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M a t e m a t i c k ý časopis 19 (1969), N o . 2 

ABSTRACT FORMULATION OF SOME THEOREMS 
OF MEASURE THEORY II 

BELOSLAV RIECAN, Bratislava 

In the paper we formulate and prove the following three theorems only 
with the help of some properties of the systems Jr

n of all measurable sets-
with a measure less than \\n\ Vitali's covering theorem, the assertion t h a t 
the system of all measurable sets of finite measure is a complete pseudometric 
space (with the pseudometric Q(E, F) = ^t(E A F)) and the theorem on appro
ximation of a measure. 

Note t h a t some other theorems of measure theory were generalized b y 
a similar way in the author's paper [1] and in the paper [2] by T. N e u b r u n n . 

We shall assume that there are given a cr-ring S? of subsets of a set X and 
a sequence {Jr

n}n=0 of subsystems of Sf. We shall assume, if it is convenient, 
that {Jr

n}n=$ satisfies some of the following axioms: 
(1) 0eJTn for all n. 
(2) To any positive integer n there is an increasing sequence {fcjf=1 of 

00 

positive integers such that ( J Ei E Jr
n as soon as Ei e Jr

1ci. 
i=l 

(3) Let {E$?=1 be an arbitrary non decreasing sequence of sets of Jro> 
00 

and P | Ei = 0. Then to any positive integer n there is a positive integer m 
i = i 

such that Em e Jrn • 
(4) If E c F, EeSf, FeJr

n, then EsJr
ri (n = 0, 1, 2, . . . ) . 

(5) */V*n+i c: Jr
n for any positive integer n. 

If (X, Sf, JLL) is a measure space, Jro = {E e Sf : fi(E) < oo}, Jr
n = 

= {E G S? : ju(E) < \\n}, then we easily find out t h a t all the conditions (1) —(5) 
are satisfied. I n section 1 we shall use a more special condition (the condition 
(V)) connected with Vitali's covering theorem. I n section 2 we shall use 
instead of (2) the following stronger condition: 

00 

(2') There is a sequence {fcj^0 of positive integers such t h a t ( J Ei eJr
kN 

whenever Et eJr
ki (i = N -f 1, . . . ) . 

We see that (2) follows from (5) and (2'). I t is evident that (2') is satisfied 
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also for the above choice of {Jr
n}- We shall often use also the following con

sequence of (1) and (2): 
(2") To any positive integer n there are positive integers p, q such tha t 

E e Jr
v, F e Jr

q imply E u F e Jr
n. 

Vitali's theorem which we are just going to prove, is usually formulated 
for outer measures. That is why we dinstinguish in the used axioms two 
or-rings Sf and 3ft. Let -Ŝ 7 be the system of all subsets of the ^-dimensional 
Euclidean space X, let 3ft be the system of all Borel subsets of X. We shall 
assume that Jr

n are subsystems of Sf, but (3) is satisfied only for such sequences 
{^i}?^i > f°T which Ei E 3ft n ,/Vo • Hence, the following property is satisfied: 

(3') Let {Fy^! be any non increasing sequence of sets of 3ft C\Jr$, and 
00 

PI Ei = 0. Then to any n there is an m such that Em G Jr
n. 

i 1 

If E is a sphere in X, then by 5E we shall denote the sphere with the same 
centre but with a 5 times larger diameter. 

Theorem 1. Let {jrn}^=0 be a sequence of subsystems of the a-algebra SP 
satisfying the conditions (1), (3') and (4). Let Jr$ contain all bounded sets. Let C/f 
be any Vitali covering^) of a bounded set A e £f by closed spheres. Moreover 
let {Jr

n} satisfy the following condition: 
00 

(V) 'To any positive integer m there is a positive integer k such that ( J 5Ej eJr
m 

oo i=l 

whenever {En}^=^is a sequence of sets of' J f such that [ J Ej eJrjc, Ei r\E3- = 0, i + j . 
7 = 1 

Then there is a sequence {E{}f=1 of pairwise disjoint sets of JT such that 

A-(jEiEf]J^n. 
i=l n=l 

Proof . Since A is bounded, there is an open sphere F such that A c F, 
We may assume that J f is a system of subsets of F. Put di = sup {diam(2£):F7 e 
G Jf, E <= F} and choose Ei e Ctif with diam (Ei) > di/2. Assume now that 
we have constructed sets Ki, . . . , En_i G J f such that Et n Ej = 0 (i =f= j) and 
diam Et > \ sup {diam (E): E e X, E <z F — ( J Erf (i = 1, . . . , n — 1). 

If we put 
n-l 

(6) dn = sup {diam (E): E e JsT, E c F — ( J Et}, 
i=l 

(*) I. e. to any r > 0 and any x e A there is E e Jf such that x e E and diam (E) < r. 
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we can choose En such that EneJf,En ^ F — \J Ei a n d 

i=l 

dn 

(7) diam (En) > — . 

By this process we have constructed a sequence {En}n=i °* Pai rwise disjoint 
sets of JT satisfying the conditions (6) and (7). 

By a standard way ([3]) we prove that 

(8) A - Q Ln <= ( J oEn 
n=l n=p 

for any positive integer p. First let L be the Lebesgue measure in X. Since 
OO 

y L(En) <; L(F) < oo, we get lim L(En) = 0 and hence also 
n=l . w^°° 

(9) lim diam (Ky = 0. 
W->00 

oo p 3? 

Let ĉ  G ̂ 4 — U ^ c I^7 — U ^ ' • S i n c e -P — U ^ i s ° P e n a n d ^ is a Vitali 
n=l i=l i=l p 

covering of A, there exists E e JT such that xeE^F—[JEf. According 
£ i - i 

to (9) and (7) there is a q such that i? n U ^ ' + $• ^ e ^ r D.e the -east positive 
t=i 

integer for which E n Er + 0. Evidently r > p and diam (E) < 2 diam (KV) 
00 

according to (7). Therefore E c 5F/r, hence ^ e U ^ I S ^ , which proves the 
n=p 

inclusion (8). 
00 

Let m be any positive integer; choose k according to (V). Put Aq = [J En. 
n=q 

Evidently Aqe&; AqE^o, since ./Vo contains all bounded sets. Besides 
00 

P | Aq = 0 and Aq => Aq+i (q = 1, 2, ...). Therefore by (3') there is a p such 
n=p oo oo 

tha t \J En = Av e^ic. The property (V) implies U 5En e^Vm, hence by (8) 
n=p oo n=p 

and (4) we have A — [J En eJ^m for any m, which proves our assertion. 
n=l 

Corollary. Let ju be an outer measure in X, that is a measure on £8, finite 
on bounded sets. Let A be a bounded set, J f be a system of closed spheres covering A 
in the Vitali sense. Let C4T satisfy the following condition: 

(V) There is oc > 0 such that /u(5E) ^ ocju(E) for all E e Jf. 
Then there is a sequence {En} of pairwise disjoint sets of J f such that 

lx(A -(jEn) = 0. 
n=l 

N o t e . Vitali's covering theorem (a variant of which has been just presented) 
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has an interesting character. While its assumptions are topological, its assertion 
is metric. A. Denjoy in some papers (e. g. [4], [5]) formulated and proved 
Vitali's theorem only in metric terms. Conversely our Theorem 1 is formulated 
only in topological terms. 

In this section we shall assume that X is an arbitrary space and £P is a a-ring 
of subsets of X. 

Theorem 2. Let {jVn}^=0 satisfy the conditions (1), (2"), (4) and (5). Then 
the system °ti of all sets of the form {(E, F): E A F e jVn} (n = 1, 2, ...) is a base 
of a uniformity of JVO . Since the uniform space has a countable base, <sVo is 
pseudometrizable. (2) 

Moreover if {jVn}„=0 satisfies (2') and (3) and JVO is closed under the sums, 
then JVO is complete. 

Proof . First we prove that any element of ^ c o n t a i n s the diagonal: 
(10) {(E,E):EejVo} <= U for each UeW. 

This follows from the condition (1), since E A E = 0 ejVn for all n. From the 
definition of °ll we get 

(11) U eQl r> U-i e ^ , 

where C7-i = {(E, F): (F, E)eU}. In our case U~l = U. Let U e<%, U = 
= {(E, F):E A F e jVn}. Choose p, q according to (2") and put m = max (p, q), 
V = {(E, F): E AF7 eJVm}. Then M, N eJTm => M U N ejVn according to 
(2") and (5). If as usually we denote by V ° V the set {(E, F): there is G e JVO , 
(E, G)e V, (G,F)e V}, we get 

Vo v = {(E, F): there is G ejV0, E A GeJTm, G AFejVm} c 
c= {(E,F): there is GejVo, (E A G) U (G A F) ejVn}. 

Since E A F C (E A G) U (G A F)ejVn, we have by (4) E A F ejVn, hence 
F ° F c U. We have proved the following: 

(12) To a n y P e t there is V e °ll such that V ° V <z U. 

From (5) we get also the following property: 

(13) U n V e <% for any U, V e <?/. 

Prom the properties (10) —(13) it follows that ^ is a base of a uniformity 
([6], chap. VI, th. 2, p. 177). 

(2) [6], chap. VI, th. 13, p. 186. 
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I n order to prove the completness of <Aro it suffices to prove that any Cauchy 
sequence is convergent ([6], chap. VI, th. 24, p. 193). Let {En}n=1 be a Cauchy 
sequence, i. e. to any k there is an N such that En A Em e JVJC for m,n > N. 

Let {k%} be a sequence according to (2'). Since {En} is a Cauchy sequence 
there is an increasing sequence of positive integers {rii} such that Eni A Eni+l e 
eJr

ki (i = 1, 2, . . . ) . Put Ft = Eni (hence Ft A Fi^eJ^^) and put 

O0 0 0 
771. 

П = l І=П 

The set E is a member of JV^, since [J (Ft A Fi+i) eJr

ko (according to (2')) 
i=Л 

and E <= JP± U ( J (Ft A Fi+i). Evidently 
i=l 

(i4) B A f . c ( £ i n i , ( ) u ( n i ' f A Fn). 
i=n i=n 

00 

Let m be any positive integer. Choosey, q according to (2"). Put Vn = E — f̂ -JTV 
oo i=n 

Evidently f | Vn = 0, V„ =-> F»+i, V1eJr
0. Therefore by (3) there is Ni 

n=l 
such tha t 

(15) # - f)FieJrp 
i=n 

00 00 

for all n> NL NOW notice that Fn — f] Ft <-= ( J (F* — Fm). Hence by (2') 

we have 

Fn-f\FeJr^. 
i=n 

Choose N2 such that k^-i > q. Then J^^ <= -^"g for n > N2, hence 

00 

(16)Fn-f\FteJrq. 
i=n 

From the relations (14)—(16) we get E AFne Jr
m for all n> N3 = max(N i , N2). 

Hence we proved that to any m there is an N3 such that 

E AEniEjVm 

for all n > N3. Let u be an arbitrary- positive integer, r, s be such that G \J H e 
G </Vw whenever C? e */Vr, H e ^ s . By the foregoing there is an N3 such tha t 

E AEnieJr
r 

for all i > N3. Since {En} is a Cauchy sequence, there is an N4 such tha t 
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Ei A Ek ejVs for all i, k > N4. Put N = max (N3, N4). Then m > N4 for 
i > N, hence E( A EUi e ^¥\. I t follows that 

E A Ex c= (E A # J u (F/Wi A ^ ) G t / f V 

I t means that Ei -> E in the uniform topology of the space ./To, hence JVO 
is complete. 

Corollary. The pseudometric space of all sets of finite measure with the pseudo-
metric Q(E, F) = [A(E A F) is complete. 

Now we generalize the theorem on the approximation of a measure ([7]). 

Theorem 3. Let {^n}^=0 satisfy the conditions (1), (2), (3) and (4). Let 
E U F e j\ro whenever E,F e J^o • Let Si be a ring, Sf be the a-ring generated 

CO 

by &. Let to any Ee0t exist Ete0t n JVo (i = 1,2, ...) such that E <= \JEt. 
ui 

Then to any n and any E e<sV*o there is F e0t such that E A F e^Vn. 
Proof . First consider 0 = ̂  nJ^o- ^ is a ring and the cr-ring SP(&) 

generated by 0 is £f. Take a fixed G e 0 and consider the system M of all 
H e Sf with the following property: To any n there is F e 0 such that 
(H n G) AFe^n. Clearly M => 0. Namely if He0, then put F = H n G 
and use (1). Prove that M is a c-ring hence that M => £f. 

Let Hi e M (i = 1, 2, . . . ) , n be an arbitrary positive integer. First construct 
p>, q such that A U B e^Vn whenever A eJ^p, B e^q. To the number p 
construct a sequence {hi} according to (2). Since Hi e M, there are Fie0 
such that 

(Hi r\G) b,FieJ/\r 

Hence we get 

(17) Q (HiC\G)^Fie^v. 
i=l 

00 k 

Further consider the sequence Bk = \J (G C\Fi) — [J (G nFt). Evidently 
00 . i=l i=l 

Bk ejVo, Bk -=> Bk+i9 f̂  Bjc = 0. Therefore by (3) there is an N such tha t 
k=l 

(18) BN = U (G nFt) - U (Gr\Fi)e^q. 
i=l *=1 

We easily check the inclusion 
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(19) [(\JHi)nG]^(\JFt)^[(j(HinG)^Fi]u[\J(GnFi)-[J(GnFi)]. 
i=l i=l i=l i=\ i=l 

The relations (17) —(19) imply [((J Ht) n G] A (\J Ft) eJfn, hence j j Ht e M 
N i=l i=l i=l 

according to ( J Ft e 2%. The fact that ..M is closed with respect to differences 

can be proved similarly by the help of the inclusion 

[(F/i - E2) n G] A [(Fi - F2)] n G] <= [ ( ^ n O) A Fi] u [(#2 n 0) A F2]. 

The inclusion M => «Ŝ  implies the following: To any C7 G ̂  and E e £f 

there is K G ̂  such that (E n O) A F' G ^ T n . 

Let F7 G .yVo • Let JT be now the system of all sets G e £f with the following 

property: To any n there is F e £& such that (E n G) A F e ^ n . By the fore

going we have 3F "=> 3P. We show that J f is a a-ring similarly as we showed 

it to M. Hence X =-> -5^, and to any w there is K e 01 such that E A F = 

= (E n K) A F e ^Vn. The Theorem is proved. 

Corollary. Let (X, if, JLL) be a measure space, 3& <z £f be a ring, £f be generated 

by 3&, ju be a-finite on 8%. Then to any set E e £f of finite measure and any e > 0 

there is F e 2% such that jbt(E A F) < e. 
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