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Czechoslovak Mathemat ica l Journal, 46 (121) 1996, P r a h a 

RATIONALS AS A NON-TRIVIAL COMPLETE 

CONVERGENCE GROUP 

PETR SIMON, Praha 

(Received October 8, 1993) 

It is a well-known fact that convergence spaces, despite of their seemingly close 
relation to first countable topological spaces, do not admit a reasonable notion of 
completeness. This obstacle may be overcome by imposing more structure on the 
underlying set: As proved by J. Novak, there is a sound notion of a Cauchy filter on a 
convergence group, and every convergence group has a completion [N]. However, nu­
merous papers pointed out that even in the most elementary setting, namely (Q, +), 
things may go weird (see e.g. [Fl, F2]). Since—up to the author's knowledge— 
nobody has paid attention to those group convergences on rationals which are strictly 
finer than the usual metric one, we want to show that it may even happen that Q 
is complete in such a case. (Another example of this kind may be found in [DFZ], 
with the convergence coarser than the metric convergence and the induced closure 
antiHausdorff.) We do not consider the result just another bizzare example, because 
we feel that it provides some information on the complexity of those sequences of 
rationals which converge to an irrational number. 

However, it is also true that for every irrational number x there is a group con­
vergence ^ on the rationals such that for its categorical completion (Q, ̂ f) one has 
x G Q and still U \ Q ^ 0. This is a special case of our Theorem 2, where we charac­
terize compact subsets X of U such that for some group convergence ^ on Q, finer 
than the usual metric one, Q u I C Q C R . 

For the reader's convenience, let us recall the basic notions from the theory of 
convergence groups. Let X be a set. A subset ^ C UX x X is called a convergence 

on X provided the following holds: 

(S) for each x G X we have ((x: n e u),x) G ^ , where (x: n e co) denotes the 
constant sequence with value x; 
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(F) whenever ((x(n): n G UJ),X) G ^f and / G ~UJ is strictly increasing, then 

((x(f(n)):neuj),x)eV; 

(H) if ((x(n): n G UJ), x) G ^ and ((T(n): n G cj),u) G ^ , then x = y; 

(U) if ((x(n): n G a;), re) G w A x A" is such that for every strictly increasing / G \ ' 

there is a strictly increasing g £~UJ such tha t ((x(f(g(n))): n G c.j),x) G ^T, 

then ((x(n): n G cj),.r) G ^ . 

To avoid unnecessary repetitions, let us denote by Mon the set of all strictly 

increasing functions in "UJ. If ((x(n): n G UJ),X) G K, we will say tha t the sequence 

(x(n): n e UJ) converges to x (or, more precisely, c€-converges to x) and abbreviate it 

to x(n) —> x. So the axioms of convergence mean that constant sequences converge, 

subsequences of a convergent sequence converge to the same limit point, the limits are 

unique and, if for some sequence we find a point such that every subsequence contains 

a subsubsequence converging to that point, then the sequence itself converges. 

Every convergence on a set X induces a closure operation on X; in general, it need 

not be a topology, i.e., clclAJ = c l M may fail. 

Suppose now that • is a group operation on X with a neutral element e. We 

shall say tha t a convergence % is a group convergence (and the triple (X, -,%) is a 

convergence group), if ^f moreover satisfies 

(L) if ((x(n): n G UJ),X) G <£ and ((y(n): n G uj),y) G V, then ((x(n) • y(n)'[ : 

n G UJ),X • y~[) G "€ and ((x(n)~l • y(n): n G UJ), X ~ [ • y) G ^f as well. 

If the group operation • is clear from the context, we write simply (X,c£?). 

If ^ is a group convergence, then a sequence (x(n): n G UJ) is called a Cauchy 

sequence (ff-Cauchy sequence, if it is necessary to express ft"), if for every f,g G Mon. 

((x(f(n)).x(g(n))~l:n G uj),e) G V and ((x(f(n))~[ • x(g(n)): n G uj),e) G V. A 

convergence group is called complete, if every Cauchy sequence converges. For an 

abelian group (X, •) and for every group convergence ^f on X, there is a group A' 

containing X as a cl-dense subgroup, and a group convergence T̂ on K such that 

(X,ct?) is a complete convergence group, ^f = ^ fl ("-'A' x Ar) and rO" is the smallest 

group convergence with these properties . The convergence group (X,%?) is unique 

(up to an isomorphism) and is called a categorical completion of (A", c6>); its existence 

and unicity was proved by J . Novak in [N]. 

Let us begin with a technical lemma. Since we shall mention here a few topological 

terms, let us agree tha t all references to the topology of rationals or reals always 

concern the usual metric one. Next, as usually adopted, for C, H C (R denote by 

G + H the set {p + q: p G G, q G H}. Similarly for G - H, and for q G IR, q + H 

means {q} + H. To avoid confusion, the set theoretical difference will be denoted by 

G\H. 
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L e m m a . Let ^ be a group convergence on Q iiner than the metric convergence, 

i.e., ((x(n): ?i G w),0) 6 ^f implies lim x(n) = 0, let {Sk: k G UJ} be a family of 
n—»-oo 

closed subsets of the reals. Suppose that for each ((x(n): n £ UJ),0) £ tf there are 

7/1, k G cD such that for all n ^ m, the point x(n) belongs to the set S^. 

Then for every ^-Cauchy sequence (x(n): n £ UJ) there is some p G Q and k, r G cD 

such that for every n > r, x(n) G p — Sk- In particular, the metric limit of each 

tf-Cauchy sequence belongs to the set Q - IJ Sk-
keu 

P r o o f . Let (x(n): n G UJ) be an arbitrary ^f-Cauchy sequence. Since the group 

(Q, + ) is abelian, it is enough to assume that for every / G Mon, the sequence 

(x(n) - x(f(n)): n G CJ) ^-converges to 0. Indeed, if / , o G Mon, then x(f(n)) -

x(g(n)) = : r ( / (n)) - x(n) + x(n) - x(g(n)) = 0 - (:r(n) - x(f(n))) + (x(n) - x(g(n))). 

Both sequences (x(n) — x(f(n)): n G UJ) and (:r(n) — x(g(n)): n G UJ) converge to 

0 by the assumption, the constant sequence (0: n G UJ) converges to 0 by (S), so 

(x(f(n)) — x(g(n)): n G UJ) converges to 0 since ^ satisfies (L). 

For every / G Mon, we have ((x(n) — x(f(n)): n G UJ), 0) £c6). By the assumption 

of the Lemma, there are natura l numbers m = ?n/ and k = kf such that for all 

n ^ ///, x(n) — x(f(n)) G Sk- For (m,k) G UJ X UJ let us put Z(m,k) = {/ G Mon : 
(/7l,k) = (771/, kf)}. 

Consider "UJ as a Tychonoff product of count ably many countable discrete spaces. 

Then ^UJ is a complete metric space and Mon, as a closed subspace of it, is a complete 

metric space, too. In particular, Mon is not of the first category in itself. Hence there 

is some (m, fc) G UJ XUJ such tha t the set Z(m, k) is not nowhere dense. Let this (m, k) 

be fixed for the rest of the proof. 

Before we proceed further, let us introduce some rather s tandard notation. For 

71 G UJ and <p G nuJ, denote [up] — {/ G UUJ: f D (p}. Recall tha t {[cD]: n G UJ, cD G nuo} 

is an open basis for the topology of the space UUJ. With this notation, we may state 

a claim. 

Claim. There is a strictly increasing cp G |J nuj such that for every strictly 

increasing V' G {J nuJ with ip D <D, [ip] n Z(m, k) ^ 0. 

Suppose this is not the case and consider an arbitrary non-void open U in the 

space Mon. Choose a strictly increasing cp with [cp] C U. Then one will be able to 

find a strictly increasing ip D cD with [ip] D Z(777,, k) — 0. As U was arbitrary, we see 

that the set Z(m, k) is nowhere dense, which is a contradiction. 

Choose cD as in the claim and denote by mo the maximum of m, dom(cD). Let 

0 be a strictly increasing function, dom(0) = mo, rng(^) C cD and ip D cD. Let 

r = 0 ( m o — 1). Next, for every n > r, let ipn G m(,+1cD, -ipn D ip, ipn(nio) = n. 

According to the claim, [ipn] n Z(m,k) ^ 0, so there is fn G Z(m,k),fn D ipn. As 
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mo ^ m and fn G Z(?n, k), we have x(mo) — x(fn(mo)) G S/e for all ?i > r. However, 

fn(mo) =ipn(m0) = n. 

Therefore, whenever n > r, then x(mo) — x(n) G Sk- So all values x(n) for n > r 

belong to the closed set x(mrj) — Sk. It remains to set p = x(mo). 

Notice now that every ^ -Cauchy sequence is Cauchy also in the usual metric of the 

reals . The sequence (x(n): n G u>) is thus an ordinary Cauchy sequence of rationals 

and eventually ranges in a closed set p- Sk. Hence it has a limit x and this x mus t 

belong to p - Sk CQ- [J Sk, which completes the proof. • 

Now, let us s ta te the title result. 

T h e o r e m 1. Let ^ be the smallest group convergence on the additive group 

of rational numbers such that {(^j: n G CJ) ,0 ) G ^. Then the convergence group 

( Q , + , ^ ) is complete. 

P r o o f . Let us recall Prof. M. Dolcher's paper [D], where the minimal con­

vergence containing a given subset A C UX x X , is described. Consider three 

mappings a , /3 ,7 from the powerset of UX x X into itself. For A C UX x X, let 

a(A) = Au{((x: n G w),x): x G X}. Next, let /3(A) = Au {((x(f(n)): n G u),x): 

f G Mon, ( (x(n) : n G v),x) G A}. Finally, let 7 (A ) = A U {({x(n): n G u),x): 

Vf G Mon 3g G Mon such that ((x(f(g(n))): n G u ) , x) G A}. 

Then for every >1 C W I x X, the set 7(/3(a(A))) is stable under a, /3 and 7 and 

satisfies FSU. If (H) is true for sequences in A, then j((3(a(A))) satisfies (H), too. 

Moreover, r)(f3(a(A))) is the smallest convergence containing A. We refer the reader 

to [D] for the proof. 

In our case, A is the two-element set { ( (^ r f : n € w),Q), ((— ̂ 7 : n G C J ) , 0 ) } . 

Deno te by <& the set of all pairs ((x(n): n G CJ) ,0 ) e "X x X with {(x(n): 

n G C J ) , 0 ) G 7(/3(a(.A))) and let % be the set of all ((x(n): n G u;),0) such that 

there is a na tural number k and for every i < k an element ((xi(n): n G c.j),0) G 5* 

such that x(n) = ^ £;(n) for every ?i G a;. Finally, let ^f = {((x(n) + 7/(71): 
i<fc 

n G cj) ,y) : « z ( n ) : n G CJ) ,0 ) G % , « 2 / M : n G c;),y) G 7(/3(a(_4)))}. It is an easy 
exercise to verify that ^ is a group convergence and that it is the minimal one with 

—7T —> 0; we leave it to the reader. 
n-\-l ' 

We have to prove that ^ is complete . We wish to apply the lemma, so our first 

observation concerns the possible values of sequences which ^-converge to 0. Denote 

by S 0 the set {0} U { ^ j : n G to} U { - ^ : n G uo). Then by induction, if Sk is 

known, let Sk+\ = SkU(Sk + Sk). 

Cla im. If ((H(n): n G CJ), 0) G ^ , then there is some m G UJ and some k G CJ such 

that for all n ^ m we have 7/(71) G Sk. 
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The proof follows the pa t tern how ^ is built. First consider a(A). The sequences 

(^+T : n ^ u)i (— ~\+ : n ^ u) a n d the constant sequence (0: n G UJ) satisfy the claim 

with m = k = 0. Bu t these three are the only sequences in a(A), converging to 0. 

Whenever (y(n): n G UJ) is a subsequence of any of them, then it satisfies the claim 

as well and again with k = m = 0. Hence the claim holds for all sequences from 

(5(a(A)) converging to 0. Next, let ((y(n): n G UJ),0) G j((3(a(A))) and, aiming for 

the contrary, suppose that for each n G UJ there is f(n) G UJ with f(n) ^ n and such 

that y(f(n)) £ So. We may assume that / G Mon. Obviously there is no g G Mon 

with ((y(f(g(n))): n G UJ),0) G P(a(A)). So ((y(n): n G u;),0) g j((3(a(A))), a 

contradiction. 

We have verified that for all ((y(n): n G UJ),0) G @, all bu t finitely many values 

y(n) belong to So- Thus if ((yi(n): n G UJ),0) G @ for all i < k, and if mi is 

such that n ^ ra; implies yi(n) G So, then for m = maxra ; and n ^ m we have 
i</c 

~^, yi(n) € zC ^o ^ Sfc. So all sequences in ^o satisfy the claim. It remains to 
i < k i < /c 

observe that ((y(n): n G u ) , 0 ) G % if and only if ((y(n): n G u;),0) G ^ , and the 

claim is proved. 

Our next observation is trivial. 

Observat ion. Every set Sk is compact. 

Indeed, So is compact . If Sk is compact , then Sk+i, being the union of a compac t 

set Sk and of a continuous image of a compact set S& x Sk, mus t be compact as well. 

Now, let (x(n): n G UJ) be an arbi trary ^f-Cauchy sequence. As already noticed, 

it is also Cauchy in the metric of the reals, let q be its metric limit. Since we have 

verified all the assumptions of the lemma, we know that there is a rational number 

p and k,r G UJ such that for all n > r, x(n) G p — Sk and q G p — Sk, too. Since 

Sk C Q, the number q is rational. 

It remains to show that ((x(n): n G uj),q) G ^, i.e., that the sequence (x(n): 

n G UJ) also ^-converges to q. Bu t this is fairly easy now. Let t(n) = q — x(n) for 

n G UJ. We have t(n) —> 0 in the usual metric topology However, we may notice 

that t(n) = q — x(n) = q — p-h p — x(n), p — q G Sk and p — x(n) G Sk for all n > r, 

therefore t(n) G Sk — Sk C Sk+i for all n > r. 

According to the definition of the set Sk+i, for every n > r there are numbers 

a(n,i) G So such that t(n) = ^ { a ( n , i ) : i < 2h+1}. For n ^ r, let a (n ,0) = t(n) and 

a(n,i) =0 for 1 ^i < 2h+l. 

For a fixed i with i < 2h+l, consider the sequence (a(n,i): n G UJ). Wi th finitely 

many exceptions, it ranges in So and converges to 0. Therefore for every / G Mon we 

can find g G Mon such that either all a(f(g(n)),i) equal zero, or all a(f(g(n)),i) are 

positive and pairwise distinct or all a(f(g(n)),i) are negative and pairwise distinct. 

In any of these three cases, ((a(f(g(n),i): n G UJ),0) G (3(a(A)). So ((a(n,i): n G 
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CJ),0) G j(P(a(A))) and then, ((t(n): n e u),0) e % C tf. Since ((q: n G u),q) G 
<*f, too, we have that ((x(n): n G a;), a) = ((a - l(n): n G a;), </ - 0) G #\ D 

Remark . In the above proof, we did not use any particular property of the 
sequence ( ^ j : n G u) except that it converges to 0. In fact, whenever (qn: n G LJ) 

is a sequence of rationals converging to 0, then the smallest group convergence on 
Q containing ((qn: n G u;),0) is complete. After an appropriate modification of the 
proof, the same is true if we consider not just one, but a finite number of sequences 
at the start. 

Now, we want to find another group convergence f̂ on Q such that some irra­
tionals, but not all, will be the limits of ^-Cauchy sequences. Before doing so, we 
shall collect several easy facts on subsets of the reals. 

Definition. Let A C R. Denote by A + 0 the set A U - A and for n > 0, let 

X+n = A + ( n _ 1 ) + A. Let us call a set A C IR additively nowhere dense, if for each 
n G w , the set A + n is nowhere dense. 

Fact 1. Let x,y G R. If X C (R is compact and additively nowhere dense, then 
so are the sets X U {0}, A U -X and (X - x) U (A - y). 

P r o o f . Indeed, for Y = X U {0} we have Y+l = A + 1 , for Y = X U - A we 
have Y = A + 0 , which immediately implies the statement. 

For Y = (X - x) U (A - y) we have Y+n C A + n - Mni where Mn is the set of all 
sums ix -f jy with i, j G Z, |z| + \j\ ^ n + 1 . Since A + n is nowhere dense and Mn is 
finite, the set A + n - Mn is nowhere dense, too, hence also Y+n is. D 

Fact 2. If X C [0,1] is compact and for every real 0 < r ^ 1, A D [r, 1] is 
additively nowhere dense, then X is additively nowhere dense. 

P r o o f . It should be clear that A is nowhere dense. So we already have A"+0 

nowhere dense. 

Induction step: Suppose A"+n to be nowhere dense and let us consider A"+ ' l+1. 
Choose an arbitrary nondegenerate interval (a, 6); we may suppose that a > 0 (the 
proof is symmetrical for b < 0). By the induction hypothesis, there are real numbers 
c,d with a < c < d < b such that (c,d) n A'+ n = 0. Choose r > 0 so small that 
c-f-r = e < / = d — r and consider t G A"+n+1 n(e, f) . Then / = x0 + xi + . . . + .r;l+i 
with all X{ belonging to A + 0 . For every i ^ n 4- 1 we obviously have t — x.{ G X + n. 
If there is some i ^ n + 1 with \x\\ < r, then either t - Xi ^ c or t - X{ ^ d, since 
A + n does not meet (c,d). In both cases l ^ (e,f). 

We have just shown that if t G A + n + 1 n (e, / ) , then l G (A n [r, l ] ) + n + 1 , or stating 
it differently, A + n + 1 n (e,f) = (A n [ r , l ] ) + n + 1 n (e,f). Since the set A n [r, 1] 



is additively nowhere dense, we get X+n+1 n (e, f) nowhere dense, hence there are 
some ei,fi with e <: e\ < fi ^ f such that (e i , / i ) n K+n+1 is empty. As (a,b) was 
arbitrary, this shows that A r + n + 1 is nowhere dense. • 

Fact 3. Let M, X C [0,1]. If the set K is compact and additively nowhere dense 
and if every neighborhood of a set X contains all but finitely many points of M, 
then X U M is compact and additively nowhere dense. 

P r o o f . The compactness of X U M is trivial: If fy is an open cover of X U 
AJ, then some finite V C f/ covers X. What remains still uncovered is, by the 
assumption, a finite subset of M. 

The set X U M is nowhere dense: Indeed, if a < b are arbitrary real numbers, 
then there are some real c, d with a < c < d < b such that the closed interval [c, d] is 
disjoint from X. Since R\[c, d] is an open neighborhood of the set X, the intersection 
[c,d\ n (X U Af) is finite. So there must be a nondegenerate open interval (c\,d\) 

contained in (c, d) and disjoint from X U M. 

Being a union of two nowhere dense sets, the set (X U M ) + 0 is nowhere dense. In 
order to show that ( l U M ) is additively nowhere dense, proceed by induction: Let 

n G OJ and suppose that the sets (X U M)+ / c are nowhere dense for all k < n + 1. 

Since X is compact, for every open neighborhood U of a set K+n+1 there is an 
open neighborhood V of a set X such that V+n+1 C U. We leave the verification of 
this simple fact to the reader. 

Let real numbers a < b be arbitrary. By the assumption, A^+n+1 is nowhere 
dense. Hence there are some c, d G R with a < c < d < b and such that the 
closed interval [c,d\ does not meet the set K"+n+1. So there is an open neighborhood 
V 2 X with V+n+1 C R \ [c,J]. Denote by F the finite set (X U M) \ V. If 
x G {X U M ) + n + 1 \ (R \ [c,d\) = (X U M ) + n + 1 n [c, d], then x = Y xj w i t h a11 

j < n + l 

Xj e XuM and at least one Xj must belong to the set F — otherwise x G V+n+1 C 

R\[c, d]. From this observation we immediately get [c, d ]n (KUM) + n + 1 C [J ( ^ u 

j < n + l 

AT)4"-7' + F+n+1~-f Since F is finite and since (X U M)4"-7' is nowhere dense for all 
j < n + 1 by the inductive assumption, the set IJ (X U M ) + i + F+n+1~-?' is a finite 

j < n + l 

union of nowhere dense sets. Therefore there are reals ci,di with c ^ ci < di <̂  d 

such that (ci,di) f l ( I U M ) + n + 1 = 0. 
Since the open interval (a, b) was arbitrary, this shows that the set (X U M ) + n + 1 

is nowhere dense. Having completed the induction step, we conclude that the set 

X U M is additively nowhere dense. • 
It is the right time now to make profit from these ridiculous facts. 
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Theorem 2. The following are equivalent for a closed subset X of the unit 
interval [0,1]: 

(i) The set X is additively nowhere dense; 

(ii) there is a group convergence ^ on Q such that its categorical completion 
(Q, # ) satisfies Q u I C Q C | . 

P r o o f . The implication (ii)=>(i) is easier, so let us start with it. Suppose that 
X is not additively nowhere dense, let ^ be a group convergence on Q such that 
Q 3 Q U X . Thus for every x G X there is a ^-Cauchy sequence (x(n): n G UJ) such 
that ((x(n): n G J), x) e <£. 

Since we assume that X is not additively nowhere dense, there is k £ UJ and a 

nonempty open interval (a, b) such that X+k+l D(a, b) is dense in (a, b). Since we also 

assume that X is compact, we get (a, b) C X+k+l. Therefore whenever y G (a, b), we 

may find xn, X\,..., Xk e X such that y = XQ + x\ + . . . Xk- As all sequences (xi(n): 

n G u) are ^-Cauchy (i < k + 1), the sequence ( J2 xi{n) ' n £ OJJ is ^-Cauchy, 

too. So y G Q, hence Q D (a, b). But for every rational g, the constant sequence (q: 
n G CJ) ^-converges to q and so Q D (a,b) + Q, because ^ satisfies (L). However, 
(a, b) is nonempty open, so (a, b) + Q = R, which contradicts the sharp inclusion 
in (ii). 

For the opposite implication suppose that X C [0,1] is compact and additively 

nowhere dense. 

Before proceeding further, let us introduce some notation. For x G [0,1], let x G ^2 
oo 

be the function such that x = J2 XU) ' 2"-7-1. In the ambiguous case, choose the x 
i=o 

with a tail of Vs. 

Let us define a set A C WQ x {0} as follows: 

A=U/JT x(j) • 2 " j " 1 : n G u \ ()\ : x e X , / 6 Mon | . 
^ » » j = n 

Let f̂ be the smallest group convergence on Q with A C ctf. The reader has 
undoubtedly noticed that our definition of A was tailored as to ensure that for every 

CO 

x = ]T x(j) - 2~j~l G K, the sequence of all partial sums 
j'=o 

Y^x(J)-2~j-1: nЄi 
j'=o 
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is ^-Cauchy. Hence, if (Q,^7) is the categorical completion of (Q, ̂ ) , we have 
Q U I C Q. 

In order to show that there are real numbers which are not limits of ^-Cauchy 
sequences, we shall use the lemma. The convergence ^ is obviously finer than the 
metric convergence on Q. For the second assumption of Lemma, we need to find 
suitable compact sets Sk-

To this end, let $ be a mapping from the powerset of [0,1] into itself defined by 

$(Z) = {0} U J JT x(j) • 2~j~l: x G Z,n G LJ\. 
^ j=n 

Observe that $(Z) may be also expressed as follows: Let Zo—Z\ then, if Zn is known, 
l e t Z n + i = Z n U ( ( Z n n [ 2 - n - 1 , 2 - n ] ) - 2 ~ n - 1 ) . Then $(Z) = {0}U |J Zn. From this 

n£uj 

we immediately get that if Z is compact, then $(Z) is compact, because for every 
n G <x>, $(Z) D [2_ n _ 1 ,1] is a finite union of compact sets. It is however also true 
that if Z is compact and additively nowhere dense, then $(Z) is additively nowhere 
dense. Indeed, every §(Z) n [2~n_1,1] is additively nowhere dense by Fact 1, hence 
Fact 2 applies. 

Similarly as before, for a set Y C [0,1], let 

*(Y) = y U J J2 XU) • 2 _ j _ 1 :xeY,neu\. 
^ j=0 > 

Notice that whenever Y is compact and U is an open neighborhood of Y, then 
\-/(Y) \ U is finite. To see this, let U be an open set containing X. Since Y is 
compact, there is e > 0 such that for all r ^ U and x G Y we have \r — x\ > e. 

Choose neuj such that 2~n < e. The set M = { 53 <p(i) • 2~*_1: ip G n + 1 2 j is finite 
^ i=o ' 

and M UU D *(Y) — if not, then there is some m > n and (D Gm + 1 2 with ip(m) = 1 
m 

and such that r = 53 <p(0 • 2 ~ i - 1 G $(Y) \ U. For x G Y with x [ ra + 1 = (D we get 
i=0 

\r — x\ < e, which contradicts our choice of e. 
Now we are able to define S = \I>($(X)). We already know that if X is com­

pact and additively nowhere dense, then so is $(K ) , and we have just verified that 
$($(X)) satisfies the assumptions of Fact 3, so 5 is compact and additively nowhere 
dense. It remains to put So = S u {0} U —S; by Fact 1, So is compact and additively 
nowhere dense, too. 

Knowing S0, let Sk — (S0)+/e for 0 < k < UJ. Observe that for an arbitrary x G X, 
n-\-k 

all sums 53 XU) -2~i-1 with n, k G UJ belong to the set S0. This immediately follows 
j=n 

from the definition of $(X) and of $ ( $ ( * ) ) . 

91 



Exactly in the same way as in the proof of Theorem 1, i.e., following the procedure 
A —> a(A) —> P(a(A)) —> . . . , we can show that the assumptions of the lemma are 
satisfied with the choice of Sk as indicated. Now, by the lemma, if (x(n): n G u!) 
is a ^-Cauchy sequence, then its metric limit belongs to the set Q — (J Sk. Since 

k£u> 

all sets Sk are nowhere dense, the set Q — IJ Sk is of the first category and hence 
keu> 

every real r G R \ (Q - IJ Sk) is not a limit of any ^f-Cauchy sequence. Therefore 
keu 

Q C Q - IJ 5/eg[R, which was to be proved. • 
keu 

Remarks . It is clear that any compact countable subspace of reals is additively 

nowhere dense. For a perfect example of an additively nowhere dense set, consider 

e.g. the set < ]P /(n)-2~(n + 1) ! : / G u2 >. We do not know any example of a compact 
subset of K with all finite sums X + X +.. . + X nowhere dense, but X — X containing 
a non-degenerate interval. (There exists a compact X C IR with X + X nowhere 
dense, X -X D [-1,1], see [CGM].) 
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