. 
Then the graph G' = (V,H — H') has a I-factor. 

Proof . Let us suppose the graph G' has no 1-factor. Then by Lemma 1 
there is a set S ^ V such tha t the induced subgraph G'(V — S) has n odd 
components G'l9G'29 ...,G'n, where n> \S\. Let Vi denotes the point set 
of the graph G\ for i — 1, 2, . . ., n. The number of all lines of G incoming 
to Vi from S, or from V —- S — Vi will be denoted by Si, or by t%, respectively. 
Since G is (r — 1)-line-connected and for every i = 1*, 2, . . ., n we have 
\Vi\ = 1 (mod 2), thus denoting by ô  the sum of degrees of points in G(Vi), 
we have 0 = a = r\Vi\ - (st + U) ^ r\Vt\ - (r - 1) = r(\Vt\ — 1) + 1 - 1 
(mod 2). I t follows that r — 1 < Si + U, or 

r ^ St + tt. (1) 

n n 
From S exactly 2 si lines income to ( J V^. Since G is r-regular, thus 

i = l i = l 

i > <r|flf|. (2) 
i=l 

Further, the condition \H'\ = r — 1 gives 

2U< 2(r - 1). (3) 
i = i 

Using (1), (2) and (3) we obtain 

r(|flf| + 2 — n) — 2 ^ 0. (4) 

Since |#| + w = |V| = 0 (mod 2), thus from the inequality \S\ < n it 
follows tha t |/8| + 2 < w, which combined with (4) gives a contradiction. 
This completes the proof. 

Theorem 1 is best possible in the sense tha t no less connectivity will suffice 
as it can be seen from the following result. 
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Theorem 2. Let k and r be integers with 0 < k ^ r — 2. Then there is an 
r-regular graph G = (V,H) with |V| = 0 (mod 2), with no 1-factor and such 
that 

(a) 9c(G) = k; 

• r is even and k is odd; (b) A(0) = fk + 1>ifri 

\k, otherwise. 

Note tha t if r == 0, & == 1 (mod 2), then obviously no r-regular graph G 
with A(G) = k can exist. 

We will find it convenient to use the following lemmas in the proof of 
Theorem 2. 

Lemma 2. Fof any graph G, x(G) ^ MG). 
(For the proof see e. g. [3], p . 43.) 

Lemma 3. Let Gi = (V, H) be a graph. Let {vi, #2, . • . , vm} ^ V with m ^ 
^ x(Gi) and let v <fc V. Then for the graph G = (V U {v}, H u {viv, v2v, ..., 
vmv}) we have x(G) ^ x(Gi). 

Proof . If K(GI) = 0, then the assertion is clear and therefore let x(Gi) ^ 1. 
Let the deleting of some x(Gi) — 1 points from G give a graph G'. We will 
show tha t G' is connected. Let x, y be any two points of G'. If x, y e V, then 
there is an x — y path in G' by our assumption. If x e V, y = v, then the.e 
is at least one point ue V adjacent with v isince less than m points have been 
deleted). By the preceding considerations, in G' there is an x — u path and 
hence also an x — v path. The lemma is proved. 

Lemma 4. Let any integer c ^ 0 be given and let Gi = (V%,Hi), i =-= 1, 2, 
be two point-disjoint graphs with x(Gt) ^ c. Let {ui,U2, ...,um} ^ Vi and 
{vi, #2, • . ., vm} c= V2 be two point sets with m ^ c. Then for the graph G = 
= (Vi U V2, Hi UH2 U {uiV), U2V2, . . . , umvm}) we have x(G) ^ c. 

P roo f . In the case of c = 0 the lemma is trivial and therefore let c ^ 1. 
Let the deleting of some c — 1 points of G result in a graph G'. To show tha t 
G' is connected, let any two points x, y of G' be taken. If x, y e Vi or x, y e V2, 
then there is an x — y path by the assumption. Now, let xeVi and y e V2. 
Since m > c —- 1, thus at least one line UtVt exists for some i. But by the just 
proved, there are x —- u% and v% — y paths in G' and hence there is an a; — y 
path, too. The lemma is proved. 

Lemma 5. Let any integers m. n, c with m, n ^ c ^ 0 be given. Let U = 
= {ui, U2, . . . , um} be a set of m points and let Gi = <Vi,Hi), G2 = (V2,H2), 
...,Qn = (Vn,Hn) be graphs with x(Gt) ^ c, Vi n Vj = Vi n U = 0 for 
i>j = 1, 2, • • . , n; i =£ j . 
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rGiven sets Ut = {un, ui2, . . . , uim} c Vi for i = 1, 2, . . .,n, then the graph 
G = (U U Vi U V2 U . . . U Vn, Hi U H2 U . . . U Hn U {UjU^i = 1 , 2 , . . . , 
w; j = 1, 2, . . ., m}) â«5 x(G) ^ c. 

P roo f . We have a trivial case if c = 0, therefore let c > 1. Let a set of 
c — 1 points be deleted from G giving a giaph G'. To prove tha t G' is connected, 
let two points x, y of G' be considered. If x, y e Vi for some i, then there is 
a n a ; - ? / path by the assumption about Gi. If x e Vi and y e Vj, i ^ j , then 
there is at least one path UtjcUjcUjjc for some k (since m > c — 1, such point 
— disjoint paths from Vi to Fy in the graph G exist). But then using the just 
proved we have an x — uuc path and an Ujjc — y one and hence also an a: — y 
path. Let x e Vi and y = ujc eU. The degree of Ujc in G is greater than c —- 1, 
hence in G' there is a line ujcUjjc for some j . Since the existence of some x — Ujjc 
path follows by the preceding thus there is an x — y path. Finally let x = 
= UiEU and y = uj eU, i -^ j . Since n > c — 1 and «(Crs) ^ 1 for all s 
thus there is a w*< — i% pa th P& (in Gjc C\G') for some &. The path UiPjcUj 
is an x — i/ path in 6?'. This completes the proof. 

Lemma 6. Let any integers m, n, c with m, n ^ c ^ 0 be given. Then the 
complete bigraph Km,n has x(Km,n) ^ c. 

T h e p r o o f is easy and can be made analogously to the preceding proof. 
The following two lemmas can be found in [3], (p. 89). 

Lemma 7. The complete graph K2nv is a sum of n spanning cycles. 

Lemma 8. The complete graph K2n is l-fadorable. 
P r o o f of T h e o r e m 2. If k = 0, we can take for G any graph with two 

components, both isomorphic to the same connected r-regular graph with 
no 1-factor. Therefore we can suppose tha t k ^ 1 so tha t r ^ 3. 

We shall give examples of the required graphs . A few cases will be consi
dered. 

(I) r = k (mod 2). Let us consider the graph G = (V,H) sketched in Fig. 1. 
r 

In this graph V = {u\,u2, ..., iijc} U ( J (Ai U Bt U d), where At = {an, 
i = l 

#;2, . . . , af*}, Bi = {ha ,bt2, . . . , bi,r-i}, d = {en ,ci2, . .., Ci,r-jc} and H = 
r 

= ( J Hi where Hi = {uja^\j = 1, 2, . . ., k} u {xy\x e Bt, y e At U Ct} u 
i = l 

U {CaCi2, Cj3C/4, • . -, Ci,r-jc-\Ci.r-jc}. 

Thus it can be seen that the subgraphs G±, G2, . . ., Gr sketched in Fig. 1. 
are mutually isomorphic and therefore we have drawn out only G\ . G is 
obviouslyobviously r-regular. Further, each subgraph Gi has 2r — 1 == 1 
(mod 2) points. Thus the number of points in G is equal to r '2r — 1) + k = 2r2 —-
— (r —- k) == 0 (mod 2). According to Lemma 1 G has no 1-factor because 
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Fig. 1 

if we put S = {u±, u2, . . . , ujc}, then G\,G2, . . . , Gr will be the odd compo
nents of G(V — S) and h < r. To show that x(G) = A(C?) = &, we start from 
the induced subgraph G(At U Bi) which is in fact the complete bigraph 
Kjcr-i- Using Lemma 6 we have x(G(Ai U Bi)) ^ k. Now, if the points of 
Ci are successively added, then we result in the graph Gi and by Lemma 3 
x(Gi) ^ h. If Lemma 5 is used, we see that x(G) ^ h. Since deleting the edges 
uian, W2&12, . . . , ujcduc results in a disconnected graph, thus X(G) < h. Now, 
according to Lemma 2 the required equality X(G) = x(G) = h follows. 

Note that in the following two cases ((2) and (3)) the graph of Fig. 2 will 
be used and therefore we denote for the next: U = {ui, u2, . . ., ujc+i}, Ai = 

Fig. 2 
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= {an, ai2, • •, at,k+i} a n d Lt = {uian, ^2^2, . . ., Uk+iat^+i}, i = 1, 2, 
. . .,r. 

(2)r 1, k = 0 (mod 2). 
(a) If 2& -f- 1 ^ r, then denote by G the graph sketched in Fig. 2, with 

r 

each G« equal to the graph of Fig. 3. Thus G=(V,H) V = U U ( J (At U 
£ = 1 

U J3j U (7« U Dt U F/i), where .B; = {ba, &*2, . . •, h, r - i} , G% = {di, ci2, . . 

1 

; M . < iix * i ,k* i 

! BІP.V <c ^^> Чrи + (r-2k-«l i-iлctors on B^ ) 

! CЛCІI« ^ • • ^ s , c i > 

| M < І I « Ч*Jt - ^ ><*i> 

! -Л«v v^ríit • - ^ * Ч^и + ( r - k i-• łattors on E{ ì 

! $ 

Fig. 3 

c;, t}, A = {da, di2, • . •, d**}, -#* = {e<3 ,ei2, . . ., e*,r-i} and withH = ( J (L{ U 
^=1 

U Hi), where Hi = {ay|se eBt,y eAi U C<} U {c^iAi, ^ 2 ^ 2 , • • • > Cud**} U 
u {xy\x eDiyy eEt} uH* UH\ . Here H* consists of the lines of r — 2k — 1 
1-factors on Bt (as denoted in Fig. 3). (By Lemma 8 the complete graph with 
r — 1 vertices of Bt can be decomposed into r — 2 1-factors. Now, we take 
r — 2k — 1 of these 1-factors and we delete the other ones. Thus the induced 
subgraph G(Bi) is a sum of its r — 2k — 1 1-factors.) Similarly, IIf consists 
of r — k 1-factors on Et. I t can be easily verified tha t G is r-regular with 
I V| 0 (mod 2). Using Lemma 1, where we put S = U, the graph G appears 
with no 1-fa-tor. To show x(Gi) ^ k it is sufficient to consider Hi without 
H] u H\. Then the induced subraphs on At U Bt U d and Dt U Et are K2A;+i,r-i, 
or Kktr-i, respectively. If the Lemmas 6 and 4 are used, then we have x(Gi) ^ 
^ k and by Lemma 5 also x(G) ^ k. 

If the k lines from Oi to Di are deleted, then we have a disconnected graph 
and MG) ^ k. Thus X(G) = x(G) = k follows. 
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(b) If 2k + 1 > r, then we take the graph G = (V,H) of Fig 2 with ft 
r 

from Fig. 4. We have: V = U u ( J ( ^ U Bt u ft U Z><), where 5< = {b,j, 
i=l 

&<2, • . . , 6t*}, ft = {en, c,2, . . ., dk}9 Dt = {da, di2, . . ., «fr,r_i} and H = 

= ( J ( i i UH*)> where Ht = {xy\xeAt, yeBt}u {cada, ci2di2, ...,cikdik} u 

U {xy\x ed,ye Dt} U flj U H\ U H?. Here, the set H\ consists of (r—k — l)/2 
spanning cycles on At which can be taken from the k\2 spanning cycles of 
-S-Wi (considered on A%) as Lemma 7 provides. The sets H\ and H\ consist 
of r — k — 2 1-factors on Biy or r — k 1-factors on Di} respectively (see 
Lemma 8). Now, it can be seen that G is /--regular with \V\ = 0 (mod 2). 

4- ( r - k - I i-f*tlt* tn JBj ) 

Fig.4 

• ( —£— * f «nnín9 cyclmt on B* ) 

- ( i .-f*«t.r on Bť-{(,,,} ) 

( ff-*"1 шpAnniъq cүcle* OГÌ EІ ) I 

G; 

Fig. 5 
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Analogously as before it can be shown tha t G has no 1-factor and X(G) = 
= x(G) = k. 

(3) r = 0, k = 1 (mod 2). 
fa) If 2k + 1 ^ r, then we take for G = (V,H) the graph of Fig 2, where 

for Gi the graph of Fig. 5. have been substituted. 
r 

Thus V = U U [J ( i j U f t u f t u A u .Ei), where £« = {ba, bi2, . . ., 
i = l 

6i,r-i}, Gi = {ca, Ci2, . . . , cik}, Di = {rfji, ^i2, . . . , di,jc+i}, Ei = {e^ , ei2, . • •, 
r 

e*,r_:i} andH = ( J (if U Ht), where Hi = ({x?/|# eAi\jCi,ye Bi} — {&ucu}) U 
i=l 

u {cu^u, cac?i2, ci2di3, Cf3d*4, . • •, Cikdi,k+i} U { î/|a; e A , yeEi}\J H\ u Hf. 
Here, H\ consists of the lines of (r—2k)\2 spanning cycles on Bi (see Lemma 7) 
without the lines of one 1-factor of one of these cycles on Bi — {6a}. (This 
can be done; since r — 2k > 0, thus at least one spanning cycle has been 
added, then the 1-factor as a subgraph of the spanning cycle can be formed. 
Hf consists of the lines of (r—k — l)/2 spanning cycles on Ei (see Lemma 7). 
Analogously as before we can verify that G is r-regular with no 1-factor and 
with | V| = 0 (mod 2). Also analogously using Lemmas 6, 3, 4 and 5 we find 
out that x(G) ^ k. However, the graph G(V — Gi) is disconnected for any i. 
This yields k — \d\ > x(G) and hence x(G) = k. By Lemma 2 we have X(G) > 
^ k. But a regular graph of an even degree r cannot have an odd X(G) = k. 
Therefore X(G) ^ k -f 1. As removing k + 1 edges U\an, u2a\2, . . . , uk+-\ai,k+i 
disconnects G, we have h(G) = k + 1. 

(b) K 2k + 1 > r, then we take the graph G = (V,H) of Fig. 2 again> 
where for each Gi the graph of Fig. 6. has been substituted. Here V = U U 

r 
V \J (AtKJ BiV CiV Di), where Bt = {ba, bi2, . . .,•&«}, Ct = {cu, Q2, . . . ; 

i-=l 

Ä i i * i м 
м ^C 
cd-^ л». iţjл • • 

м <v ^C • 

<Чkч 
•»- ( r - k - i l - f « c * o r j on A.; ) 

í + ( r " i * " * j^anoin^ cy«'*« on B; ) 

L,h 1 + ( 1 l-f«eior on B i - í f c ^ } ) 

c»,k*i • ( r - k - t i-f«cior« on C.j ) 

<-i>*i + ( r - k - < » *-f«cior« on D.i ) 

G, 
I -

Fig. 6 
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Ci,k+i}>Da={dilt di2,.. .,di,k+i}dLndH= ( J (U \jHt), where Ht = {xy\xeAt, 

yeBt}Kj {baco , bad2, 6*2^3, . . . , bikCi,k+i} U {xy\x e d, y e Dt} U H] U 
U H | UHf UH£. Here H], Hf, or H\ conespond to the adding of r — k — 1 
1-factors on At, r — k — 2 1-factors on (7$, or /• — k — 1 1-factors on A , 
respectively (see Lemma 8). According to Lemma 7 if the complete graph 
Kk is considered on Bi, then it can be decomposed into (k—l)/2 spanning 
cycles. Now, we take into B\ (r—k — 3)/2 from these cycles and then another 
spanning cycle is considered from which its 1-factor on B% — {bp} is taken into 
JHf (this can be done since (k — 1) — (r — k — 3) = (2k + 1) — r + 1 > 1). 
Analogously as before we can find out again: 0 is r-regular with no 1-factoi, 
with I F | = 0 (mod 2), with x(G) = k and X(G) = k + 1. 

Now, we have considered all cases and Theorem 2 is proved. 
R e m a r k . We note that our results hold also in the case when multi-

graphs or pseudographs are admitted. Especially, Theorem 1 then follows 
from the validity of T u t t e ' s theorem (Lemma 1) (since our proof is based 
on it) also for pseudographs. 
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