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ATOMS AND GENERATORS IN BOOLEAN 
m-ALGEBRAS 

LEV BUKOVSKY, MARTIN GAVALEC, 
Kosice 

The present note should be considered as a by-product of the research 
done by the authors. However, the main results are not, a t least not explicitly, 
stated in any publication (known to the authors), moreover, some of them 
are improvements of the results proved in [4] (e. g. p . 134.). 

Let n, m be cardinal numbers, m being infinite. A Boolean m-algebra is 
a Boolean algebra which is m-complete (every subset containing at most 
m elements has the join). 2lm n will denote the free Boolean m-algebra with 
n free rrt-generators (the notions and the denotation used here are those of 
S i k o r s k i [4]). 

I n this note a relation between the number of atoms and that of generators 
in a Boolean algebra is shown. That allows us to determine the minimal 
power of a set of m-generators in P(m), on the other hand we are able to give 
the exact number of atoms in 5I m n . At the end the cardinality of 2Im n is shown 
to be n m for n infinite. 

Let us denote l.b = b, 0.6 = —b for any element b cf a Boolean algebra. 

Lemma 1. Let %be a Boolean m-algebra (algebra) with a set S of m-genera
tors (generators). Then 

(a) for any ees2 the meet 

(1) s£ = A e{s) . s 
seS 

exists and is an atom or zero, 

(b) every atom ae A is of the form (1). 

P roo f . For a e m + let us define by induction: 

(2) A0 = IJ {s, -s}, A'x = U As, Aa = \J ( A «rf£), - A ?(*)}• 
8eS /3ea <pemA'a ^ e m ^em 

By assuption we have 31 = ( J A^ and by induction through a e m + we im-
a e m + 

mediately see that , if x e 21 fulfils x ^ s or x ^ —-s for all s e S, then also 
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x ^ b or x < —6 for all 6 e 51. Therefore every lower bound of {e(s) . s; s e S} 
is an atom or zero and while the join of two lower bounds is again a lower 
bound but the join of two different atoms not, (a) is proved. To prove (b) it 
suffices to define e.(s) = 1 if a < s, e(s) = 0 if a ^ —s. 

If S only generates 51, the proof is quite analogous (we take Xo instead 
ofm+ ) . 

N o t e 1. A special case of Lemma 1 (a) (for card S ^ m) is formulated 
in the proof of Theorem 24.5 [4]. 

The following four statements are immediate consequences of the previous 
lemma. 

Corollary 1. If n < m, then in a Boolean m-algebra with n m-generators every 
m-ultrafilter is principal. 

Corollary 2. If a Boolean algebra 51 with n generators (m-generators, complete 
generators) is n distributive, then card 51 ^ 2-n. 

P roo f . The n-distributivity of 51 gives us 1 = V {se\ ses2}, therefore 
by Lemma 1, 51 is atomic and the number of atoms is < 2n. As every element 
in 51 is a join of atoms, the statement is proved. 

Corollary 3. / / a Boolean 2n-algebra 51 with n generators (m-generators, complete 
generators) is n-distributive, then 51 is of the form P(K) . 

P roo f . By the same reason as in Corollary 2, 51 is atomic and for X we 
take the set of all atoms in 51. 

Theorem 1. A Boolean algebra with n generators (m-ge?ierators, complete 
generators) has at most 2n atoms. 

N o t e 2. In Corollary 2, the n-distributivity of 51 is essential. For n regular 
and for any cardinal I there exists a Boolean algebra 51 f with n complete 
generators, which ism-distributive for allm < n and card 51 f ^ I (see V o p e n -
k a [7], S o l o v a y [5]). 

Let us denote logm = min {coa; 2
CO(X ^ m}, let Pm(K) denotes the Boolean 

algebra of all the subsets of X of the power ^ m and their complements (with 
set-theoretical operations). 

Theorem 2. The least possible number of m-generators of the Boolean algebra 
Prm) is logm. 

P r o o f . Let us denote logm = i. Then Pm(P(I)) has { m-generators se = 
= {p; f e p & p .= 1} for f G f. Therefore P(m) has also at most I generators. 
By Theorem 1, P(m) cannot have less than I generators. 

Theorem 3. If n < m, 5lmn has exactly 2n atoms; if m < n, 5Imn is atomless. 
Proo f . Let be ees2 (using the denotation from Lemma 1). If n ^ m, 
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e can be extended to a m-homomorphism cp of 9lnm onto the two-element 
Boolean algebra 2, where clearly <p(s£) = 1. Therefore, by Lemma 1 (a), 
se is an atom. Evidently, for s 4= e' se =)= se* holds. 

Now, let m < n and let 9Iutn have an atom a. Using the denotation (2), 
aeAa holds for some a. Therefore there exists S' c S, card S' ^ m such 
that a e 91', where 91' is the m-subalgebra of 9lmn generated by S'. By Lemma 1 
(b) we have 

(3) a = se = A e(5) • 5 

and 

(4) a = 6V = A s'(s) - s 

seS' 

for proper e e s2, E e s'2. 

If we define <p(s) = e'(s) for s e S', 
(p(s) = —E(S) for s e S — S', 

then the mapping n can be extended to a m-homomorphism / of 9tmn onto 2. 
As S — # ' 4= 0, by (3) we have f(a) = 0. On the other hand from (4) we get 
f(a) = 1. Thus 9lmn is atomless. 

If 91 is a Boolean algebra, let us define (see also V o p e n k a [6]): 

(5) ^(91) = min {coa; (V6 _= 91) [card b ^ a)a-> fix, yeb)[x + ydh 

&x A 2/ + 0]]}. 

Lemma 2. If n ^ No, ^ew M^mn) > m+. 
Proof. Let us suppose that every system of disjoint elements of 9Imn 

is of power ^ m (i. e. /z(9Imn) ^ m+) . Then 9lmn, being m-complete, is also 
complete and moreover it is the free complete Boolean algebra with n free 
complete generators. But from the results of Gaifman [1] and Hales [2] follows 
that for n infinite such an algebra does not exist (see also Sikorski [4]). 

Theorem 4. If n > Xa, then card 9lmn =•• n m . 
P roo f . Different sets of generators of the cardinality m have different 

joins, therefore, if n ^ m, card 9lmrt ^ nm . Using Lemma 2 we have a set b 
of disjoint elements of %nn with card b = ' m + . Fcr different subsets b', b" 
of b, the joins \Jb', \/b" are different, too. Therefore, for m + ^ n we have 
card9lm n > (m+)m > nm . The statement card 9 1 ^ < nm is trivial. 

Theorem 5. / / n ^ No, ttt ^ Ni, £Ae/i 9lmn is wo£ #i-representable. 
Proof . The complete Boolean algebra 91 of all open regular subsets of 

the topological space which is the Cartesian product of >3o topological spaces 
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of the cardinality Xi with the discrete topology each has, by Solovay [5], 
So complete generators. They are also Xi-generators, because, by V o p e n k a 
[?]> M^l) = a)2. By the method of Karp [3] we easily show tha t 91 is not Xi-
representable. But 91 is a homomorph image of <Hmn for rt ^ Xo, m ^ Xi 
and therefore %nn is not Xi-representable, either. 
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