Czechoslovak Mathematical Journal

Ivan Chajda
Tolerances on q-lattices

Czechoslovak Mathematical Journal, Vol. 46 (1996), No. 1, 21-28

Persistent URL: http://dml.cz/dmlcz/127266

Terms of use:

© Institute of Mathematics AS CR, 1996

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://dml.cz

TOLERANCES ON q-LATTICES

Ivan Chajda, Olomouc

(Received November 3, 1992)

The concept of a q-lattice was introduced for the first time in [1] and some of its congruence properties were studied in [2] and [3]. Recall that an algebra ($A ; \wedge, \vee$) with two binary operations is a q-lattice if it satisfies the following axioms:

(associativity)	$x \vee(y \vee z)=(x \vee y) \vee z$,	$x \wedge(y \wedge z)=(x \wedge y) \wedge z$,
(commutativity)	$x \vee y=y \vee x$,	$x \wedge y=y \wedge x$,
(weak absorption)	$x \vee(x \wedge y)=x \vee x$,	$x \wedge(x \vee y)=x \wedge x$,
(weak idempotence)	$x \vee(y \vee y)=x \vee y$,	$x \wedge(y \wedge y)=x \wedge y$,
(equalization)	$x \vee x=x \wedge x$.	

If, moreover, it satisfies also distributivity:

$$
x \vee(y \wedge z)=(x \vee y) \wedge(x \vee z)
$$

the q-lattice is called distributive.
In every q-lattice A we can distinguish two sorts of elements: idempotents, i.e. such $x \in A$ for which $x=x \vee x$ (and hence also $x=x \wedge x$), and non-idempotents (i.e. $x \neq x \vee x$). Denote by S_{A} the so called skeleton of A, i.e. S_{A} is the set of all idempotents of A. It is known (see e.g. [1] or [3]) that S_{A} is a sub- q-lattice of A which is a sublattice with respect to the induced quasiorder Q :

$$
\langle a, b\rangle \Leftrightarrow a \vee b=b \vee b,
$$

i.e. $Q \cap S_{A}^{2}$ is an order on S_{A} (for some details, see [1]).

The non-idempotents occur in A in the so called cells: a subset $C_{x} \subseteq A$ is called a cell (with the idempotent x) if card $C_{x}>1$ and for each $a, b \in C_{x}, a \vee a=b \vee b$ ($=x$).

The aim of this paper is to characterize q-lattices with distributive lattices of tolerances.

By a tolerance on $(A ; \wedge, \vee)$ we mean a reflexive and symmetric binary relation on A satisfying the substitution property with respect operations \vee and \wedge. Denote by Tol A the lattice of all tolerance of $(A ; \wedge, \vee)$ (for some details on $\operatorname{Tol} A$ and the basic properties of tolerances, see the monograph [4]). In particular, denote by ω (or ι) the least (greatest) element of $\operatorname{Tol} A$, i.e. ω is the identity relation on A and $\iota=A \times A$. If $a, b \in A$ denote by $T(a, b)$ the least tolerance on $(A ; \wedge, \vee)$ containing the pair $\langle a, b\rangle$.

An algebra A is called tolerance trivial if every tolerance on A is a congruence, i.e. if $\operatorname{Tol} A=\operatorname{Con} A$ (e.g. every boolean or every relative complementary lattice is tolerance trivial, see [4]).

Proposition. If a q-lattice $(A ; \wedge, \vee)$ has at least one non-idempotent element and at least two idempotents, then it is not tolerance trivial.

Proof. Suppose that $(A ; \wedge, \vee)$ has at least one non-idempotent. Then $(A ; \wedge, \vee)$ contains at least one cell C. Let S_{A} be the skeleton of A. Define a binary relation T on A as follows: $\langle x, y\rangle \in T$ if and only if either $x, y \in C$ or $x, y \in S_{A}$ or $x=y$. It is an easy exercise to show that $T \in \operatorname{Tol} A$. Let x be the unique idempotent of C, let $y \neq x$ be an idempotent of A and z a non-idempotent of C. Then $x, y \in S_{A}$, i.e. $\langle x, y\rangle \in T, x, z \in C$, i.e. $\langle x, z\rangle \in T$ but $\langle y, z\rangle \notin T$ which proves $T \notin \operatorname{Con} A$.

Lemma. Let $(A ; \wedge, \vee)$ be a q-lattice and C its cell with the unique idempotent c.
(i) Let $p\left(x_{1}, \ldots, x_{n}\right)$ be an n-ary term which is not a projection over $(A ; \wedge, \vee)$, and let $a, a_{1}, \ldots, a_{n}=A$ and $a_{i} \in C$ for some i. If $a=p\left(a_{1}, \ldots, a_{n}\right)$ then

$$
a=p\left(a_{1}, \ldots, a_{i-1}, c, a_{i+1}, \ldots, a_{n}\right)
$$

(ii) If $T \in \operatorname{Tol} A, b \in C$, a is an idempotent and $\langle a, b\rangle \in T$, then $\langle a, c\rangle \in T$.

Proof. (i) If p is not a projection then p is a composition of operations \vee and \wedge. Hence, $a=p\left(a_{1}, \ldots, a_{n}\right)$ is an idempotent of $(A ; \wedge, \vee)$. By induction over the rank of p, suppose first $p\left(x_{1}, \ldots, x_{n}\right)=x_{1} \vee x_{2}$, i.e. $a=a_{1} \vee a_{2}$. If $a_{1} \in C$, then clearly $a_{1} \vee a_{2}=c \vee a_{2}$; similarly for $i=2$ and dually for the operation \wedge. By induction, we obtain the first assertion.
(ii) If $\langle a, b\rangle \in T$ and $b \in C$ and c is an idempotent of C, then $b \vee b=c$ and hence $\langle a, c\rangle=\langle a \vee a, b \vee b\rangle \in T$.

Theorem 1. Let $(A ; \wedge, \vee)$ be a q-lattice with just one cell C, let S_{A} be its skeleton. If $\mathrm{Tol} S_{A}$ is distributive then also $\operatorname{Tol} A$ is distributive.

Proof. Let $R, S, T \in \operatorname{Tol} A$ and $x, y \in A$. Suppose $\langle x, y\rangle \in R \wedge(S \vee T)$. Then $\langle x, y\rangle \in R$ and there exists an n-ary term $p\left(x_{1}, \ldots, x_{n}\right)$ such that $x=p\left(a_{1}, \ldots, a_{n}\right)$, $y=p\left(b_{1}, \ldots, b_{n}\right)$, where $\left\langle a_{i}, b_{i}\right\rangle \in S$ or $\left\langle a_{i}, b_{i}\right\rangle \in T$, see e.g. [4].
(1) If at least one of the elements x, y is non-idempotent, then it cannot be the result of an operation, i.e. p is a projection, therefore $p\left(a_{1}, \ldots, a_{n}\right)=p r_{i}\left(a_{1}, \ldots, a_{n}\right)=$ $a_{i}, p\left(b_{1}, \ldots, b_{n}\right)=p r_{i}\left(b_{1}, \ldots, b_{n}\right)=b_{i}$, thus $\langle x, y\rangle=\left\langle a_{i}, b_{i}\right\rangle$ and hence $\langle x, y\rangle \in S$ or $\langle x, y\rangle \in T$, i.e. $\langle x, y\rangle \in R \wedge S$ or $\langle x, y\rangle \in R \wedge T$, proving $\langle x, y\rangle \in(R \wedge S) \vee(R \wedge T)$.
(2) Suppose both x, y are idempotents. Then $x, y \in S_{A}$. By the Lemma, we can substitute all non-idempotents among $a_{1}, \ldots, a_{n}, b_{1}, \ldots, b_{n}$ by a unique idempotent $c \in C$ because $(A ; \wedge, \vee)$ has just one cell C.

If $\left\langle a_{i}, b_{i}\right\rangle \in S$ and b_{i} is a non-idempotent and a_{i} an idempotent, then $\left\langle a_{i}, c\right\rangle \in S$. Analogously for the converse case and also for T. If both a_{i}, b_{i} are non-idempotents, we have $\langle c, c\rangle \in S$ analogously for T. By the Lemma,

$$
x=p\left(a_{1}^{0}, \ldots, a_{n}^{0}\right), \quad y=p\left(b_{1}^{0}, \ldots, b_{n}^{0}\right)
$$

where

$$
\begin{aligned}
a_{i}^{0} & =a_{i} \quad \text { if } a_{i} \text { is an idempotent and } \\
a_{i}^{0} & =c \quad \text { in the opposite case } \\
b_{i}^{0} & =b_{i} \quad \text { if } b_{i} \text { is an idempotent and } \\
b_{i}^{0} & =c \quad \text { in the opposite case }
\end{aligned}
$$

By the Lemma, $\left\langle a_{i}^{0}, b_{i}^{0}\right\rangle \in S^{0}$ or T^{0}, where $S^{0}=S \cap\left(S_{A} \times S_{A}\right), T^{0}=T \cap\left(S_{A} \times S_{A}\right)$ are the restrictions of S or T onto the skeleton. But $x, y \in S_{A}$ implies also $\langle x, y\rangle \in$ $R^{0}=R \cap\left(S_{A} \times S_{A}\right)$. Since $\operatorname{Tol} S_{A}$ is distributive, we have

$$
\left.\langle x, y\rangle \in\left(R^{0} \wedge S^{0}\right) \vee\left(R^{0} \wedge T^{0}\right) \subseteq(R \wedge S) \vee R \wedge T\right)
$$

Distributivity is proved in both the cases.
Corollary. Let $(A ; \wedge, \vee)$ be a distributive q-lattice with at most one cell. Then $\operatorname{Tol} A$ is distributive.

Proof. By [5], for every distributive lattice $L, \operatorname{Tol} L$ is also distributive. If $(A ; \wedge, \vee)$ has no cell then $(A ; \wedge, \vee)$ is a lattice and $\operatorname{Tol} A$ is therefore distributive. If $(A ; \wedge, \vee)$ has just one cell then S_{A} is a distributive lattice and hence $\operatorname{Tol} S_{A}$ is distributive. By Theorem 1 we are done.

Remark 1. If $(A ; \wedge, \vee)$ is a q-lattice and C is its cell and S_{A} its skeleton, then for each $c \in C$ and each $x \in S_{A}$ there exists a tolerance $T \in \operatorname{Tol} A$ given by

$$
T=\omega \cup\{\langle c, x\rangle,\langle x, c\rangle\} \cup\left(S_{A} \times S_{A}\right)
$$

If $\operatorname{Tol} S_{A}=\left\{\omega_{s}, \iota_{s}\right\}$ only (i.e. S_{A} is tolerance simple, see [4]), then all tolerances on A are determined only by the pairs $\langle c, x\rangle$ as was shown before and by all tolerances on C. This is illustrated in the following

Example 1. Let A be a q-lattice with the diagram in Fig. 1.

Fig. 1

It has just one cell $\{z, c\}=C, z$ is an idempotent in C. It is evident that $\operatorname{Tol} S_{A}=\left\{\omega_{s}, \iota_{s}\right\}$, where $S_{A}=\{0, x, y, z, 1\}$. Henceforth, for every subset $B \subseteq S_{A}$ there exists a tolerance $T_{B} \in \operatorname{Tol} A$ given by

$$
T_{B}=\omega \cup\left(S_{A} \times S_{A}\right) \cup\{\langle b, c\rangle,\langle c, b\rangle ; b \in B\}
$$

Since card $S_{A}=5$ we have 2^{5} of such subsets; for $B=\emptyset$ we have $T_{0}=\omega \cup\left(S_{A} \times S_{A}\right)$, i.e. it is the congruence collapsing S_{A} and having two blocks, namely S_{A} and $\{c\}$, i.e. $T_{0}=\theta(0,1)$. Moreover, $\operatorname{Tol} A$ also contains $\theta(z, c)$ collapsing the cell $C=\{z, c\}$ only and ω and ι, then $\operatorname{Tol} A$ has $2^{5}+2=34$ elements, see Fig. 2 (I denotes the two element lattice):

Fig. 2

Example 2. Although $(A ; \wedge, \vee)$ can be "nice" and distributive, its $\mathrm{Tol} A$ is rather big in the case if $(A ; \wedge, \vee)$ contains a cell. Such $\operatorname{Tol} A$ for a q-lattice visualized in Fig. 3 is the distributive lattice (by the foregoing Corollary) in Fig. 4. All tolerances of $\operatorname{Tol} A$ are listed in Fig. 5.

Fig. 3

Fig. 4
Theorem 2. If a q-lattice has at least two different cells then $\operatorname{Tol} A$ is not modular.
Proof. Let A have cells $C_{1} \neq C_{2}$, let c_{i} be the idempotent in $C_{i}, i=1,2$ and let $a \in C_{1}, b \in C_{2}$ be non-idempotents. Denote by $T\left(\left\langle u_{1}, v_{1}\right\rangle, \ldots,\left\langle u_{n}, v_{n}\right\rangle\right)$ the least tolerance of $\operatorname{Tol} A$ containing the pairs $\left\langle u_{1}, v_{1}\right\rangle, \ldots,\left\langle u_{n}, v_{n}\right\rangle$. Now, put

$$
\begin{aligned}
& T_{0}=T\left(\langle a, b\rangle,\left\langle a, c_{1}\right\rangle\right) \\
& T_{x}=T\left(\langle a, b\rangle,\left\langle a, c_{1}\right\rangle,\left\langle b, c_{1}\right\rangle\right) \\
& T_{y}=T\left(\langle a, b\rangle,\left\langle a, c_{1}\right\rangle,\left\langle b, c_{1}\right\rangle,\left\langle b, c_{2}\right\rangle\right) \\
& T_{z}=T\left(\langle a, b\rangle,\left\langle a, c_{1}\right\rangle,\left\langle a, c_{2}\right\rangle\right) \\
& T_{1}=T\left(\langle a, b\rangle,\left\langle a, c_{1}\right\rangle,\left\langle a, c_{2}\right\rangle,\left\langle b, c_{1}\right\rangle,\left\langle b, c_{2}\right\rangle\right) .
\end{aligned}
$$

Since $\langle a, b\rangle \in T_{i}$ for $i \in\{0, x, y, z, 1\}$ and a, b are non-idempotents, we have also $\left\langle c_{1}, c_{2}\right\rangle=\langle a \vee a, b \vee b\rangle \in T_{i}$.

T_{1}

T_{11}

ω

Fig. 5

Fig. 6
(1) If $c_{1}<c_{2}$, tolerances are visualized in Fig. 6:
(2) If c_{1}, c_{2} are non-comparable elements (of the skeleton), the situation is visualized in Fig. 7.

Fig. 7

It is routine to show that in both of the foregoing cases, tolerances $T_{0}, T_{x}, T_{y}, T_{z}$, T_{1} form a sublattice N_{5} of $\operatorname{Tol} A$, see Fig. 8.

Fig. 8

Remark 2. If $(A ; \wedge, \vee)$ is a q-lattice with a skeleton S_{A} and $\operatorname{Tol} S_{A}$ is not distributive then $\operatorname{Tol} A$ is not distributive either since $\operatorname{Tol} S_{A}$ is a sublattice of $\operatorname{Tol} A$.

Corollary. For a distributive q-lattice $(A ; \wedge, \vee)$, the following conditions are equivalent:
(i) $\operatorname{Tol} A$ is distributive;
(ii) $(A ; \wedge, \vee)$ has at most one cell.

References

[1] Chajda I.: Lattices of quasiordered sets. Acta UP (Olomouc) 31 (1992), 6-12.
[2] Chajda I.: Subdirectly irreducibile algebras of quasiordered logic. Acta UP (Olomouc) 32 (1993), 21-26.
[3] Chajda I., Kotrle M.: Subdirectly irreducibile and congruence distributive q-lattices. Czechoslovak Math. J. 43 (1993), 635-642.
[4] Chajda I.: Algebraic Theory of Tolerance Relations. University Palacký Olomouc Press, 1991.
[5] Chajda I., Zelinka B.: Minimal compatible tolerances on lattices. Czechoslovak Math. J. 27 (1977), 452-459.

Author's address: Katedra algebry a geometrie, Přír. fak. UP Olomouc, Tomkova 38. 77900 Olomouc, Czech Republic.

