Matematický časopis

Ján Plesník
 Connectivity of Regular Graphs and the Existence of 1-Factors

Matematický časopis, Vol. 22 (1972), No. 4, 310--318
Persistent URL: http://dml.cz/dmlcz/127027

Terms of use:

© Mathematical Institute of the Slovak Academy of Sciences, 1972

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

CONNECTIVITY OF REGULAR GRAPHS AND THE EXISTENCE OF 1-FACTORS

JÁN PLESNÍK,
Bratislava

The notions and denotations not defined here can be found in [3]. A graph G (always finite and loopless) will be denoted by (V, H) where V and H are the sets of its points and lines, respectively. If $M \subseteq V$, then $G(M)$ denotes the induced subgraph of G on the points of M. By a $u-v$ path we mean a path from the point u to the point v. An r-regular graph is a regular graph of degree r. $\lambda(G)$ and $x(G)$ denote the line-connectivity and the point-connectivity of G, respectively. G is k-line-connected if $\lambda(G) \geqslant k$ (where k is a non-negative integer).

The problem of the existence of factors is very old. For example, J. Peter sen [5] has shown that every bridgeless cubic graph has a 1-factor.

Further, T. Schönberger (see [4], p. 192) in 1934 has proved that every bridgeless cubic graph has a 1-factor not containing two arbitrarily prescribed lines.
F. Baebler [1] has observed that there is some relationship between the connectivity and the factorisation of graphs, namely:

If G is $a(2 m+1)$-regular graph with $\lambda(G) \geqslant 2 n$ (where m and n are positive integers), then G has a $2 n$-factor; particularly, if $\lambda(G) \geqslant 2 m$, then G has a $2 m$ -factor and therefore also a 1-factor.
C. Berge ([2], Chapter 18, Theorems 6 and 7) in the two following results has generalized Petersen's result and Baebler's one (as for the existence of a 1-factor):

Every r-regular graph G (where $r>0$) with an even number of points and with $\lambda(G) \geqslant r-1$ has a 1-factor.

Every $(2 m+1)$-regular graph G with $\lambda(G) \geqslant 2 m$ has a 1-factor containing an arbitrarily prescribed line.
A. Kotzig (oral communication) has conjectured the following generalization of the abovementioned results of Schönberger and Berge:

Every r-regular graph G with an even number of points and with $\lambda \cdot(G) \geqslant$
$\geqslant r-1$ (which holds e. g. if $\varkappa(G) \geqslant r-1)$ has a 1-factor not containing $r-1$ arbitrarily prescribed lines.

In this paper this conjecture is proved and moreover it is shown that for $x(G)<r-1$ the assertion does not hold in general.

Lemma 1. (Tutte [6].) A graph $G=(V, H)$ has a l-factor if and only if $|V|$ is even and there is no set S of points such that the number of odd components of the induced subgraph $G(V-S)$ exceeds $|S|$. (By an odd component of G we mean that with an odd number of points.)

Theorem 1. Let $G=(V, H)$ be an $(r-1)$-line-connected regular graph of degree $r>0$, with an even $|V|$ and let $H^{\prime} \subseteq H$ be an arbitrary set of $r-1$ lines. Then the graph $G^{\prime}=\left(V, H-H^{\prime}\right)$ has a 1-factor.

Proof. Let us suppose the graph G^{\prime} has no 1-factor. Then by Lemma 1 there is a set $S \subseteq V$ such that the induced subgraph $G^{\prime}(V-S)$ has n odd components $G_{1}^{\prime}, G_{2}^{\prime}, \ldots, G_{n}^{\prime}$, where $n>|S|$. Let V_{i} denotes the point set of the graph G_{i}^{\prime} for $i=1,2, \ldots, n$. The number of all lines of G incoming to V_{i} from S, or from $V-S-V_{i}$ will be denoted by s_{i}, or by t_{i}, respectively. Since G is $(r-1)$-line-connected and for every $i=1,2, \ldots, n$ we have $\left|V_{i}\right| \equiv 1(\bmod 2)$, thus denoting by σ_{i} the sum of degrees of points in $G\left(V_{i}\right)$, we have $0 \equiv \sigma_{i}=r\left|V_{i}\right|-\left(s_{i}+t_{i}\right) \leqslant r\left|V_{i}\right|-(r-1)=r\left(\left|V_{i}\right|-1\right)+1=1$ $(\bmod 2)$. It follows that $r-1<s_{i}+t_{i}$, or

$$
\begin{equation*}
r \leqslant s_{i}+t_{i} \tag{1}
\end{equation*}
$$

From S exactly $\sum_{i=1}^{n} s_{i}$ lines income to $\bigcup_{i=1}^{n} V_{i}$. Since G is r-regular, thus

$$
\begin{equation*}
\sum_{i=1}^{n} s_{i} \leqslant r|S| \tag{2}
\end{equation*}
$$

Further, the condition $\left|H^{\prime}\right|=r-1$ gives

$$
\begin{equation*}
\sum_{i=1}^{n} t_{i} \leqslant 2(r-1) \tag{3}
\end{equation*}
$$

Using (1), (2) and (3) we obtain

$$
\begin{equation*}
r(|S|+2-n)-2 \geqslant 0 \tag{4}
\end{equation*}
$$

Since $|S|+n \equiv|V| \equiv 0(\bmod 2)$, thus from the inequality $|S|<n$ it follows that $|S|+2 \leqslant n$, which combined with (4) gives a contradiction. This completes the proof.

Theorem 1 is best possible in the sense that no less connectivity will suffice as it can be seen from the following result.

Theorem 2. Let k and r be integers with $0 \leqslant k \leqslant r-2$. Then there is an r-regular graph $G=(V, H)$ with $|V| \equiv 0(\bmod 2)$, with no 1 -factor and such that
(a) $x(G)=k$;
(b) $\lambda(G)=\left\{\begin{array}{l}k+1, \text { if } r \text { is even and } k \text { is odd } ; \\ k, \text { otherwise. }\end{array}\right.$

Note that if $r \equiv 0, k \equiv 1(\bmod 2)$, then obviously no r-regular graph G with $\lambda(G)=k$ can exist.

We will find it convenient to use the following lemmas in the proof of Theorem 2.

Lemma 2. Fof any graph $G, \chi(G) \leqslant \lambda(G)$.
(For the proof see e. g. [3], p. 43.)
Lemma 3. Let $G_{1}=(V, H)$ be a graph. Let $\left\{v_{1}, v_{2}, \ldots, v_{m}\right\} \subseteq V$ with $m \geqslant$ $\geqslant x\left(G_{1}\right)$ and let $v \notin V$. Then for the graph $G=\left(V \cup\{v\}, H \cup\left\{v_{1} v, v_{2} v, \ldots\right.\right.$, $\left.v_{m} v\right\}$) we have $\varkappa(G) \geqslant \varkappa\left(G_{1}\right)$.

Proof. If $x\left(G_{1}\right)=0$, then the assertion is clear and therefore let $x\left(G_{1}\right) \geqslant 1$. Let the deleting of some $\varkappa\left(G_{1}\right)-1$ points from G give a graph G^{\prime}. We will show that G^{\prime} is connected. Let x, y be any two points of G^{\prime}. If $x, y \in V$, then there is an $x-y$ path in G^{\prime} by our assumption. If $x \in V, y=v$, then the.e is at least one point $u \in V$ adjacent with v (since less than m points have been deleted). By the preceding considerations, in G^{\prime} there is an $x-u$ path and hence also an $x-v$ path. The lemma is proved.

Lemma 4. Let any integer $c \geqslant 0$ be given and let $G_{i}=\left(V_{i}, H_{i}\right), i==1,2$, be two point-disjoint graphs with $x\left(G_{i}\right) \geqslant c$. Let $\left\{u_{1}, u_{2}, \ldots, u_{m}\right\} \subseteq V_{1}$ and $\left\{v_{1}, v_{2}, \ldots, v_{m}\right\} \subseteq V_{2}$ be two point sets with $m \geqslant c$. Then for the graph $G=$ $=\left(V_{1} \cup V_{2}, H_{1} \cup H_{2} \cup\left\{u_{1} v_{1}, u_{2} v_{2}, \ldots, u_{m} v_{m}\right\}\right)$ we have $\chi(G) \geqslant c$.

Proof. In the case of $c=0$ the lemma is trivial and therefore let $c \geqslant 1$. Let the deleting of some $c-1$ points of G result in a graph G^{\prime}. To show that G^{\prime} is connected, let any two points x, y of G^{\prime} be taken. If $x, y \in V_{1}$ or $x, y \in V_{2}$, then there is an $x-y$ path by the assumption. Now, let $x \in V_{1}$ and $y \in V_{2}$. Since $m>c-1$, thus at least one line $u_{i} v_{i}$ exists for some i. But by the just proved, there are $x-u_{i}$ and $v_{i}-y$ paths in G^{\prime} and hence there is an $x-y$ path, too. The lemma is proved.

Lemma 5. Let any integers m. n, c with $m, n \geqslant c \geqslant 0$ be given. Let $U=$ $=\left\{u_{1}, u_{2}, \ldots, u_{m}\right\}$ be a set of m points and let $\left.G_{1}=!V_{1}, H_{1}\right), G_{2}=\left(V_{2}, H_{2}\right)$, $\ldots, G_{n}=\left(V_{n}, H_{n}\right)$ be graphs with $x\left(G_{i}\right) \geqslant c, V_{i} \cap V_{j}=V_{i} \cap U=\emptyset$ for $i, j=1,2, \ldots, n ; i \neq j$.
$「$ Given sets $U_{i}=\left\{u_{i 1}, u_{i 2}, \ldots, u_{i m}\right\} \subseteq V_{i}$ for $i=1,2, \ldots, n$, then the graph $G=\left(U \cup V_{1} \cup V_{2} \cup \ldots \cup V_{n}, H_{1} \cup H_{2} \cup \ldots \cup H_{n} \cup\left\{u_{j} u_{i j} \mid i=1,2, \ldots\right.\right.$, $n ; j=1,2, \ldots, m\})$ has $\varkappa(G) \geqslant c$.

Proof. We have a trivial case if $c=0$, therefore let $c \geqslant 1$. Let a set of $c-1$ points be deleted from G giving a giaph G^{\prime}. To prove that G^{\prime} is connected, let two points x, y of G^{\prime} be considered. If $x, y \in V_{i}$ for some i, then there is an $x-y$ path by the assumption about G_{i}. If $x \in V_{i}$ and $y \in V_{j}, i \neq j$, then there is at least one path $u_{i k} u_{k} u_{j k}$ for some k (since $m>c-1$, such point - disjoint paths from V_{i} to V_{j} in the graph G exist). But then using the just proved we have an $x-u_{i k}$ path and an $u_{j k}-y$ one and hence also an $x-y$ path. Let $x \in V_{i}$ and $y=u_{k} \in U$. The degree of u_{k} in G is greater than $c-1$, hence in G^{\prime} there is a line $u_{k} u_{j k}$ for some j. Since the existence of some $x-u_{j k}$ path follows by the preceding thus there is an $x-y$ path. Finally let $x=$ $=u_{i} \in U$ and $y=u_{j} \in U, i \neq j$. Since $n>c-1$ and $x\left(G_{s}\right) \geqslant 1$ for all s thus there is a $u_{k i}-u_{k j}$ path P_{k} (in $G_{k} \cap G^{\prime}$) for some k. The path $u_{i} P_{k} u_{j}$ is an $x-y$ path in G^{\prime}. This completes the proof.

Lemma 6. Let any integers m, n, c with $m, n \geqslant c \geqslant 0$ be given. Then the complete bigraph $K_{m, n}$ has $\varkappa\left(K_{m, n}\right) \geqslant c$.

The proof is easy and can be made analogously to the preceding proof. The following two lemmas can be found in [3], (p. 89).

Lemma 7. The complete graph $K_{2 n+}{ }^{+}$is a sum of n spanning cycles.
Lemma 8. The complete graph $K_{2 n}$ is 1-factorable.
Proof of Theorem 2. If $k=0$, we can take for G any graph with two components, both isomorphic to the same connected r-regular graph with no 1 -factor. Therefore we can suppose that $k \geqslant 1$ so that $r \geqslant 3$.

We shall give examples of the required graphs. A few cases will be considered.
(1) $r \equiv k(\bmod 2)$. Let us consider the graph $G=(V, H)$ sketched in Fig. 1. In this graph $V=\left\{u_{1}, u_{2}, \ldots, u_{k}\right\} \cup \bigcup_{i=1}^{r}\left(A_{i} \cup B_{i} \cup C_{i}\right)$, where $A_{i}=\left\{a_{i 1}\right.$, $\left.a_{i 2}, \ldots, a_{i k}\right\}, B_{i}=\left\{b_{i 1}, b_{i 2}, \ldots, b_{i, r-1}\right\}, C_{i}=\left\{c_{i 1}, c_{i 2}, \ldots, c_{i, r-k}\right\}$ and $H=$ $=\bigcup_{i=1}^{r} H_{i}$ where $H_{i}=\left\{u_{j} a_{i j} \mid j=1,2, \ldots, k\right\} \cup\left\{x y \mid x \in B_{i}, y \in A_{i} \cup C_{i}\right\} \cup$ $\cup\left\{c_{i 1} c_{i 2}, c_{i 3} c_{i 4}, \ldots, c_{i, r-k-1} c_{i \cdot r-k}\right\}$.

Thus it can be seen that the subgraphs $G_{1}, G_{2}, \ldots, G_{r}$ sketched in Fig. 1. are mutually iscmorphic and therefore we have drawn out only $G_{1} \cdot G$ is obviouslyobviously r-regular. Further, each subgraph G_{i} has $2 r-1 \equiv 1$ $(\bmod 2)$ points. Thus the number of points in G is equal to $\left.r^{\prime} 2 r-1\right)+k=2 r^{2}-$ $-(r-k) \equiv 0(\bmod 2)$. According to Lemma $1 G$ has no l-factor because

Fig. 1
if we put $S=\left\{u_{1}, u_{2}, \ldots, u_{k}\right\}$, then $G_{1}, G_{2}, \ldots, G_{r}$ will be the odd components of $G(V-S)$ and $k<r$. To show that $\gamma(G)=\lambda(G)=k$, we start from the induced subgraph $G\left(A_{i} \cup B_{i}\right)$ which is in fact the complete bigraph $K_{k, r-1}$. Using Lemma 6 we have $\chi\left(G\left(A_{i} \cup B_{i}\right)\right) \geqslant k$. Now, if the points of C_{i} are successively added, then we result in the graph G_{i} and by Lemma 3 $\varkappa\left(G_{i}\right) \geqslant k$. If Lemma 5 is used, we see that $x(G) \geqslant k$. Since deleting the edges $u_{1} a_{11}, u_{2} a_{12}, \ldots, u_{k} a_{1 k}$ results in a disconnected graph, thus $\lambda(G) \leqslant k$. Now, according to Lemma 2 the required equality $\lambda(G)=x(G)=k$ follows.

Note that in the following two cases ((2) and (3)) the graph of Fig. 2 will be used and therefore we denote for the next: $U=\left\{u_{1}, u_{2}, \ldots, u_{k+1}\right\}, A_{i}=$

Fig. 2
$=\left\{a_{i 1}, a_{i 2}, \ldots, a_{i, k+1}\right\} \quad$ and $\quad L_{i}=\left\{u_{1} a_{i 1}, \quad u_{2} a_{i 2}, \ldots, u_{k+1} a_{i, k+1}\right\}, \quad i=1,2$, ..., r.
(2) $r \quad 1, k \equiv 0(\bmod 2)$.
(a) If $2 k+1 \leqslant r$, then denote by G the graph sketched in Fig. 2, with each G_{i} equal to the graph of Fig. 3. Thus $G=(V, H) \quad V=U \cup \bigcup_{i=1}^{r}\left(A_{i} \cup\right.$ $\left.\cup B_{i} \cup C_{i} \cup D_{i} \cup E_{i}\right), \quad$ where $\quad B_{i}=\left\{b_{i 1}, b_{i 2}, \ldots, b_{i}, r_{-1}\right\}, \quad C_{i}=\left\{c_{i 1}, c_{i 2}, \ldots\right.$

Fig. 3
$\left.c_{i, k}\right\}, D_{i}=\left\{d_{i 1}, d_{i 2}, \ldots, d_{i k}\right\}, E_{i}=\left\{e_{i 1}, e_{i 2}, \ldots, e_{i, r-1}\right\}$ and with $H \fallingdotseq \bigcup_{i=1}^{r}\left(L_{i} \cup\right.$ $\cup H_{i}$), where $H_{i}=\left\{x y \mid x \in B_{i}, y \in A_{i} \cup C_{i}\right\} \cup\left\{c_{i 1} d_{i 1}, c_{; 2} d_{i 2}, \ldots, c_{i k} d_{i k}\right\} \cup$ $\cup\left\{x y \mid x \in D_{i}, y \in E_{i}\right\} \cup H_{i}^{1} \cup H_{i}^{2}$. Here H_{i}^{1} consists of the lines of $r-2 k-1$ 1-factors on B_{i} (as denoted in Fig. 3). (By Lemma 8 the complete graph with $r-1$ vertices of B_{i} can be decomposed into $r-21$-factors. Now, we take $r-2 k-1$ of these 1 -factors and we delete the other ones. Thus the induced subgraph $G\left(B_{i}\right)$ is a sum of its $r-2 k-1$ 1-factors.) Similarly, H_{i}^{2} consists of $r-k$-factors on E_{i}. It can be easily verified that G is r-regular with $|V| \quad 0(\bmod 2)$. Using Lemma 1 , where we put $S=U$, the graph G appears with no l-fa-tor. To show $x\left(G_{i}\right) \geqslant k$ it is sufficient to consider H_{i} without $H_{i}^{1} \cup H_{i}^{2}$. Then the induced subraphs on $A_{i} \cup B_{i} \cup C_{i}$ and $D_{i} \cup E_{i}$ are $K_{2 k+1, r-1}$, or $K_{k, r-1}$, respectively. If the Lemmas 6 and 4 are used, then we have $\varkappa\left(G_{i}\right) \geqslant$ $\geqslant k$ and by Lemma 5 also $x(G) \geqslant k$.

If the k lines from C_{1} to D_{1} are deleted, then we have a disconnected graph and $\lambda(G) \leqslant k$. Thus $\lambda(G)=\varkappa(G)=k$ follows.
(b) If $2 k+1>r$, then we take the graph $G=(V, H)$ of Fig 2 with G_{i} from Fig. 4. We have: $V=U \cup \bigcup_{i=1}^{r}\left(A_{i} \cup B_{i} \cup C_{i} \cup D_{i}\right)$, where $B_{i}=\left\{b_{i j}\right.$, $\left.b_{i 2}, \ldots, b_{i k}\right\}, \quad C_{i}=\left\{c_{i 1}, c_{i 2}, \ldots, c_{i k}\right\}, \quad D_{i}=\left\{d_{i 1}, d_{i 2}, \ldots, d_{i}, r_{-1}\right\} \quad$ and $H=$ $=\bigcup_{i=1}\left(L_{i} \cup H_{i}\right)$, where $H_{\imath}=\left\{x y \mid x \in A_{i}, y \in B_{i}\right\} \cup\left\{c_{i 1} d_{i 1}, c_{i 2} d_{i 2}, \ldots, c_{i k} d_{i k}\right\} \cup$ $\cup\left\{x y \mid x \in C_{i}, y \in D_{i}\right\} \cup H_{i}^{1} \cup H_{i}^{2} \cup H_{i}^{3}$. Here, the set H_{i}^{1} consists of $(r-k-1) / 2$ spanning cycles on A_{i} which can be taken from the $k / 2$ spanning cycles of K_{k+1} (considered on A_{i}) as Lemma 7 provides. The sets H_{i}^{2} and H_{i}^{3} consist of $r-k-2$ 1-factors on B_{i}, or $r-k$ 1-factors on D_{i}, respectively (see Lemma 8). Now, it can be seen that G is r-regular with $|V| \equiv 0(\bmod 2)$.

Fig. 4

Fig. 5

Analogously as before it can be shown that G has no 1-factor and $\lambda(G)=$ $=x(G)=k$.
(3) $r \equiv 0, k \equiv 1(\bmod 2)$.
(a) If $2 k+1 \leqslant r$, then we take for $G=(V, H)$ the graph of Fig 2, where for G_{i} the graph of Fig. 5. have been substituted.

Thus $\quad V=U \cup \bigcup_{i=1}^{r}\left(A_{i} \cup B_{i} \cup C_{i} \cup D_{i} \cup E_{i}\right), \quad$ where $\quad B_{i}=\left\{b_{i 1}, b_{i 2}, \ldots\right.$, $\left.b_{i, r-1}\right\}, C_{i}=\left\{c_{i 1}, c_{i 2}, \ldots, c_{i k}\right\}, D_{i}=\left\{d_{i 1}, d_{i 2}, \ldots, d_{i, k+1}\right\}, E_{i}=\left\{e_{i 1}, e_{i 2}, \ldots\right.$, $\left.e_{i, r-1}\right\}$ and $H=\bigcup_{i=1}^{r}\left(L_{i} \cup H_{i}\right)$, where $H_{i}=\left(\left\{x y \mid x \in A_{i} \cup C_{i}, y \in B_{i}\right\}-\left\{b_{i 1} c_{i 1}\right\}\right) \cup$ $\cup\left\{c_{i 1} d_{i 1}, c_{i 1} d_{i 2}, c_{i 2} d_{i 3}, c_{i 3} d_{i 4}, \ldots, c_{i k} d_{i, k+1}\right\} \cup\left\{x y \mid x \in D_{i}, y \in E_{i}\right\} \cup H_{i}^{1} \cup H_{i}^{2}$. Here, H_{i}^{1} consists of the lines of $(r-2 k) / 2$ spanning cycles on B_{i} (see Lemma 7) without the lines of one 1 -factor of one of these cycles on $B_{i}-\left\{b_{i 1}\right\}$. (This can be done; since $r-2 k>0$, thus at least one spanning cycle has been added, then the 1 -factor as a subgraph of the spanning cycle can be formed. H_{i}^{2} consists of the lines of $(r-k-1) / 2$ spanning cycles on E_{i} (see Lemma 7). Analogously as before we can verify that G is r-regular with no 1-factor and with $|V| \equiv 0(\bmod 2)$. Also analogously using Lemmas $6,3,4$ and 5 we find out that $\varkappa(G) \geqslant k$. However, the graph $G\left(V-C_{i}\right)$ is disconnected for any i. This yields $k=\left|C_{i}\right| \geqslant x(G)$ and hence $x(G)=k$. By Lemma 2 we have $\lambda(G) \geqslant$ $\geqslant k$. But a regular graph of an even degree r cannot have an odd $\lambda(G)=k$. Therefore $\lambda(G) \geqslant k+1$. As removing $k+1$ edges $u_{1} a_{11}, u_{2} a_{12}, \ldots, u_{k+1} a_{1, k+1}$ disconnects G, we have $\lambda(G)=k+1$.
(b) If $2 k+1>r$, then we take the graph $G=(V, H)$ of Fig. 2 again, where for each G_{i} the graph of Fig. 6. has been substituted. Here $V=U \cup$ $\cup \bigcup_{i=1}^{r}\left(A_{i} \cup B_{i} \cup C_{i} \cup D_{i}\right)$, where $B_{i}=\left\{b_{i 1}, b_{i 2}, \ldots, b_{i k}\right\}, C_{i}=\left\{c_{i 1}, c_{i 2}, \ldots\right.$;

Fig. 6
$\left.c_{i, k+1}\right\}, D_{i 1}=\left\{d_{i 1}, d_{i 2}, \ldots, d_{i}, k+1\right\}$ and $H=\bigcup_{i=1}^{r}\left(L_{i} \cup H_{i}\right)$, where $H_{i}=\left\{x y \mid x \in A_{i}\right.$, $\left.y \in B_{i}\right\} \cup\left\{b_{i j} c_{i 1}, b_{t 1} c_{i 2}, b_{i 2} c_{i 3}, \ldots, b_{i k} c_{i, k+1}\right\} \cup\left\{x y \mid x \in C_{i}, y \in D_{i}\right\} \cup H_{l}^{1} \cup$ $\cup H_{i}^{2} \cup H_{i}^{3} \cup H_{i}^{4}$. Here H_{i}^{1}, H_{i}^{3}, or H_{i}^{4} coriespond to the adding of $r-k-1$ 1-factors on $A_{i}, r-k-21$-factors on C_{i}, or $r-k-1$ 1-factors on D_{i}, respectively (see Lemma 8). According to Lemma 7 if the complete graph K_{k} is considered on B_{i}, then it can be decomposed into ($k-1$) $/ 2$ spanning cycles. Now, we take into $H_{i}^{2}(r-k-3) / 2$ from these cycles and then another spanning cycle is considered from which its 1 -factor on $B_{i}-\left\{b_{i 1}\right\}$ is taken into H_{i}^{2} (this can be done since $\left.(k-1)-(r-k-3)=(2 k+1)-r+1>1\right)$. Analogously as before we can find out again: G is r-regular with no 1 -factor, with $|V| \equiv 0(\bmod 2)$, with $\varkappa(G)=k$ and $\lambda(G)=k+1$.

Now, we have considered all cases and Theorem 2 is proved.
Remark. We note that our results hold also in the case when multigraphs or pseudographs are admitted. Especially, Theorem 1 then follows from the validity of Tutte's theorem (Lemma 1) (since our proof is based on it) also for pseudographs.

REFERENCES

[1] BAEBLER, F.: Über die Zerlegung regulärer Streckenkomplexe ungerader Ordnúng. Comment. Math. Helvetici 10, 1938, 275-287.
[2] BERGE, C.: Théorie des graphes et ses applications. 1. ed. Paris 1958.
[3] HARARY, F.: Graph theory. l. ed. Reading 1969.
[4] KÖNIG, D.: Theorie der endlichen und unendlichen Graphen. 1. ed. Leipzig 1936.
[5] PETERSEN, J.: Die Theorie der regulären Graphs. Acta Math. 15, 1891, 193 - 220.
[6] TUTTE, W. T.: The factorization of linear graphs. J. London Math. Soc. 22, 1947, 107-111.

Received April 22, 1970
Katedra matematickej štatistiky Prirodovedeckej fakulty Univerzity Komenského Bratislava

