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PRINCIPAL ELEMENT LATTICES 

D . D . ANDERSON, Iowa C i ty and C. JAYARAM, Kwaluseni 

(Received November 23, 1993) 

0 . INTRODUCTION 

In this paper we introduce (see Section 1) the concept of a weak Noether lattice 
and prove that a weak r-lattice L is a principal element lattice if and only if L is 
a weak Noether lattice in which every maximal element is weak meet principal. It 
is shown that if L is a weak Noether lattice in which the zero element is prime and 
every maximal element is join principal, then every element is principal. In Section 2 
we study quasilocal 7r-lattices, UFD lattices and Dedekind domains. It is shown that 
if L is a quasilocal weak r-lattice and if L is a 7r-lattice, then L is either a domain or 
L has only finitely many minimal prime elements and every prime element is the join 
of minimal prime elements. We prove that if L is a UFD lattice and every nontrivial 
prime element is maximal, then every element is principal. Using these results it is 
shown that if L is a principally generated Dedekind domain, then every element is 
principal. In Section 3 we investigate invertible elements and Dedekind domains are 
characterized in terms of invertible maximal elements. Some equivalent conditions 
are established for a weak r-lattice to be a finite direct product of Dedekind domains. 

A multiplicative lattice is a complete lattice in which there is defined a commuta
tive, associative multiplication which distributes over arbitrary joins (i.e., a(\J ba) = 

a. 

\J(aba)) and has greatest element 1 (least element 0) as a multiplicative identity 
cv 

(zero) (see [1]). 
Let L be a multiplicative lattice with 1 compact. An element a £ L is said to be 

nontrivial if a ^ 0,1 and a is called proper if a < 1. A proper element p G L is called 
prime if ab ^ p implies either a ^ p or b ^ p. A proper element p of L is primary if 
for every pair of compact elements a,b € L ab ^ p implies either a ^ p or bn ^ p for 
some positive integer n. A proper element m is said to be maximal if m ^ a for any 
other proper element a of L. 
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An element m of a multiplicative lattice L is weak meet (join) principal if a A ra = 
m(a : ra) (a V (0 : /??) = (ma : ra)) for all a £ L. Further, m is meet principal (join 

principal) if am A b = (a A (b : ra))ra ((a??? V b) : ra. = a V (b : ???)) for all a, b £ L. 

The element ra is (weak) principal if it is both (weak) meet principal and (weak) 
join principal. A multiplicative lattice L is called a weak r-lattice if it is principally 
generated, compactly generated and has 1 compact. A weak r-lattice which is also 
modular is called an r-lattice and an r-lattice in which every element is compact is 
said to be a Noether lattice. Further, if L is a weak 7^-lattice, then for every a £ L, 
yja, = /\{p £ L | a ^ p, and p is a prime element} = / \ { p £ L | p ^ a i s a minimal 
prime over a}, where \fa — \J{x £ L \ x is compact and xn ^ a for some n £ Z+}. 

A multiplicative lattice L is a domain if the zero element is prime. L is said to 
be a principal element lattice if every element is principal and it is called a special 

principal element lattice if it has a unique maximal element which is principal and 
every element is a power of the maximal element. A multiplicative lattice L with 1 
compact is said to be quasilocal if it contains a unique maximal element. 

For all undefined terms used in this paper, the reader is referred to [1] and [4]. 

1. WEAK NOETHER LATTICES 

In this section we introduce the concept of a weak Noether lattice and establish 
some equivalent conditions for a weak Noether lattice to be a principal element 
lattice. Throughout this section L represents a weak r-lattice unless otherwise noted. 

While [1] is concerned mainly with r-lattices which are by hypothesis modular, 
many of the results of [1] do not require modularity In fact, modularity was not 
assumed in Section 1. (It should be noted the hypothesis that the greatest element 
of a quasilocal multiplicative lattice be compact was inadvertently omitted and that 
in Theorem 1.2 the word "join irreducible" should be replaced by "completely join 
irreducible".) The process of localization as given in Section 2 of [1] for r-lattices 
carries over with no changes to weak r-lattices and we will use it freely 

Definition 1.1. L is said to be a weak Noether lattice if L is a weak r-lattice 

which satisfies the ascending chain condition. 

Let N = (IV, -f, •) be the semiring of nonnegative integers. Then the lattice L(N) 
of all semiring ideals of IV is a weak Noether lattice which is not a modular lattice 
(see [8]). Therefore a weak Noether lattice need not be a Noether lattice. Clearly a 
weak Noether lattice is a Noether lattice if and only if it is a modular lattice. 

Lemma 1.1. An element a £ L is principal if and only if a is compact and ap is 

principal in Lv for every prime element p of L. 
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P r o o f . The proof of the lemma is similar to the proof of Theorem 2.9 of [1]. D 

Lemma 1.2. Let S be a join principally generated multiplicative lattice with 1 
compact. If every maximal element is weak meet principal, then every nonmaximal 

prime element which is a finite join of join principal elements is weak meet principal. 

P r o o f . Suppose every maximal element is weak meet principal. Let p be a 
nonmaximal prime element which is a finite join of join principal elements. Suppose 
O ^ p for some O G S. We show that p V (0 : O) = 1. If p V (0 : a) < 1, then 
p, (0 : O) ^ m for some maximal element m of S. Since p < m and m is weak meet 

principal, we have p = pm, so by Lemma 1.1 of [2], m V (0 : p) = 1. As O ^ p, 
(0 : p) ^ (0 : O) ^ ??i, m = 1, a contradiction. Therefore p V (0 : a) = 1 and hence 
O = Op. Thus every nonmaximal prime element which is a finite join of join principal 
elements is weak meet principal. D 

An element q G L is said to be p-primary if q is primary and yfq = p is a prime 
element. 

Lemma 1.3. Let L be a weak Noether lattice in which m is the only prime 
oo 

element. Then, for any proper elements a,c G L, /\ (an V c) = c. In particular 
7 1 = 1 

OO 

A a" = 0. 

P r o o f . Let b = /\ (an V c). We show that b ^ c V Ob. As m is the only prime 
7 1 = 1 

element, L is quasilocal and every element is m-primary. Since Ob ^ cVOb and cVOb 
is primary, it follows that either b ^ c V Ob or an ^ c V Ob for some n G Z+ and so in 
any case b ^ c V Ob. Again by Theorem 1.4 of [1], b ^ c and hence b = c. D 

oo 

Lemma 1.4. Let p be a nonminimal principal prime element of L and q = f\ pn. 
7 1 = 1 

Then (i) q is prime, (ii) pq = q and (iii) any prime element properly contained in p 
is contained in q. 

P r o o f . The proof of the lemma is similar to the proof of Theorem 2.2 of [3]. D 

Lemma 1.5. Let L be a quasilocal weak Noether lattice. If the maximal element 
m of L is principal, then every nonzero element is a power mk (k ^ 0) of m. 

P r o o f . Suppose the maximal element m of L is principal. We show that 
oo oo 
l\ 77in = 0. If m is the only prime element of L, then by Lemma 1.3, f\ mn = 0. 

? l = l 7 1 = 1 

Suppose there are prime elements in L different from the maximal element. Then 
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m is a nonminimal principal prime element of L. So by Lemma 1.4, m( /\ tiin\ — 
a = l 

oo oo 
/\ mn. As L is a quasilocal weak Noether lattice, by Theorem 1.4 of [1], /\ mn = 0. 

n = l n = l 

Now let a be a nonzero element of L. Then a ^ mn and a ^ m'n+l for some 
n E Z + . So a = mnc for some c ^ m. As L is a quasilocal, c = 1 and hence a = ??iri. 

D 

The following Theorem 1.1 gives an equivalent condition for L to be a principal 

element lattice. 

Theo rem 1.1. L is a principal element lattice if and only if L is a weak Noether 

lattice in which every maximal element is weak meet principal. 

P r o o f . Suppose L is a weak Noether lattice in which every maximal element is 

weak meet principal. By Lemma 1.2 every prime element is weak meet principal and 

hence by Theorem 1.5 of [5], L is a principal element lattice. The converse is clear. 

D 

The following theorem is an extension of Theorem 2 of [6]. 

Theorem 1.2. Suppose L is a domain and for every prime element p of L, Lp 

is a weak Noether lattice. If every maximal element is compact and join principal 

then every element is principal. 

P r o o f . By Theorem 1.5 of [1], every maximal element is locally principal and 

hence principal. By Lemma 1.5, dimL = 1 and therefore every prime element is 

principal. Consequently every element is principal. D 

Corollary 1.1. If L is a weak Noether lattice in which 0 is prime and every 

maximal element is join principal, then every element is principal. 

2. DEDEKIND DOMAINS 

In this section, we study 7r-lattices, UFD lattices and Dedekind domains. Through

out this section L denotes a multiplicative lattice with 1 compact. For any a € L. 

Lja = {b G L | a ^ b} is a multiplicative lattice with multiplication c o d = cd. V a. 

According to [1], a multiplicative lattice L will be called a IT-lattice if there exists 

a set S of elements of L (not necessarily principal) which generate L under joins such 

that every element of S is a finite product of prime elements. 
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For example, let N = (1V, +, •) be the semiring of nonnegative integers. Let L be 
the lattice of semiring ideals of jV and S be the set of principal ideals of IV. Then L 
is a nonmodular quasilocal 7r-lattice. 

Lemma 2.1. Let a be a weak principal element of L and e G L with (e : a) = e. 

If m is a factor of a, then for any c ^ m, c V e = md V e for some d G L. 

P r o o f . Let m be a factor of a. So mk = a for some k G L. We claim that for 
any x,y G L, xk ^ yk implies x ^ y V e. Suppose xk ^ Hk. Then xmk ^ ymk, so 
.T ^ u V (0 : a). But (0 : a) ^ (e : a) = e, so that a; ^ y V e. Now assume that c ^ m. 
Then ck ^ mk = a, so ck = ad = mkd for some d G L. Therefore by the above 
argument, c ^ md V e, md ^ c V e and hence c V e = md V e. • 

Lemma 2.2. Let L be a join principally generated, quasilocal multiplicative lat
tice. Let a be a weak principal element and q be a factor of a. Suppose (e : a) = e 
where e is join principal and q = \J xa. Ifq^e, then q V e = xa V e for some a. 

a 

P r o o f . Let a a = xa V e. By Lemma 2.1, a a = xa V e = qd V e. Since gd ^ a a , 

d ^ (aa : g), so gd ^ (aa : g)g and hence gd V e ^ g(aa : g) V e. Since (aa : g)g ^ a a , 

we have (aa : g)g V e ^ a a V e = a a and therefore a a = g(aa : g) V e. Again 

g V e = (V*a) Ve = V f c V e ) = V a a = \J(q(aa : q) V e) = g(V(aa : g)) V e. If 
oc at a. 

V(a a : g) = 1, then g V e = xa V e for some a. Suppose V( aa • Q) < 1- As L is 
a a 

quasilocal, V( aa : #) ^ m (m is the maximal element), so q(\/(aa : q)) ^ gm and 
a 

hence g V e = gm V e. Now let b be any join principal element of L such that b ^ g. 
Put a* = bVe. Then a* = g(a* : g)Ve = ((g V e)(a* : g))Ve = ((gm V e)(a* : g))Ve = 
m(a* : q)q\/ e ^ ma* Ve. As a* is a finite join of join principal element, by Theorem 
1.4 of [1], a* ^ e and so b ^ e. Consequently, g ^ e, a contradiction. Therefore 
g V e = x a V e for some a. • 

Theorem 2 .1 . Let L be a quasilocal weak r-lattice with maximal element m. 
If L is a ir-lattice, then either L is a domain or L has only finitely many minimal 
prime elements and every prime element is the join of the minimal prime elements 
contained in it. 

P r o o f . If dim L = 0, then the result is true. So assume that dim L > 0. Observe 
that every principal element, being completely join irreducible, is a product of primes. 
Since dimL > 0, L contains a finite number of minimal primes pi,P2, - - • ,Pi- Note 
that each pi is principal and m ^ Pi,P2, • • • ,p/- Suppose L is not a domain. Let q be 

n 

a prime element of L and let pi,P2, • • • ,Pn ^ q (1 ^ n ^ 0- We show that q = V Pi-
2 = 1 
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Suppose V pi < q. Then there exists a principal element a ^ g such that a ^ pj 
i=l 

for j = 1, 2,. . . , n. Let e = px A • • • A p n . Then (e : a) = (p\ A • • • A pn : a) = (p{ : 
a) A • • • A (pn : a) = pi A • • • A pn = e since (p; : a) = a for i = 1, 2, . . ., /i. 

Suppose a = q\ - -qm for some prime elements gx, q2,..., gm € L. Then qt ^ g 
for some i, say gx ^ g. Note that pj ^ gx for some j G {1,2, . . . , n} , say pi ^ q\. 

By Lemma 2.1, px = p\ V e = qxd V e for some d e L. Since q\d ^ p\ and pi < g!, 
it follows that d ^. px and hence pi = gid V e ^ gipi V e. By Theorem 1.4 of [1], 
P\ ^ e and therefore g contains only one minimal prime element, say p\. Again 
by Lemma 2.2, gi = q\ V p\ = xa V p\ for some principal element xa ^ q\. We 
claim that q\ = xa. As L is a 7r-lattice, x a = kik2 • • • kr for some prime elements 
ki,k2,...,kr £ L. Since xa ^ gi, we get k; ^ gi for some i, say ki ^ q\. Since 
pi is the only minimal prime element contained in gi, it follows that p\ ^ A:L, so 
Qi = %a Vpi ^ ki and hence q\ = k\. Therefore xa = q\d for some d e L. Again 
since q\ = xa Vp\ = gxd Vp\ and q\ > p\, by Theorem 1.6 of [1], d = 1. This shows 
that q\ = xa. As p\ < q\ and q\ is weak meet principal, p\ = gipi and hence pi = 0 

n 

which contradicts the fact that L is not a domain. Therefore g = V pi. Thus every 

prime element is the join of minimal prime elements. D 

A multiplicative lattice L is said to satisfy the union condition on primes if for 
any set p i , p 2 , . . . ,pn of primes in L and any a G F, with a ^ p i , . . . ,p n , there exists 
a principal element b ^ a with b ^ p i , . . . ,p n . 

Corollary 2.1. Let L be a quasilocal weak r-lattice. If L is a n-lattice satisfying 

the union condition on primes, then L is either a domain or special principal element 

lattice. 

Corollary 2.2. Let L be a quasilocal weak r-lattice. If L is a ir-lattice, then L is 

either a domain or L has only finitely many prime elements and every prime element 

is compact. 

According to [1], a principally generated multiplicative lattice domain is said to 
be a UFD lattice if every principal element is a product of principal primes. 

Theorem 2.2. Let L be a weak r-lattice. Then L is a UFD if and only if every 

nonzero prime of L contains a nonzero principal prime. 

P r o o f . The proof of the theorem is similar to the proof of Theorem 4.6 of [1]. 
D 
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Corollary 2.3. Let L be a weak r-lattice. Then L is a UFD is and only if L is a 

7r-domain. 

P r o o f . The proof of the corollary is similar to the proof of Corollary 4.7 of [1]. 

• 

Lemma 2.3. Let x be a principal element of L and (0 : x) = 0. Then any factor 
of x is a principal element of L. 

P r o o f . Let x = mfc for some m,fc G L. Obviously m is weak join principal. 
We show that m is join principal. Let a, 6 G L. Then (am V b : m)m ^ am V b, 
so (am V b : m)x = (am V b : m)mk ^ (am V b)fc = amk V bfc = ax V bfc. Thus 
(am V b : m) = (am V b : m)x : x ^ (ax V bfc : x) = a V (bfc : x) = a V (bfc : mk) = 

a V (b : in) ^ (a?7i V b : m). Therefore m is join principal. 

Now we claim that m is meet principal. Let a,b £ L. Then (a/\mb)k ^ ak Axb = 

((ak : x) A b)x = ((afc : x) A b)mfc, so a A m& ̂  ((afc : x) A b)m = ((afc : mfc) A b)??i = 
((a : m) A b)m ^ a A 7?ib. This shows that m is meet principal. Thus any factor of x 

is principal. • 

Theorem 2.3. Suppose L is a principally generated multiplicative lattice domain. 
Then L is a UFD lattice if and only if every principal element is a product of prime 
elements of L. 

P r o o f . The proof of the theorem follows from Lemma 2.3. • 

The following Theorem 2.4 and Theorem 2.5 establish some equivalent conditions 

for a principally generated multiplicative domain to be a principal element lattice. 

Theorem 2.4. Suppose L is principally generated. If L is a UFD and every 

nontrivial prime element is maximal, then every element is principal. 

P r o o f . Let p be a nontrivial prime element. Choose any nonzero principal ele
ment a ^ p. As L is UFD, a = p\ - • - pn where the p;'s are principal primes. Since L 

is a domain, pi 7- 0 for i = 1, 2 , . . . , n, so by hypothesis each pi is maximal. Again 
since a = p\ • • • pn ^ p and p is prime, Pi ^ p for some i and hence pi = p. Conse
quently p is principal. Thus every nontrivial prime element is principal and hence 
every element is principal. • 

Theorem 2.5. Suppose L is principally generated. If L is a domain in which 
every nontrivial principal element of L is the product of a finite number of maximal 
elements, then every element is principal. 
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P r o o f . Let p be a nontrivial prime element. Then there exists a nonzero princi
pal element a ^ p. By hypothesis, a = qx • • • qn where the g/s are maximal elements. 
Since a = gi • • • qn ^ p, qx• ^ p for some i, so g; = p and hence a = pA (where 
A = I~[ tfj)- Again since a is principal, by Lemma 2.3, it follows that p is principal. 

Thus every prime element is principal and hence every element is principal. • 

Definition 2.1. A domain L is a Dedekind domain if every element of L is a 
finite product of prime elements. 

We show that if L is a Dedekind domain, then every element of L is principal. For 
this we require some lemmas. 

Lemma 2.4. For i = 1 ,2, . . . , k, let pi be a weak join principal nontrivial prime 

element of a domain L. Let a = pi • • -p^. Then this is the only way of writing a as 

a product of nontrivial prime elements of L except for the order of the factors. 

P r o o f . Let a = p[ • • -p'n where each p\ is a nontrivial prime element of L for i = 

1, 2 , . . . , n. Assume p2 is minimal among p2, . . . ,Pk- Since p[ • • -p'n ^ pi, some p\ is 
contained in pi, say p[ ^ p\. Since pi • • -pk ^ pi, we have pi ^ p[ for some i, so i = 1 
and hence pi = p[. Again since pip2 • • • Pk — P1P2" ' Pn a n d Pi is weak join principal, 
we get P2 - - - Pk — P2 ' " Pn- Since each p2- and each thisargument,wegetn=kandj ^ 
k. D 

Lemma 2.5. Suppose L is a domain and a,p are any two principal elements of 

L. Ifp^(pVa)2,a^p and p is a prime element, then p V o = 1. 

P r o o f . Suppose p ^ (p V a)2, a ^ p and p is a prime element of L. Since 
p ^ (p V a)(p V a) = p2 V a(a V p), we get 1 = ((p2 V a(a V p)) : p). As p is principal. 
1 = (p2Va(aVp) : p) = p\Z(a(aVp) : p). Also (a(aVp) : p) = (a2Map : p) = a\/(a2 : p). 
Therefore 1 = p V (a(a V p) : p) = p\/ aV (a2 : p). Now it is enough if we show that 
(a2 : p) ^ a. Let a; be any element of L such that xp ^ a2. Then xp ^ a. As a is 
weak meet principal, xp = ad for some d € L. Since ad ^ p, a ^ p and p is prime, 
we get d ^ p, so xp = ad ^ ab and hence x ^ a as p is weak join principal and L is 
a domain. Therefore (a2 : p) ^ a. Consequently p V a = 1. • 

Theorem 2.6. Suppose L is principally generated. If L is a Dedekind domain, 

then every nontrivial prime element of L is a maximal element. 

P r o o f . Suppose L is a Dedekind domain. First we show that every principal 
nontrivial prime element of L is maximal. Let p be a principal nontrivial prime 
element of L. Suppose p is not maximal. Then p < m for some maximal element m 
of L. If L is principally generated, a ^ p for some principal element a ^ m. As L is 
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a Dedekind domain, p V a = p\ • • • pk and p V a2 = q\ • • • gn, where the pi and qi are 

nontrivial prime elements of L. Then a = a Vp G L/p, a2 G L/p and a = pr o • • • op*., 
a2 = gi o • • • o gn, where p* = p{\/ p = p i5 ^ = Gj V p = Gj for 1 ^ i ^ k and 
1 ^ j ^ n- Since a ^ - 0 and a, a2 are weak join principal and L/p is a domain, it 
follows that each pi and each qi are weak join principal elements in L/p. Again we 
have p2 o • • • o p2 = qx o • • • o qn. Hence by Lemma 2.4, n = 2k and we may number 
the qi so that for i = 1 , . . . , k, a2t-i = Q2i = Pi- Thus (p V a)2 = p V a2. Again 
since p ^ (p\/ a)2, and a ^ p, by Lemma 2.5, p V a = l, so?n = l , a contradiction. 
Therefore every principal nontrivial prime element of L is maximal. 

Now we show that every nontrivial prime element is maximal. Let p be a nontrivial 
prime element. Since p / 0, there is a nonzero principal element a ^ p. As L is a 
Dedekind domain, a = p\ • • -pn , where p;'s are nontrivial prime elements. Since L is 
a domain and a is principal, by Lemma 2.3, each pi is principal and hence maximal. 
As a = pi • • -pn ^ p, pT- ^ p and hence p = pz- is maximal. D 

Theorem 2.7. Suppose L is principally generated. If L is a Dedekind domain, 
then every element is principal. 

P r o o f . The proof of the theorem follows from Theorem 2.5 and Theorem 2.6. 
D 

3 . INVERTIBLE ELEMENTS IN LATTICES 

Throughout this section L denotes a weak r-lattice. In this section, we introduce 
the concept of invertible elements in multiplicative lattices and study invertible prime 
elements. Using invertible prime elements, we establish some equivalent conditions 
for a weak r-lattice L to be a finite direct product of Dedekind domains. 

Definition 3 .1. An element a of a multiplicative lattice S is said to be regular 
if there is a principal element b G S such that (0 : b) = 0 and b ^ a. 

Definition 3.2. An element a of a multiplicative lattice S is said to be invertible 
if ac = d for some c G S and for some principal regular element d of S. 

Lemma 3 .1 . Let S be a multiplicative lattice. Then an element a G S is an 

invertible element if and only if a is a principal regular element of S. 

P r o o f . The proof of the lemma follows from Lemma 2.3. D 
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Lemma 3.2. Let p be a proper invertible prime element of L. Then 

(a) If p = oh, where a, b G L, then either a = 1 or b = 1. 
(b) If a is an invertible element of L and a > p, then a = 1. 

oo 

(c) If p' = f\ pn, then p' is a prime element and p'p = p' and if p" is a prime 
n = l 

element and p" < p, then p" ^ pf. If p' is compact and q is a primary element 

contained in p, then p' ^ q; in fact p' = q or y/q = p. In particular, if p' is compact, 

then p' is the only prime element properly contained in p. 

(d) An element q is p-primary if and only if q is a power of p. 
(e) The only invertible elements between p and pn, where n is a positive integer, 

are powers of p. 

P r o o f . By using Lemma 1.1 of [2] and by imitating the proof of Lemma 21 of 
[7], we can get the result. • 

Now we characterize Dedekind domains in terms of invertible elements. Note 
that, by Theorem 2.7, a domain L is a Dedekind domain if and only if every nonzero 
element is invertible. 

Theorem 3.1. A domain L is a Dedekind domain if and only if every prime 
element is compact and every nonzero maximal element is invertible. 

P r o o f . If L is a Dedekind domain, then by Theorem 2.7, every element is princi
pal and hence every prime element is compact and every nonzero element is invertible. 

Conversely, assume that every prime element is compact and every nonzero max
imal element is invertible. By Lemma 3.2(c), every prime element is principal and 
hence every element is principal. Consequently L is a Dedekind domain. • 

A multiplicative lattice domain is said to be a proper domain if it is not a two 
element chain. The following Theorem 3.2 establishes an equivalent condition for L 

to be a finite direct product of proper Dedekind domains. 

Theorem 3.2. Suppose L is not a two element chain. Then L is a finite direct 

product of proper Dedekind domains if and only if every prime element is compact 

and every maximal element is invertible. 

P r o o f . Suppose L = L\ x • • • x Ln, where each Li is a proper Dedekind domain. 
Then each Li is a principal element domain and so L is a principal element lattice. If 
m is a maximal element of F, then m = (V V . . . , mi,..., 1), where ra; is a maximal 
element of Li and so 0 : m = 0. Hence every maximal element is invertible. 

Conversely, assume that every prime element is compact and every maximal ele
ment is invertible. Then L is a principal element lattice and so dimL ^ 1. As L is a 
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Noether lattice, the zero element has a normal decomposition. Let 0 = q\ A • • • A qn 

be a normal decomposition and let pi = y/ql. Suppose for i = 1, 2 , . . . , k, the LVs 
are nonmaximal and for i = k + 1 , . . . , n, the pVs are maximal. By Theorem 3.2 of 
[2], qi — pi for i = 1, 2 , . . . , k. By Lemma 3.2(c), p\ < qi for i — k + 1 , . . . , n where 

oo 

p'. — /\ pn is a prime element. But this contradicts the hypothesis that a normal 
n = l 

decomposition is redundant unless k — n. Hence 0 = p\ A • • • A pn. Further these 
prime elements are comaximal and so L = L/p\ x • • • x L/pn. Note that each factor 
is a proper principal element domain, and hence L is a finite direct product of proper 
Dedekind domains. • 
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