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WEAK CALIBERS AND THE SCOTT-WATSON THEOREM 
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Let k be an infinite cardinal number. A collection °?/ of subsets of a space X is 
said to be point-k if each point x G X is in fewer than k members of °?/. A collection 
°?/ is locally-k at a point x if there is an open neighbourhood of x meeting fewer than 
k members of °?/. If every point-k open cover of a space X is locally-k at a dense set 
of points then we say that A" has weak caliber k. A space X has very weak caliber 
A: if every point-k open cover °?/ of X such that \°?/\ ̂  k is locally-k at a dense set 
of points. Recall that a space A" has caliber k if every point-k collection of open 
sets has cardinality less than k. Obviously caliber k => weak caliber k => very weak 
caliber k. If X is a ccc space (i.e. every collection of pairwise disjoint non-empty 
open subsets of X is countable) and k is a cardinal of uncountable cofinality then it 
follows easily by Prop. 3.4 in [10] that X has caliber k iff it has weak caliber k. 

X is a k-Baire space if the intersection of fewer than k dense open sets is dense 
[10]. Thus the Ki-Baire spaces are the usual Baire spaces. It is well-known that a 
space A" is a Baire space iff it has weak caliber H0 iff it has very weak caliber K0 ([2], 
[3]). Moreover, it is known that if k is regular and X is k+-Baire then X has very 
weak caliber k [1]. If X is almost k-discrete (i.e. every non-empty intersection of 
fewer than k open sets has non-empty interior) and k is regular then X is k+-Baire 
iff it is k-Baire and has very weak caliber k [1]. It would be interesting, for a regular 
cardinal k, to know whether there exists a space which has very weak caliber k but 

has not weak caliber k . 

In the sequel no separation axiom is assumed, unless explicitly stated. A space X 
is almost k-metacompact if for every open cover u?/ of X there are an open refinement 
y of °?/ and an open dense subset D of X such that V is point-k on D. Almost 
Ko-inetacompact (almost Ni-metacompact) spaces are called almost metacompact 
(almost metaLindelof) [7]. The following property is a stronger one: Â  is quasi k-
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metacompact if for every open cover °?/ of X there are an open refinement Y of ?/ 

ancl an open dense subset D of X sucli that Y is point-k on D and for every '//' C / 

with |/A| ^ k, it follows that |{IVfl-D: IV G XA}| ^ k. Quasi K0-metacompact (quasi 

Ki-metacompact) spaces are called quasi metacompact (quasi metaLindelof). If k is 

a regular cardinal then every almost k-metacompact space is quasi k-metacompact. 

Let us consider an open cover ?/ of an almost k-motacompact space A\ let / be 

an open refinement of °?/ and D an open dense subset of A" such tha t Y is point-k 

on D. Let us show that if // C Y and <S = {IV n D: IV G /A} has cardinality 

< k then |/A| < k. Let A = \S\ and let <S = {Gn : o G A}. For every G a G tf 

let S>(Ga) = {IV G //'': IV n £> = Ga}. Take a point T in Ga. Then obviously 

&(Ga) C /fc = {V G Y: x G V}, and since x G F> and '/' is point-k on D it follows 

that | ^ ( G a ) | ^ | Ar| < k. Hence /A = (J 5>(Ga), A < A\ and k is regular, therefore 

\r\<k. 
X is weakly k-compact if each open cover °?/ of A' has a subfamily '/', \Y\ < k, 

with a dense union ([5], see also [4]). Weakly No-compact (weakly Ni-compact) spaces 

are called weakly compact (weakly Lindelof). Obviously a regular weakly compact 

space is compact. 

A space X is feebly k-compact if every discrete family of non-empty open subsets of 

X lias cardinality < k ( if A" is a regular space this is equivalent to saying that every 

locally finite family of non-empty open subsets of X has cardinality < k). Feebly 

No-compact (feebly Nj compact) spaces are called feebly compact (feebly Lindelof). 

Clearly a Tychonoff space is feebly compact iff it is pscudocoinpact. 

R e m a r k 1. A space A" is quasi-regular [8] if for every non-empty open subset 

V of A" there is a non-empty open subset U of X such that U C V. If X is a quasi-

regular weakly k-compact space then it is feebly k-compact. Let us suppose that 

there is a discrete family °?/ — {Ua: a < k} of non-empty open subsets of X. For 

each a < k let Va be a non-empty open set such that I \ , C Ua. Set V = X — \J{\'a : 

a < k}; {Va : a < k} is a discrete family so V is an open subset of X. Then '// U {V} 

is an open cover of A" such that for each Y C L?/ with | Y\ < k, (J / / \s not dense in 

X. 

L e m m a 2. Let k be a regular cardinal and let X he feebly k-compact. ff ?/ is 

an open cover of X which is locally-k on a dense subset of X, then ?/ contains a 

subfamily Y such that \Y\ < k and \J~Y = X. 

P r o o f . Let °?/ be an open cover of X which is locally-k on a dense set D. Let 
f6 be the collection of all families <S of open subsets of X such that 

(i) \{U G ^ / : G n U + 0} | < A: for each G G <S, 

(li) \{G G <S: U n G i=- 0} | <: 1 for each U G ?/. 
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(Y>\C) is a poset and every linearly ordered subset of & has an upper bound, 

hence by Zorn's lemma there is a maximal element ,// of V. Clearly jft is a discrete 

family, moreover X is feebly k-compact so \.//\ < k. Let Y = {U G °?/ : U n V ^ 0 

for some V G . / / } . Since k is regular so | T'| < k. 

It remains to show tha t IJ r = A". Suppose there is an x E D C\ (X — IJ 'F), 

let IV be an open neighbourhood of x such that IV C X — IJ Y and |{U G / / : 

IV n U ^ 0} | < k. Then J/ U {IV} satisfies (i) and (ii) and .// is not maximal, a 

contradiction. D 

L e m m a 3 . If X has weak caliber k and G is an open subset of X then G has 

weak caliber k. 

P r o o f . Let °?/ be a point-k open cover of G. Then r = °?/ U {X} is a point-k 

open cover of X. X has weak caliber k, so D = {x G A": r is locally-k at x} is dense 

in A', therefore ?/ is locally-k on the dense subset D n G of G. If x G D n G then 

there is an open neighbourhood Ux of x in X such that |{V E Y:Vn Ux ^ 0} | < k, 

therefore Gx. = Ux D G is an open neighbourhood of x in G such that |{U G c>// : 

UnG,. ^0 } | <k. n 

P r o p o s i t i o n 4 . Le£ X be a quasi k-metacompact space with weak caliber k. If 

?/ is an open cover of X then there is an open refinement Y of6?/ which is locally-k 

at an open dense subset of X. 

P r o o f . Let °?/ be an open cover of A", by hypothesis there are an open refine

ment r of ?/ and an open dense subset D of X such that 'Y is point-k on D and for 

every 1Y C Y with \1Y\ > k, it follows that |{IV n D: IV G 1Y}\ > k. £/ = {V n D: 

V G Y} is a point-k open cover of D, D is open in A" and X has weak caliber k, 

hence by Lemma 3 D has weak caliber k. Therefore G = {x G D: 3 an open neigh

bourhood Ux of T in D meeting fewer than A: members of ,c/} is dense in D, obviously 

G is open in D and hence in A'. To complete the proof we show that 'Y is locally-k 

at the open dense subset G of A'. Let x G G\ then there is an open neighbourhood 

U,. of x in D such tha t | .c/ r | < k, where .c/, -=. {A G .c/: AnU,; ^ 0}; obviously L!r is 

an open neighbourhood of T in A . Let '//' = {V G Y: V n Ur ^ 0}, if |yA| ^ k then 

by the quasi k-metacompactness of A" it follows that {V P\ D: V e 1Y} is a subset of 

,c/x having cardinality ^ k, a contradiction. Hence 'U is locally-k at x. D 

T h e o r e m 5. Let k be a regular cardinal and let X be a space which has weak 

caliber k. If X is feebly k-compact and almost k-metacompact then X is weakly 

k-compact. 

P r o o f . Let k be a regular cardinal and let X be a feebly k-compact almost 

k-metacompact space which has weak caliber k. Let ?/ be an open cover of A", X 
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is quasi k-metacompact (k is regular), hence it follows by Prop. 4 tha t there is an 

open refinement Y of °?/ which is locally-k at an open dense subset of X. Then by 

Lemma 2 there exists a W C T such that \W\ < k and (J # ' = X. For each IV G W 

choose an element U(W) of 4/ such that IV C U(W). tf = {U(W):W e W} is a 

subcollection of 9/ such that \c3\ < k and \J& = X. So X is weakly k-compact. D 

For the special case k = K0 we obtain the following result: every feebly compact 

almost me tacompac t Baire space is weakly compact. 

It is known that a regular feebly compact space is a Baire space [6], therefore 

a regular space is weakly compact (and hence compact) if and only if it is feebly 

compac t and almost me tacompac t ([7], Thin. 1). 

In par t icular, we have the following 

Corol lary 6 (Scott-Watson theorem). Every Tychonoff pseudocompact meta

compact space is compact. 

R e m a r k 7. Theorem 5, for k = Ni, says that an almost metaLindelof feebly 

Lindelof space which has weak caliber Ki is weakly Lindelof. The example given 

in [12] shows (as pointed out in [7]) that a Tychonoff pseudoeompact metaLindelof 

space need not be weakly Lindelof. In [7] it is also shown that a regular Baire space 

is weakly Lindelof iff it is feebly Lindelof and almost 0-refinable. 
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