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TOLERANCES ON g-LATTICES 

IVAN C H A J D A , O lomouc 

(Received November 3, 1992) 

The concept of a g-lattice was introduced for the first time in [1] and some of its 
congruence properties were studied in [2] and [3]. Recall that an algebra (A;A,V) 

with two binary operations is a q-lattice if it satisfies the following axioms: 

(associativity) x V (y V z) = (x V y) V z, x A (y A z) = (x A y) A z, 
(commutativity) xV y = yV x, x Ay = y Ax, 
(weak absorption) x V (x A y) = x V x, x A (x V y) = x A x, 
(weak idempotence) xV(yVy)=xVy, x A (y A y) = x A y, 
(equalization) x\f x = x Ax. 

If, moreover, it satisfies also distributivity: 

x V (y A z) = (x V y) A (x V z), 

the g-lattice is called distributive. 

In every g-lattice A we can distinguish two sorts of elements: idempotents, i.e. 

such x € A for which x = x V x (and hence also x = x A x), and non-idempotents 

(i.e. x ^ x V x). Denote by SA the so called skeleton of A, i.e. SA is the set of all 
idempotents of A. It is known (see e.g. [1] or [3]) that SA is a sub-g-lattice of A 

which is a sublattice with respect to the induced quasiorder Q\ 

(a,b) & a V b = bV b, 

i.e. Q D S\ is an order on SA (for some details, see [1]). 

The non-idempotents occur in A in the so called cells: a subset Cx C A is called 

a cell (with the idempotent x) if cardCx > 1 and for each a, b E Cx, a\/ a = bV b 

(= x). 

The aim of this paper is to characterize g-lattices with distributive lattices of 
tolerances. 
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By a tolerance on (A; A, V) we mean a reflexive and symmetric binary relation on 
A satisfying the substitution property with respect operations V and A. Denote by 
Tol A the lattice of all tolerance of (A; A, V) (for some details on Tol A and the basic 
properties of tolerances, see the monograph [4]). In particular, denote by UJ (or i) tlie 
least (greatest) element of Tol A, i.e. u is the identity relation on A and i = A x A. If 
a, b G A denote by T(a, b) the least tolerance on (A; A, V) containing the pair (a, b). 

An algebra A is called tolerance trivial if every tolerance on A is a congruence, 
i.e. if Tol A = Con A (e.g. every boolean or every relative complementary lattice is 
tolerance trivial, see [4]). 

Proposition. If a q-lattice (A; A, Vj has at least one non-idempotent element and 

at least two idempotents, then it is not tolerance trivial. 

P r o o f . Suppose that (A; A, V) has at least one non-idempotent. Then (A; A, V) 
contains at least one cell C. Let SA be the skeleton of A. Define a binary relation 
T on A as follows: (x,y) G T if and only if either x, y G C or x, y G SA or x = y. 

It is an easy exercise to show that T G Tol A. Let x be the unique idempotent of C, 

let y 7- x be an idempotent of A and z a non-idempotent of C. Then x, y G SA, i-e. 
(x, y) eT, x, z G C, i.e. (x, z) G T but (y, z) £ T which proves T £ Con A. D 

Lemma. Let (04; A, V) be a q-lattice and C its cell with the unique idempotent c. 

(i) Let p(x\,..., xn) be an n-ary term which is not a projection over (A; A, Vj, and 

let a, a\, ..., an = A and ai G C for some i. If a = p(a\,..., an) then 

a = p(a\,... ,ai-\,c,ai+l,.. .,an). 

(ii) IfT G Tol A, b G C, a is an idempotent and (a, b) G T, then (a, c) G T. 

P r o o f , (i) If p is not a projection then p is a composition of operations V and A. 
Hence, a = p(a\,... ,an) is an idempotent of (A; A, V). By induction over the rank 
of p, suppose first p(x\,... ,xn) - - x i V ^ , i.e. a = a\ V a2- If ai G C, then clearly 
tti Va2 -~cVa2; similarly for i = 2 and dually for the operation A. By induction, 
we obtain the first assertion. 

(ii) If (a, b) G T and b G C and c is an idempotent of C, then b V b = c and hence 
(a,c) = (a Va,bVb) G T. D 

Theorem 1. Let (04; A, Vj be a q-lattice with just one cell C, let SA be its skeleton. 

If Tol SA Is distributive then also Tol A is distributive. 

P r o o f . Let R, S, T G Tol A and x, y £ A. Suppose (x, y) G R A (5 V T). Then 
(x, H) G R and there exists an ?i-ary term p(x\,..., xn) such that x = p(a\,..., an), 

y =p(b\,...,bn), where (a»,6z-) G 5 or (a2-,b;) G T, see e.g. [4]. 

22 



(1) If at least one of the elements x, y is non-idempotent, then it cannot be the re­
sult of an operation, i.e. p is a projection, therefore p(a\,..., an) = pvi(a\,..., an) = 
ai, p(bi,... ,bn) = pr{(bi,.. .,bn) = bi, thus (x,y) = (a{,bi) and hence (x,y) e S or 
(x, y) G T, i.e. (x, y) G R A 5 or (x, y) G R A T, proving (x, y) G (It A 5) V (H A T). 

(2) Suppose both x, y are idempotents. Then x, y G 5^. By the Lemma, we can 
substitute all non-idempotents among ai , . . . , an, bi, . . . , bn by a unique idempotent 
c ^ C because (A; A, V) has just one cell C. 

If (ai,bi) G 5 and b; is a non-idempotent and a; an idempotent, then (ai,c) G 5. 
Analogously for the converse case and also for T. If both ai, bi are non-idempotents, 
we have (c, c) e S analogously for T. By the Lemma, 

x=p(a°,...,a°n), y=p(b°,...,b0
n) 

where 

a0 = ai if ai is an idempotent and 

a® = c in the opposite case, 

b° = bi if bi is an idempotent and 

b° = c in the opposite case. 

By the Lemma, (a?,6?) G 5° or T°, where 5° = 5 n ( 5 A x SA), T° = Tn(SAx SA) 

are the restrictions of 5 or T onto the skeleton. But x, y G SA implies also (x,y) G 

H° = R n ( 5 A X 5 A ) . Since Tol 5A is distributive, we have 

(x,y) G (It0 A5°) V(It° AT0) C (It A 5) V It A T). 

Distributivity is proved in both the cases. D 

Corollary. Let (A',A,\/) be a distributive q-lattice with at most one cell. Then 

Tol A is distributive. 

P r o o f . By [5], for every distributive lattice L, TolL is also distributive. If 
(A;A,V) has no cell then (A;A,V) is a lattice and Tol A is therefore distributive. 
If (A;A,V) has just one cell then SA is a distributive lattice and hence Tol 5A is 
distributive. By Theorem 1 we are done. D 

Remark 1. If (A; A, V) is a g-lattice and C is its cell and SA its skeleton, then 
for each c G C and each x G SA there exists a tolerance T G Tol A given by 

T = u U {(c,x) , (x,c)} U (SA x SA). 

If Tol 5A = {UJS,LS} only (i.e. SA is tolerance simple, see [4]), then all tolerances on 
A are determined only by the pairs (c, x) as was shown before and by all tolerances 
on C. This is illustrated in the following 
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Example 1. Let A be a (/-lattice with the diagram in Fig. 1. 

Fig. 1 

It has just one cell {z,c} = C, z is an idempotent in C. It is evident that 
Tol5A = {u)s,is}, where SA — {0,:r,u,z, 1}. Henceforth, for every subset B C SA 

there exists a tolerance TB £ Tol A given by 

TB = a; U (5A x 5A) U {(6,c), (c,6) ;6 G B}. 

Since card 5 A = 5 we have 25 of such subsets; for B = 0 we have To = uo U (5A x 5A), 
i.e. it is the congruence collapsing SA and having two blocks, namely SA and {c}, 
i.e. T0 = #(0,1). Moreover, Tol A also contains 0(z,c) collapsing the cell C = {~,c} 
only and u> and L, then Tol A has 25 + 2 = 34 elements, see Fig. 2 (/ denotes the two 
element lattice): 

(~,c) 

Fig. 2 

Example 2. Although (A; A, V) can be "nice" and distributive, its Tol A is rather 
big in the case if (A;A,V) contains a cell. Such Tol A for a ^-lattice visualized in 
Fig. 3 is the distributive lattice (by the foregoing Corollary) in Fig. 4. All tolerances 
of Tol A are listed in Fig. 5. 
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T(0,x) 

TolA 

Fig. 4 

T h e o r e m 2. If a q-lattice has at least two different cells then Tol A is not modular. 

P r o o f . Let A have cells Ci 7-= C2 , let c; be the idempotent in C{, i = 1, 2 and 

let a £ Ci, b E C>2 be non-idempotents. Denote by T ( ( u i , Ui),..., (un, vn)) the least 

tolerance of Tol A containing the pairs (iti,Ui), . . . , (un,vn). Now, put 

T0 = T ( ( a , b ) , ( a , c i > ) , 

Tx = T ( ( a , b ) , ( a , c i ) , ( b , c i > ) , 

Ty = T((a , 6) , (a, c i ) , (6, cx>, (6, c2>), 

T2 = T ( ( a , b ) , ( a , c i ) , ( a , c 2 > ) , 

Ti = T((a , b>, (a, C i >, (a, c 2 ) , (b, C i >, (6, c 2 » . 

Since (a, b) E T; for i E { 0 , x , u , z , l } and a, b are non-idempotents, we have also 

(ci,c2> = ( a V a , b V b ) E TV 

25 



Fig. 5 

<ň=^» fá=f\ 

Fig. 6 

(1) If Oi < O2, tolerances are visualized in Fig. 6: 
(2) If Oi, G2 are non-comparable elements (of the skeleton), the situation is visu­

alized in Fig. 7. 
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a (bo^ZZ^4c2cl\^IZ^oa 

î l 

Fig. 7 

It is routine to show that in both of the foregoing cases, tolerances To, Tx, Ty, Tz, 

T\ form a sublattice N5 of TolA, see Fig. 8. D 

Remark 2. If (AL;A, V) is a g-lattice with a skeleton SA and Tol5^ is not dis­

tributive then TolA is not distributive either since TOISA is a sublattice of TolA 

Corollary. For a distributive q-lattice (A;A,V), the following conditions are 

equivalent: 
(i) Tol A is distributive; 
(ii) (A; A, Vj has at most one cell 
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