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ONE-SIDED BASES OF SEMIGROUPS 

IMRICH FABRICI, 
Bratislava 

T. T a m u r a in [5] introduced the notion of a right (left) base of a semi
group and by means of this notion some properties of semigroups are in
vestigated. I n the present paper we shall describe the structure of semi
groups containing one-sided bases. We shall consider only right bases, since 
for left bases analogous statements hold. 

Definition 1. ([5]). We say that a subset A of a semigroup S is a right base 
of S if SA U A = S, but there exists no proper subset B <= A, for which SB U 
KJB = S. 

Now we introduce a quasi-ordering into S, namely 

a < b means a U Sa c 6 u Sb. 

Lemma 1. ([5]). Let A be a right base of S. If a, b e A and a e Sb, then a = b. 
Lemma 2. ([5]). A non-empty subset A of S is a right base of S if and only 

if A satisfies the following conditions: 
(1) for any x e S there exists a e A such that x ^ a. 
(2) for any two distinct elements a, b e A neither a < b, nor b < a. 
The set of all elements of S generating the same principal left ideal as 

a fixed element of S is called an L-class of S (see [2]). The principal left ideal 
a U Sa will be denoted by (a)r,. 

Simple examples of semigroups show that a right base A of S need not 
be a subsemigroup and therefore not a left ideal, either. 

Further we show some conditions when a right base of S is a left ideal, 
and also a subsemigroup of S. 

R e m a r k 1. We can show easily that a right base A of a semigroup S 
is a left ideal of S if and only if A = S. 

A semigroup S is called right singular if for every two elements x,y e S 
we have xy = y. 

Theorem 1. A right base A of a semigroup S is a subsemigroup of S if and 
only if A is a right singular semigroup. 
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P r o o f , (a) Let a right base A of S be a subsemigroup of S. I t is necessary 
to show t h a t for any a, b e A, ab = b. According to the assumption ab e A. 
Therefore, ab = c for some c e A, whence it follows t h a t ceSb. Lemma 1 
implies t h a t c = b, therefore for arbitrary a,b e A, ab = b. 

(b) The converse statement is evident. 

Corollary. If a right base A of a semigroup S is a subsemigroup of S, then S 
contains at least one idempotent. 

By the following example of a semigroup we can ascertain that if a right 
base of S is a subsemigroup and therefore a right singular subsemigroup, 
the whole semigroup need not be such one. 

E x a m p l e 1. Let S = {a, b, c, d} be a semigroup with the multiplication 
table 

a Ъ c d 

a a a a a 

Ъ a b a d 

c c c c c 
d a b a d 

A = {b, d} is a right base and a subsemigroup, but the whole semigroup 
is not right singular. 

The notion of a maximal proper left ideal is used in the same sense as in [3]. 

We say that a semigroup S contains a left ideal L*, if L* is such a maximal 

proper left ideal, in whion every proper left ideal of S is included (see [4]). 

Lemma 3. Let A be a right base of a semigroup S. Let ao e A be any element 
of A. If (ao)L = (b)L for some b e S,b =}= ao, then b is an element of a right base 
of S, distinct from A. 

P r o o f . Let B = [A — {a0}] u {&}. I t is clear that A 4= B. We show that B 
is also a right base of S. I t is sufficient to show t h a t B satisfies conditions (1), 
(2) of Lemma 2. Let x be an arbitrary element of S. Then, since A is a right 
base of S, there exists ae A such that x < a. Now, there are only two possibili
ties. 1. a 4= ao, 2. a = ao. If a =t= a 0 , then aeB. If a = ao, then aeB, but 
(«o)L = (6)L, therefore if x ^ a then xuSx^auSa = bKJ Sb, whence 
it follows that x < b and beB. I t means that B satisfies condition (1) of 
Lemma 2. Now let &i, b%eB be arbitrary elements, but distinct. If both 
elements are distinct from b, then 6] e A, b^eA and since A is a right base 
of S, then neither b± ^ b2, nor b2 < b±. Let for instance b) = b. If &i ^ &2 

then ao ^ b2, where ao e A, 62 e A. But A is a right base of S, therefore this 
is not possible. Similarly we can show that the relation 62 ^ b± cannot be 
fulfilled. But it means that B also satisfies condition (2) of Lemma 2, there
fore, B is a right base of S, distinct from A. 
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Theorem 2. Let s/ be the union of all right bases of a semigroup S. If L 
= S —- s/ is non-empty, then L is a left ideal of S. 

P r o o f . To prove our statement, we must show that if x e S, a e L = S ~ s/, 
then xa e L. Let us assume that xa e L. Then b = xa e s/, and thus b belongs 
at least to one right base A of S, and we have that b e Sa, therefore Sb cz Sa, 
b u Sb c a U Sa. We show that (b)L 4= (a)L. If (b)L = (a)L, then, since 
b e s/, according to Lemma 3 ae s/, and it is a contradiction to the assump
tion, because ae S — s/. I t means that (b)L < (a)L, (b)L 4= (a)L. And since A 
is a right base, then to the element a there exists an element b\ e A such that 
a ^ bi. Thus, we have b ^ a ^ b±, therefore b < bi, but it is a contradiction 
to condition (2) of Lemma 2, because b, b±eA. Hence, xa e S — s/. 

The following example of a semigroup shows that L == S — s/ need not 
be a maximal left ideal of S. 

E x a m p l e 2. Let S = {a, b, c, d} be a semigroup with the multiplication 
table: 

I abed 

a a b a a 
b a b a a 
c a b c c 
d a b d d 

All right bases of S are: A\ = {b, c} and A2 = {b, d}. 8 — s/ = {a} is 
a left ideal of S, but it is not a maximal proper one. 

In the following we shall find conditions when L = S — s/ is a maximal 
proper left ideal of S. 

Theorem 3. Let s/ 4= 0. S — s/ is a maximal proper left ideal of a semigroup S 
if and only if s/ 4= S and s/ _= a U Sa for all a e s/. 

Proof , (a) Let L = S — j / b e a maximal proper left ideal of a semigroup S. 
Therefore s/ 4= S. Let a e s/. If s/ c a U Sa does not hold, then (S — s/) u 
U (a)j, as a union of two left ideals is a left ideal of $, but a proper one. Then 
S — s/ is not a maximal left proper ideal, which is a contradiction to the 
assumption. 

(b) Let s/ c a U Sa for all aes/, and ja/ 4= £. We have to prove that 
S — s/ is a maximal proper left ideal of S. According to Theorem 2, S — s/ 
is a (proper) left ideal of S. Let S — s/ ^ Lf, where L' is a left ideal of S 
and S — s/ ^ L'. Then 1/ n -a/ 4= 0- Let ae U C\ s/, so a e L'. I t follows 
that Sa c A^L' c J/, aKJ Sa <= 27. W7hence, and according to the assump
tion, we obtain s/ ^k a \J Sa <=, L'. Consequently, s/ ^ L', S — s/ ^ L'', 
therefore S = L'. 

I t is clear that S may contain maximal proper left ideals distinct from 
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S — s/. The question arises: when will S — s/ be such a maximal proper 
left ideal of S that every proper left ideal of S will be included in it ? 

We say that an element a E S is Ze/£ invertible if Sa = S. 

Lemma 4. ([1]). Let a semigroup S contain at least one left invertible element. 
Then S contains the ideal L* and the complement of this ideal is the set of all 
left invertible elements. 

Theorem 4. Let 0 -# s/ 4= S. S — s/ = L* if and only if every right base 
of S is one-element and one from the following conditions holds: 

(1) Every right base of S is formed by a left invertible element. 
(2) A semigroup S contains only one right base A = {a} and we have: a U Sa = 
S, but a e Sa. 

Proof , (a) Let be S — s/ = L*. Thus S — s/ is a maximal proper left 
ideal. Theorem 3 implies that for any aes/ the following holds: s/ ^ aU Sa. 
But, moreover, every proper left ideal of S is included in S — s/. Now we 
shall show that S — s/ <= a U Sa for any a e s/ as well. Till now we have: 
s/ ^ a U Sa and S — s/ = L*. There are only two possibilities: either 
a U Sa is a proper left ideal of S and then avSa^S — s/, or a U Sa = S. 
The first possibility cannot hold, because at least aeS — s/. Therefore the 
other possibility must hold, so a U Sa = S, for any a e s/. Thus {a} is a right 
base of S. And as a is an arbitrary element of s/, then all right bases are one-
element. Therefore, only the following three cases are possible. 

(1) aKJ Sa = S, a e Sa for any element a e s/. (It means that every ele
ment a e s/ is left invertible.) 

(2) a U Sa — S, a e Sa for any element a e s/. 
(3) a u Sa = S, ae Sa for some element a E S/, but b U Sb = S, beSb 

for another element b e s/, b =}= a. 
We shall show that if S — s/ is a maximal proper left ideal of S, then case (3) 

cannot occur and in case (2) the semigroup S contains only one such base. 
Let us assume that in case (2) a semigroup S contains at least two right 

bases, A\ = {a±}, A2 —- {a2} such that a± U Sai = S, a±E Sa±, a2 U Sa2 = S, 
a2 E Sa2. Then S — s/ ^ Sa\ <= S, where S — s/ -# Sai, because a2 E Sai. 
But it means that S — s/ is not a maximal proper left ideal, and this is a contra
diction. If case (3) occurs, then again S — s/ <= Sb <= S, where S — s/ #= 
=f= Sb, because a e Sb. I t means that S — s/ is not a maximal proper left 
ideal, which is again a contradiction to the assumption. 

(b) Let us assume that all right bases of S are one-element and tha t one 
condition from (1), (2) is satisfied. If (1) holds, then the statement follows 
from Lemma 4. If (2) holds, then S — {a} = S — s/ = L is a left ideal. 
I t is evident that it is a maximal proper left one. We show that every proper 
left ideal of S is included in L. Let L] be a left ideal of S which is not included 
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in L. Then, evidently aeL\, therefore Sa s= SL± c L\. But, since aeLi, 
then S = au Sa ^ Li, therefore I* = 8. It means that X = i * . 
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