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GLn-INVARIANT TENSORS AND GRAPHS

Martin Markl

Abstract. We describe a correspondence between GLn-invariant tensors and
graphs. We then show how this correspondence accommodates various types
of symmetries and orientations.

Introduction

Let V be a finite dimensional vector space over a field k of characteristic
zero and GL(V ) the group of invertible linear endomorphisms of V . The classi-
cal (Co)Invariant Tensor Theorem recalled in Section 1 states that the space of
GL(V )-invariant linear maps between tensor products of copies of V is generated
by specific ‘elementary invariant tensors’ and that these elementary tensors are
linearly independent if the dimension of V is big enough.

We will observe that elementary invariant tensors are in one-to-one correspon-
dence with contraction schemes for indices which are, in turn, described by graphs.
We then show how this translation between invariant tensors and linear combination
of graphs accommodates various types of symmetries and orientations.

The above type of description of invariant tensors by graphs was systemati-
cally used by M. Kontsevich in his seminal paper [4]. Graphs representing tensors
appeared also in the work of several other authors, let us mention at least J. Co-
nant, A. Hamilton, A. Lazarev, J.-L. Loday, S. Mahajan M. Mulase, M. Penkava,
K. Vogtmann, A. Schwarz and G. Weingart.

We were, however, not able to find a suitable reference containing all details. The
need for such a reference appeared in connection with our paper [5] that provided
a vocabulary between natural differential operators and graph complexes. Indeed,
this note was originally designed as an appendix to [5], but we believe that it
might be of independent interest. It supplies necessary details to [5] and its future
applications, and also puts the ‘abstract tensor calculus’ attributed to R. Penrose
onto a solid footing.
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1. Invariant Tensor Theorem: A recollection

Recall that, for finite-dimensional k-vector spaces U and W , one has canonical
isomorphisms
(1) Lin(U,W )∗ ∼= Lin(W,U) , Lin(U, V ) ∼= U∗⊗V and (U ⊗W )∗ ∼= U∗⊗V ∗,
where Lin(−,−) denotes the space of k-linear maps, (−)∗ the linear dual and ⊗ the
tensor product over k. The first isomorphism in (1) is induced by the non-degenerate
pairing

Lin(U,W )⊗ Lin(W,U)→ k
that takes f ⊗ g ∈ Lin(U,W ) ⊗ Lin(W,U) into the trace of the composition
Tr(f ◦ g), the remaining two isomorphisms are obvious. In this note, by a canonical
isomorphism we will usually mean a composition of isomorphisms of the above
types. Einstein’s convention assuming summation over repeated (multi)indices is
used. We will also assume that the ground field k is of characteristic zero.

In what follows, V will be an n-dimensional k-vector space and GL(V ) the
group of linear automorphisms of V . We start by considering the vector space
Lin(V ⊗k, V ⊗l) of k-linear maps f : V ⊗k → V ⊗l, k, l ≥ 0. Since both V ⊗k and V ⊗l
are GL(V )-modules, it makes sense to study the subspace LinGL(V )(V ⊗k, V ⊗l) ⊂
Lin(V ⊗k, V ⊗l) of GL(V )-equivariant maps.

As there are no GL(V )-equivariant maps in Lin(V ⊗k, V ⊗l) = 0 if k 6= l (see, for
instance, [3, §24.3]), the only interesting case is k = l. For a permutation σ ∈ Σk,
define the elementary invariant tensor tσ ∈ Lin(V ⊗k, V ⊗k) as the map given by
(2) tσ(v1 ⊗ · · · ⊗ vk) := vσ−1(1) ⊗ · · · ⊗ vσ−1(k) , for v1, . . . , vk ∈ V .
It is simple to verify that tσ is GL(V )-equivariant. The following theorem is a
celebrated result of H. Weyl [7].

Invariant Tensor Theorem. The space LinGL(V )(V ⊗k, V ⊗k) is spanned by ele-
mentary invariant tensors tσ, σ ∈ Σk. If dim(V ) ≥ k, the tensors {tσ}σ∈Σk are
linearly independent.

This form of the Invariant Tensor Theorem is a straightforward translation of [1,
Theorem 2.1.4] describing invariant tensors in V ∗⊗k ⊗ V ⊗k and remarks following
this theorem, see also [3, Theorem 24.4]. The Invariant Tensor Theorem can be
reformulated into saying that the map
(3) Rn : k[Σk]→ LinGL(V )(V ⊗k, V ⊗k)
from the group ring of Σk to the subspace of GL(V )-equivariant maps given by
Rn(σ) := tσ, σ ∈ Σk, is always an epimorphism and is an isomorphism for n ≥ k
(recall n denoted the dimension of V ).
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The tensors {tσ}σ∈Σk are not linearly independent if dim(V ) < k. For a subset
S ⊂ {1, . . . , k} such that card(S) > dim(V ), denote by ΣS the subgroup of Σk

consisting of permutations that leave the complement {1, . . . , k} \ S fixed. It is
simple to verify that then

(4)
∑
σ∈ΣS

sgn(σ) · tσ = 0

in LinGL(V )(V ⊗k, V ⊗k). By [1, II.1.3], all relations between the elementary invariant
tensors are induced by the relations of the above type. In other words, the kernel
of the map Rn in (3) is generated by the expressions∑

σ∈ΣS

sgn(σ) · σ ∈ k[Σk] ,

where S and ΣS are as above. Observe that, with the convention used in (2)
involving the inverses of σ in the right hand side, Rn is a ring homomorphism.

1.1. Definition. By the stable range we mean the situation when dim(V ) ≥ k,
that is, when the map Rn in (3) is a monomorphism.

2. Graphs appear: An example

In this section we analyze an example that illustrates how the Invariant Ten-
sor Theorem leads to graphs. We are going to describe invariant tensors in
Lin

(
V ⊗2⊗Lin(V ⊗2, V ), V

)
. The canonical identifications (1) determine a GL(V )-

-equivariant isomorphism

Φ: Lin
(
V ⊗2 ⊗ Lin(V ⊗2, V ), V

) ∼= Lin(V ⊗3, V ⊗3) .

Applying the Invariant Tensor Theorem to Lin(V ⊗3, V ⊗3), one concludes that the
subspace LinGL(V )(V ⊗2⊗Lin(V ⊗2, V ), V ) is spanned by Φ−1(tσ), σ ∈ Σ3, and that
these generators are linearly independent if dim(V ) ≥ 3. It is a simple exercise to
calculate the tensors Φ−1(tσ) explicitly. The results are shown in the second column
of the table in Figure 1 in which X ⊗ Y ⊗ F is an element of V ⊗2⊗Lin(V ⊗2, V )
and Tr(−) the trace of a linear map V → V .

Let us fix a basis {e1, . . . , en} of V and write X = Xaea, Y = Y aea and
F (ea, eb) = F cabec, for some scalars Xa, Y a, F cab ∈ k, 1 ≤ a, b, c ≤ n. The correspon-
ding coordinate forms of the elementary tensors are shown in the third column of
the table. Observe that the expressions in this column are all possible contractions
of indices of the tensors X, Y and F .

The contraction schemes for indices are encoded by the rightmost column as
follows. Given a graph G from this column, decorate its edges by symbols i, j, k.
For example, for the graph in the bottom right corner of the table, choose the
decoration

6
•
X

� �
� �

���•
•
6

F

Y

i
j

k .
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Φ−1(tσ):
coordinate
form: graph:

σ = identity X ⊗ Y ⊗ F 7→ F (X,Y ) XjY kF ijkei
6•F

���•
X

@@I•
Y

σ = ���@@I 6
1 2 3

1 2 3

X ⊗ Y ⊗ F 7→ F (Y,X) XjY kF ikjei
6•F

���•
Y

@@I•
X

σ = 6 ���@@I
1 2 3

1 2 3

X ⊗ Y ⊗ F 7→ Y ⊗ Tr(F (X,−)) XjY iF kjkei
6
•
Y

� �
� �

���•
•
6

F

X

σ = ������HH
HY

1 2 3

1 2 3

X ⊗ Y ⊗ F 7→ Y ⊗ Tr(F (−, X)) XjY iF kkjei
6
•
Y

� �
� �

@@I•
•
6
F

X

σ = ��
�*6H
HHY

1 2 3

1 2 3

X ⊗ Y ⊗ F 7→ X ⊗ Tr(F (−, Y )) XiY jF kkjei
6
•
X

� �
� �

@@I•
•
6
F

Y

σ = ��
�*

@@I @@I
1 2 3

1 2 3

X ⊗ Y ⊗ F 7→ X ⊗ Tr(F (Y,−)) XiY jF kjkei
6
•
X

� �
� �

���•
•
6

F

Y

�

�

�

�

�

�

Fig. 1: Invariant tensors in Lin(V ⊗2 ⊗ Lin(V ⊗2, V ), V ). The
meaning of vertical braces on the right is explained in Example 4.1.

To each vertex of this edge-decorated graph we assign the coordinates of the
corresponding tensors with the names of indices determined by decorations of edges
adjacent to this vertex. For example, to the F -vertex we assign F kjk, because its
left ingoing edge is decorated by j and its right ingoing edge which happens to be
the same as its outgoing edge, is decorated by k. The vertex 6, called the anchor ,
plays a special role. We assign to it the basis of V indexed by the decoration of its
ingoing edge. We get

ei

6
•
Xi

� �
� �

���•
•
6

Fkjk

Y j

i
j

k

As the final step we take the product of the factors assigned to vertices and perform
the summation over repeated indices. The result is∑

1≤i,j,k≤n
XiY jF kjkei .
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In this formula we made an exception from Einstein’s convention and wrote the
summation explicitly to emphasize the idea of the construction. A formal general
definition of this process of interpreting graphs as contraction schemes is given
below.

Let Ĝrex be the vector space spanned by the six graphs in the last column of
the table; the hat indicates that the graphs are not oriented. The subscript “ex” is
an abbreviation of “example,” and distinguishes this space from other spaces with
similar names used throughout the note. The procedure described above gives an
epimorphism

(5) R̂n : Ĝrex → LinGL(V )
(
V ⊗2 ⊗ Lin(V ⊗2, V ), V

)
which is an isomorphism if n ≥ 3. The map R̂n defined in this way obviously does
not depend on the choice of the basis {e1, . . . , en} of V .

The space Ĝrex can also be defined as the span of all directed graphs with three
unary vertices

(6) • X ,6
• Y
6 and 6 ,

and one “planar” binary vertex

(7)
6•F

��� @@I

whose planarity means that its inputs are linearly ordered. In pictures, this order
is determined by reading the inputs from left to right.

3. The general case

Let us generalize calculations in Section 2 and describe GL(V )-invariant elements
in
(8) Lin

(
Lin(V ⊗h1 , V ⊗p1)⊗ · · · ⊗ Lin(V ⊗hr , V ⊗pr ),Lin(V ⊗c, V ⊗d)

)
,

where r, p1, . . . , pr, h1, . . . , hr, c and d are non-negative integers. The above space
is canonically isomorphic to

V ∗⊗p1 ⊗ V ⊗h1 ⊗ · · · ⊗ V ∗⊗pr ⊗ V ⊗hr ⊗ V ∗⊗c ⊗ V ⊗d,
which is in turn isomorphic to

(9) V ∗⊗(p1+···+pr+c) ⊗ V ⊗(h1+···+hr+d),

via the isomorphism that moves all V ∗-factors to the left, without changing their
relative order. By the last and first isomorphisms in (1), the space in (9) is
isomorphic to

Lin(V ⊗(p1+···+pr+c), V ⊗(h1+···+hr+d)) .
We will denote the composite isomorphism between (8) and the space in the above
display by Φ. Since all isomorphisms above are GL(V )-equivariant, Φ is equivariant,
too, thus the space (8) may contain nontrivial GL(V )-equivariant maps only if
(10) p1 + · · ·+ pr + c = h1 + · · ·+ hr + d .
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Denote by Ĝr the space spanned by all directed graphs with r+ 1 planar vertices

�
���

@
@@I

A
AAK

�
���

@
@@I

�
���
•F1

. . .︸ ︷︷ ︸
h1 inputs

. . .

p1 outputs︷ ︸︸ ︷
· · · �

���

@
@@I

A
AAK

�
���

@
@@I

�
���
•Fr

. . .︸ ︷︷ ︸
hr inputs

. . .

pr outputs︷ ︸︸ ︷
and �

���

@
@@I

A
AAK

�
���

@
@@I

�
���
. . .︸ ︷︷ ︸

d inputs

. . .

c outputs︷ ︸︸ ︷
,

where planarity means that linear orders of the sets of input and output edges
are specified. Observe that the number of edges of each graph spanning Ĝr equals
the common value of the sums in (10). For each graph G ∈ Ĝr we define a
GL(V )-equivariant map R̂n(G) in the space (8) as follows.

As in Section 2, choose a basis (e1, . . . , en) of V and let (e1, . . . , en) be the
corresponding dual basis of V ∗. For Fi ∈ Lin(V ⊗hi , V ⊗pi), 1 ≤ i ≤ r, write

Fi = Fi
ai1,...,a

i
pi

bi1,...,b
i
hi

ea1 ⊗ · · · ⊗ eapi ⊗ e
b1 ⊗ · · · ⊗ ebhi

with some scalars Fi
ai1,...,a

i
pi

bi1,...,b
i
hi

∈ k or, more concisely, Fi = Fi
Ai

Bi eAi ⊗ eB
i , where

Ai abbreviates the multiindex (ai1, . . . , aipi), B
i the multiindex (bi1, . . . , bihi), eAi :=

ea1⊗· · ·⊗eapi , e
Bi := eb1⊗· · ·⊗ebhi and, as everywhere in this paper, summations

over repeated (multi)indices are assumed.
A labelling of a graph G ∈ Ĝr is a function ` : Edg(G) → {1, . . . , n}, where

Edg(G) denotes the set of edges of G. Let Lab(G) be the set of all labellings of G.
For ` ∈ Lab(G) and 1 ≤ i ≤ r, define Ai(`) to be the multiindex (ai1, . . . , aipi) such
that ais equals `(e), where e is the edge that starts at the s-th output of the vertex
Fi, 1 ≤ s ≤ pi. Likewise, put I(`) := (i1, . . . , ic) with it := `(e), where now e is
the edge that starts at the t-th output of the -vertex, 1 ≤ t ≤ c. Let Bi(`) and
J(`) have similar obvious meanings, with ‘inputs’ taken instead of ‘outputs.’ For
F1⊗ · · ·⊗Fr ∈ Lin(V ⊗h1 , V ⊗p1)⊗ · · ·⊗Lin(V ⊗hr , V ⊗pr ) define finally an element
R̂n(G)(F1 ⊗ · · · ⊗ Fr) ∈ Lin(V ⊗c, V ⊗d) by

(11) R̂n(G)(F1 ⊗ · · · ⊗ Fr) :=
∑

`∈Lab(G)

F1
A1(`)
B1(`) ⊗ · · · ⊗ Fr

Ar(`)
Br(`) eJ(`) ⊗ eI(`) .

It is easy to check that R̂n(G) is a GL(V )-fixed element of the space (8). The
nature of the summation in (11) is close to the state sum model for link invariants,
see [2, Section I.8], with states being the values of labels of the edges of the graph.

3.1. Proposition. Let r, p1, . . . , pr, h1, . . . , hr, c and d be non-negative integers.
Then the map

R̂n : Ĝr→ LinGL(V )
(
Lin(V ⊗h1 , V ⊗p1)⊗· · ·⊗Lin(V ⊗hr , V ⊗pr ),Lin(V ⊗c, V ⊗d)

)
defined by (11) is an epimorphism. If n ≥ e, where e is the number of edges of
graphs spanning Ĝr and n = dim(V ), R̂n is also an isomorphism.



TENSORS AND GRAPHS 455

Observe that we do not need to assume (10) in Proposition 3.1. If (10) is not
satisfied, then there are no GL(V )-invariant elements in (8) and also the space Ĝr
is trivial, thus R̂n is an isomorphism of trivial spaces.
Proof of Proposition 3.1. By the above observation, we may assume (10). Consi-
der the diagram

(12)

Ĝr LinGL(V )
(
Lin(V ⊗h1 ,V ⊗p1)⊗· · ·⊗Lin(V ⊗hr,V ⊗pr ),Lin(V ⊗c,V ⊗d)

)

k[Σk] LinGL(V )(V ⊗(p1+···+pr+c), V ⊗(h1+···+hr+d))

-

-

6 6

Φ ∼=Ψ ∼=

R̂n

Rn

in which Rn is the map (3), R̂n is defined in (11) and Φ is the composition of
canonical isomorphisms and reshufflings of factors described on page 453 above.
The map Ψ is defined as follows.

Let us denote, for the purposes of this proof only, by Ou(Fi) the linearly ordered
set of outputs of the Fi-vertex, 1 ≤ i ≤ r, and by Ou( ) the linearly ordered set of
outputs of . The set Ou := Ou(F1) ∪ · · · ∪Ou(Fr) ∪Ou( ) is linearly ordered by
requiring that

Ou(F1) < · · · < Ou(Fr) < Ou( )
(we believe that the meaning of this shorthand is obvious). Let In be the linearly
ordered set of inputs defined in the similar way. The orders define unique isomor-
phisms

(13) Ou ∼= (1, . . . , k) and In ∼= (1, . . . , k)

of ordered sets.
Since graphs spanning Ĝr are determined by specifying how the outputs of

vertices are connected to its inputs, there exists a one-to-one correspondence
G↔ ϕG between graphs G ∈ Ĝr and isomorphisms ϕG : Ou

∼=→ In. Given (13), such
ϕG can be interpreted as an element of the symmetric group Σk. The map Ψ is
then defined by Ψ(G) := ϕG.

It is simple to verify that the diagram (12) commutes, so the proposition follows
from the Invariant Tensor Theorem. �

4. Symmetries occur

In the light of diagram (12), Proposition 3.1 may look just as a clumsy reformu-
lation of the Invariant Tensor Theorem. Graphs become relevant when symmetries
occur.

4.1. Example. Let Sym(V ⊗2, V ) ⊂ Lin(V ⊗2, V ) be the subspace of symmetric
bilinear maps, i.e. maps satisfying f(v′, v′′) = f(v′′, v′) for v′, v′′ ∈ V . Let us
explain how to use calculations of Section 2 to describe GL(V )-equivariant maps
in Lin

(
V ⊗2⊗Sym(V ⊗2, V ), V

)
.
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The right Σ2-action on Lin(V ⊗2, V ) given by permuting the inputs of bilinear
maps is such that the space Sym(V ⊗2, V ) equals the subspace Lin(V ⊗2, V )Σ2

of Σ2-fixed elements. This right Σ2-action induces a left Σ2-action on the space
Lin

(
V ⊗2⊗Lin(V ⊗2, V ), V

)
which commutes with the GL(V )-action, therefore it

restricts to a left Σ2-action on the subspace LinGL(V )
(
V ⊗2⊗Lin(V ⊗2, V ), V

)
of

GL(V )-equivariant maps.
There is also a left Σ2-action on the linear space Ĝrex interchanging the inputs

of the F -vertices of generating graphs. It is simple to check that the map (5) of
Section 2 is equivariant with respect to these two Σ2-actions, hence it induces the
map

(14) Σ2\R̂n : Σ2\Ĝrex → Σ2\LinGL(V )
(
V ⊗2 ⊗ Lin(V ⊗2, V ), V

)
of left cosets. Observe that, by a standard duality argument,

(15) Σ2\LinGL(V )
(
V ⊗2⊗Lin(V ⊗2, V ),V

) ∼= LinGL(V )
(
V ⊗2⊗Sym(V ⊗2, V ),V

)
.

Let us denote Ĝrex,• := Σ2\Ĝrex. The bullet • in the subscript signalizes the
presence of vertices with fully symmetric inputs. By definition, graphs G′, G′′ ∈ Ĝrex
are identified in the quotient Ĝrex,• if they differ only by the order of inputs of
the F -vertex. In Figure 1, this identification is indicated by vertical braces. We
see that Ĝrex,• is again a space spanned by graphs, this time with no linear order
on the inputs of the F -vertex. So we may define Ĝrex,• as the space spanned by
directed graphs with vertices (6) and one binary (ordinary, non-planar) vertex (7).
We conclude by interpreting (14) as the map

(16) R̂n : Ĝrex,• → LinGL(V )
(
V ⊗2 ⊗ Sym(V ⊗2, V ), V

)
.

It follows from the properties of the map (5) and the characteristic zero assumption
that R̂n is always an epimorphism and is an isomorphism if n ≥ 3.

At this point we want to incorporate, by generalizing the pattern used in
Example 4.1, symmetries into Proposition 3.1. Unfortunately, it turns out that
treating the space (8) in full generality leads to a notational disaster. To keep the
length of formulas within a reasonable limit, we decided to assume from now on
that p1 = · · · = pr = 1, c = 0 and d = 1. This means that we will restrict our
attention to maps in

(17) Lin
(
Lin(V ⊗h1 , V )⊗ · · · ⊗ Lin(V ⊗hr , V ), V

)
.

For graphs this assumption implies that the vertices F1, . . . , Fr have precisely one
output, and that the anchor has one input and no outputs. The number of
inputs of Fi will be called the arity of Fi, 1 ≤ i ≤ r. Condition (10) reduces to

r = h1 + · · ·+ hr + 1

and one also sees that r equals the number of edges of the generating graphs.
The above generality is sufficient for all applications we have in mind. A modifi-

cation to the general case is straightforward but notationally challenging.
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The space Lin(V ⊗h, V ) admits, for each h ≥ 0, a natural right Σh-action given
by permuting inputs of multilinear maps. A symmetry of maps in Lin(V ⊗h, V ) will
be specified by a subset I ⊂ k[Σh]. We then denote

LinI(V ⊗h, V ) :=
{
f ∈ Lin(V ⊗h, V ); fs = 0 for each s ∈ I

}
.

For I as above and a left Σh-module U , we will abbreviate by I\U the left coset
IU\U .
4.2. Example. Let I := Ih ⊂ k[Σh] be the augmentation ideal. Then the space
LinIh(V ⊗h, V ) is the space of symmetric maps,

LinIh(V ⊗h, V ) = Sym(V ⊗h, V ) ,
therefore the augmentation ideal describes the symmetry of the local coordinates
of vector fields and their derivatives, see [5, Example 3.2]. We leave as an exercise
to describe in this language the spaces of antisymmetric maps.
4.3. Example. Let h := v + 2, v ≥ 0, and let ∇ ⊂ k[Σh] be the image of the
augmentation ideal Iv of k[Σv] in k[Σh] under the map of group rings induced by
the inclusion Σv ↪→ Σv × Σ2 ↪→ Σh that interprets permutations of (1, . . . , v) as
permutations of (1, . . . , v, v + 1, v + 2) keeping the last two elements fixed. Then
Lin∇(V ⊗h, V ) consists of multilinear maps V ⊗(v+2) → V that are symmetric in
the first v inputs, i.e. multilinear maps possessing the symmetry of the Christoffel
symbols of linear connections and their derivatives, see again [5, Example 3.2].
4.4. Remark. It is clear how to generalize the above notion of symmetry to maps
in the left Σp- right Σh-module Lin(V ⊗h, V ⊗p) for general p, h ≥ 0. A symmetry of
these maps will be specified by subsets I ∈ k[Σh] and O ∈ k[Σp], the corresponding
subspaces will then be

LinO
I(V ⊗h, V ⊗p) :=

{
f ∈ Lin(V ⊗h, V ⊗p); fs = 0 = tf for each s ∈ I, t ∈ O

}
.

Suppose we are given subsets Ii ⊂ k[Σhi ], 1 ≤ i ≤ r. Our aim is to describe
GL(V )-invariant elements in the space
(18) Lin

(
LinI1(V ⊗h1 , V )⊗ · · · ⊗ LinIr (V ⊗hr , V ), V

)
.

Let
I := I1 ∪ · · · ∪ Ir ⊂ k[Σh1 × · · · × Σhr ] ,

where Ii is, for 1 ≤ i ≤ r, identified with its image in k[Σh1 × · · · ×Σhr ] under the
map induced by the group inclusion Σhi ↪→ Σh1 × · · · × Σhr .

As in Example 4.1, we use the fact that, for 1 ≤ i ≤ r, each Lin(V ⊗hi , V ) is a
right Σhi -space, hence the tensor product Lin(V ⊗h1 , V )⊗· · ·⊗Lin(V ⊗hr , V ) has a
natural right Σh1 × · · · ×Σhr -action which induces a left Σh1 × · · · ×Σhr -action on
the space (17). This action restricts to the subspace of GL(V )-equivariant maps.

There is also a left Σh1 × · · · × Σhr -action on the space Ĝr given by permuting,
in the obvious manner, the inputs of the vertices F1, . . . , Fr of generating graphs.
The map R̂n of Proposition 3.1 is equivariant with respect to the above two actions
and induces the map

I\R̂n : I\Ĝr→ I\LinGL(V )
(
Lin(V ⊗h1 , V )⊗ · · · ⊗ Lin(V ⊗hr , V ), V

)
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of left quotients. Denoting ĜrI := I\Ĝr and realizing that, by duality, the codomain
of I\R̂n is isomorphic to the subspace of GL(V )-fixed elements in (18), we obtain
the map (denoted again R̂n)

(19) R̂n : ĜrI → LinGL(V )
(
LinI1(V ⊗h1 , V )⊗ · · · ⊗ LinIr (V ⊗hr , V ), V

)
which is, by Proposition 3.1, an epimorphism and is an isomorphism if dim(V ) ≥ r.

4.5. Remark. As in Example 4.1, it turns out that the quotient ĜrI = I\Ĝr is a
space of graphs though, for general symmetries, “space of graphs” means a free
wheeled operad on a certain Σ-module [6]. In the cases relevant for our paper,
we however remain in the realm of ‘classical’ graphs, as shown in the following
example, see also the proof of Corollary 5.1.

4.6. Example. Suppose that, for some 1 ≤ i ≤ r, Ii equals the augmentation ideal
Ihi of k[Σhi ] as in Example 4.2. Then, in the quotient I\Ĝr, one identifies graphs
that differ by the order of inputs of the vertex Fi. In other words, modding out by
Ii ⊂ I erases the order of inputs of Fi, turning Fi into an ordinary (non-planar)
vertex. If Ii = ∇ as in Example 4.3, one gets a vertex of arity v + 2, v ≥ 0, whose
first v inputs are symmetric.

For applications, we still need one more level of generalization that will reflect
the antisymmetry of the Chevalley-Eilenberg complex [5, Section 2] in the Lie
algebra variables. As a motivation for our construction, we offer the following
continuation of the calculations in Section 2 and Example 4.1.

4.7. Example. We will consider the tensor product V ⊗ V as a left Σ2-module,
with the action τ(v′ ⊗ v′′) := −(v′′ ⊗ v′), for v′, v′′ ∈ V and the generator τ ∈ Σ2.
The subspace (V ⊗ V )Σ2 of Σ2-fixed elements is then precisely the second exterior
power ∧2V . This left action induces a GL(V )-equivariant right Σ2-action on the
space Lin

(
V ⊗2⊗Sym(V ⊗2, V ), V

)
such that

Lin
(
V ⊗2 ⊗ Sym(V ⊗2, V ), V

)
/Σ2 ∼= Lin

(∧2V ⊗ Sym(V ⊗2, V ), V
)
.

The above isomorphism restricts to an isomorphism
(20) LinGL(V )

(
V ⊗2⊗Sym(V ⊗2, V ),V

)
/Σ2 ∼= LinGL(V )

(∧2V ⊗Sym(V ⊗2,V ), V
)
.

of the subspaces of GL(V )-equivariant maps.
Likewise, Ĝrex,• carries a right Σ2-action that interchanges the labels X and Y

of the •6-vertices of graphs in the last column of Figure 1 and multiplies the sign
of the corresponding generator by −1. The map (16) is Σ2-equivariant, therefore it
induces the map

R̂n/Σ2 : Ĝrex,•/Σ2 → LinGL(V )
(
V ⊗2 ⊗ Sym(V ⊗2, V ), V

)
/Σ2 .

Let us denote Gr2
ex,• := Ĝrex,•/Σ2 and R2

n := R̂n/Σ2. Using (20), one rewrites the
above map as an epimorphism

R2
n : Gr2

ex,• � LinGL(V )
(∧2V⊗Sym(V ⊗2, V ), V

)
which is an isomorphism if n ≥ 3.
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The space Gr2
ex,• is isomorphic to the span of the set of directed, oriented graphs

with one (non-planar) binary vertex F , an anchor 6, and two ‘white’ vertices ◦6.
By an orientation we mean a linear order of white vertices. A graph with the
opposite orientation is identified with the original one taken with the opposite sign.
It is clear that, with Gr2

ex,• defined in this way, the map Gr2
ex,• → Ĝrex,•/Σ2 that

replaces the first (in the linear order given by the orientation) white vertex ◦6by
the black vertex •6labelled by X, and the second white vertex by the black vertex
labelled by Y , is an isomorphism.

The symmetry of the inputs of the vertex F implies the following identities in
Gr2

ex,•:

6•F
���◦ <@
@I◦

= − 6•F
���◦ >@
@I◦

= − 6•F
���◦ <@
@I◦

,

from which one concludes that

6•F
���◦ <@
@I◦

= 0.

Therefore Gr2
ex,• is in this case one-dimensional, spanned by the equivalence class

of the oriented directed graph

6
◦ � �

� �
���◦
•
6

F

<
.

In the notation of Figure 1, the above graph represents the map that sends
(X ∧ Y )⊗ F ∈ ∧2V ⊗ Sym(V ⊗2, V ) into

X ⊗ Tr(F (Y,−))− Y ⊗ Tr(F (X,−)) ∈ V .

Let us turn to our final task. We want to describe GL(V )-invariant elements in
the space

(21) Lin
( m∧
i=1

Sym(V ⊗hi , V )⊗
r⊗

i=m+1
LinIi(V ⊗hi , V ), V

)
where, as before, r, h1, . . . , hr are positive integers, Ii ⊂ k[Σhi ] for m+ 1 ≤ i ≤ r,
and m is an integer such that 1 ≤ m ≤ r. Having in mind the description of the
space of symmetric multilinear maps given in Example 4.2, we extend the definition
of Ii also to 1 ≤ i ≤ m, by putting Ii := Ihi . The first step is to identify the
exterior power ∧1≤i≤m Sym(V ⊗hi , V ) with the fixed point set of an action of a
suitable finite group. This can be done as follows.

For 1 ≤ w ≤ m, let A(w) ⊂ {1, . . . ,m} be the subset A(w) := {1 ≤ i ≤ m; hi =
hw}. Then

{1, . . . ,m} =
⋃

1≤w≤mA(w)

is a decomposition of {1, . . . ,m} into not necessarily distinct subsets. Let Σ̂ ⊂ Σm
be the subgroup of permutations of {1, . . . ,m} preserving this decomposition.
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The group Σ̂ acts on
⊗

1≤i≤m Sym(V ⊗hi , V ) by permuting the corresponding
factors. If we consider this tensor product as a left Σ̂-module with this permutation
action twisted by the signum representation, then

m∧
i=1

Sym(V ⊗hi , V ) ∼=
( m⊗
i=1

Sym(V ⊗hi , V )
)Σ̂
.

The above left Σ̂-action on
⊗

1≤i≤m Sym(V ⊗hi , V ) induces a dual right GL(V )-
-equivariant Σ̂-action on the space (21).

There is a right Σ̂-action on the quotient ĜrI = I\Ĝr defined as follows. For
a graph G ∈ Ĝr representing an element [G] ∈ ĜrI and for σ ∈ Σ̂, let Gσ be the
graph obtained from G by permuting the vertices F1, . . . , Fm according to σ. We
then put [G]σ := sgn(σ)[Gσ]. Since, by the definition of Σ̂, σ may interchange only
vertices with the same number of inputs and the same symmetry, our definition of
Gσ makes sense.

It is simple to see that the map R̂n in (19) is Σ̂-equivariant, giving rise to the
map

R̂n/Σ̂ : ĜrI/Σ̂→ LinGL(V )(LinI1(V ⊗h1 , V )⊗ · · · ⊗ LinIr (V ⊗hr , V ), V )/Σ̂

of right cosets. The codomain of R̂n/Σ̂ is easily seen to be isomorphic to the subspace
of GL(V )-equivariant elements in (21). The above calculations are summarized in
the following proposition in which GrmI := ĜrI/Σ̂ and Rm

n := R̂n/Σ̂.

4.8. Proposition. Let r, h1, . . . , hr be non-negative integers, 1 ≤ m ≤ r, and
Ii ⊂ k[Σhi ] for m+ 1 ≤ i ≤ r. Then the map

(22) Rm
n : GrmI → LinGL(V )

( m∧
i=1

Sym(V ⊗hi , V )⊗
r⊗

i=m+1
LinIi(V ⊗hi , V ), V

)
constructed above is an epimorphism. If, moreover, the dimension n of V ≥ the
number of edges of graphs spanning GrmI , Rm

n is also an isomorphism.

The following result says that the presence of vertices with symmetric inputs
miraculously extends the stability range (Definition 1.1). In applications, these
vertices will represent the Lie algebra generators in the Chevalley-Eilenberg complex.

4.9. Proposition. Suppose that h1, . . . , hm ≥ 2. If n ≥ e − m, where n is the
dimension of V and e the number of edges of graphs spanning GrmI , then the map
Rm
n in Proposition 4.8 is an isomorphism.

Proof. Let G be a graph spanning GrmI and S ⊂ Edg(G) a subset of edges of G
such that card(S) > n. For each permutation σ of elements of S, denote by Gσ the
graph obtained by cutting the edges belonging to S in the middle and regluing
them following the automorphism σ. The linear combination

(23)
∑
σ∈ΣS

sgn(σ) ·Gσ ∈ GrmI
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is then a graph-ical representation of the expression in (4), thus the kernel of Rm
n is

generated by expressions of this type. Since, by assumption, card(S) ≤ n+m and
h1, . . . , hm ≥ 2, the set S must necessarily contain two input edges of the same
symmetric vertex of G. This implies that the sum (23) vanishes, because with each
graph Gσ it contains the same graph with the opposite sign. This shows that the
kernel of Rm

n is trivial. �

4.10. Remark. By an absolutely straightforward generalization of the above
constructions, one can obtain versions of Proposition 4.8 and Proposition 4.9
describing the space

(24) LinGL(V )

( m∧
i=1

Sym(V ⊗hi ,V )⊗
r⊗

i=m+1
LinOi

Ii
(V ⊗hi ,V ⊗pi),LinO

I (V ⊗c,V ⊗d)
)

in terms of a space spanned by graphs. Since the notational aspects of such a
generalization are horrendous, we must leave the details as an exercise to the reader.

5. A particular case

We finish this note by a corollary tailored for the needs of [5]. For non-negative
integers m, b and c, denote by Grm•(b)∇(c) the space spanned by directed, oriented
graphs with

(i) m unlabeled ‘white’ vertices with fully symmetric inputs and arities ≥ 2,
(ii) b ‘black’ labelled vertices with fully symmetric inputs and arities ≥ 0,
(iii) c labelled ∇-vertices, and
(iv) the anchor 6.
In item (iii), a ∇-vertex means a vertex with the symmetry described in

Example 4.3, see also Example 4.6. As in Example 4.7, an orientation is given by
a linear order on the set of white vertices. If G′ and G′′ are graphs in Grm•(b)∇(c)
whose orientations differ by an odd number of transpositions, then we identify
G′ = −G′′ in Grm•(b)∇(c).

5.1. Corollary. For each non-negative integers m, b and c there exists a natural
epimorphism

Rm
•(b)∇(c),n : Grm•(b)∇(c) �⊕
~h∈H

LinGL(V )

( m∧
i=1

Sym(V ⊗hi ,V )⊗
m+b⊗
i=m+1

Sym(V ⊗hi ,V )
m+b+c⊗
i=m+b+1

Lin∇(V ⊗hi , V ),V
)
,

with the direct sum taken over the set H of all multiindices ~h = (h1, . . . , hm+b+c)
such that

h1, . . . , hm ≥ 2 , hm+1, . . . , hm+b ≥ 0 and hm+b+1, . . . , hm+b+c ≥ 2 .

The map Rm
•(b)∇(c),n is an isomorphism if n = dim(V ) ≥ b+ c.
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Proof. The map Rm
•(b)∇(c),n is constructed by assembling the maps Rm

n from
Proposition 4.8 as follows. For a multiindex ~h = (h1, . . . , hm+b+c) ∈ H as in the
corollary take, in Proposition 4.8, r := m+ b+ c and

Ii = Ii(~h) :=
{

Ihi , for m+ 1 ≤ i ≤ m+ b and
∇, for m+ b+ 1 ≤ i ≤ r,

see Examples 4.2 and 4.3 for the notation. Let Rm
n (~h) be the map (22) corresponding

to the above choices and Rm
•(b)∇(c),n :=

⊕
~h∈H Rm

n (~h). We only need to show that
the graph space Grm•(b),∇(c) is isomorphic to the direct sum of the double quotients
Grm

I(~h) = I(~h)\Ĝr/Σ̂.
As we argued in Example 4.6, the left quotient ĜrI(~h) = I(~h)\Ĝr is spanned by

directed graphs with r labelled vertices F1, . . . , Fr such that the 1st type vertices
F1, . . . , Fm (‘white’ vertices) have fully symmetric inputs and arities h1, . . . , hm,
and the remaining vertices Fm+1, . . . , Fr are as in items (ii)–(iv) of the definition
of Grm•(b)∇(c) but with fixed arities hm+1, . . . , hr.

Modding out ĜrI(~h) by Σ̂ identifies graphs that differ by a relabelling of white
vertices of the same arity and the sign given by to the signum of this relabelling.
This clearly means that the map

Grm•(b),∇(c) →
⊕
~h∈H

Grm
I(~h) =

⊕
~h∈H

ĜrI(~h)/Σ̂

that assigns to the first (in the linear order given by the orientation) white vertex of
graphs generating Grm•(b),∇(c) label F1, to the second white vertex label F2, etc., is an
isomorphism. By simple combinatorics, graphs spanning Grm•(b),∇(c) have precisely
m+ b+ c edges which completes the proof of the corollary. �

5.2. Remark. Proposition 4.8 and its Corollary 5.1 was obtained by applying
the double-coset reduction I\ −/Σ̂ and standard duality to the map R̂n of Pro-
position 3.1. Backtracking all the constructions involved, one can see that, in
Corollary 5.1, the invariant linear map Rm

•(b)∇(c),n(G) corresponding to a graph
G ∈ Grm•(b)∇(c) is given by the ‘state sum’ (11) antisymmetrized in the white vertices.
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