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INTRODUCTION

The Riemannian spaces with the curvature tensor R satisfying the identity
R(X.Y) - R = 0 were recognized already by E. Cartan (sce [Cal], p. 265), who
noticed that all locally symmetric spaces and all 2-dimensional Riemannian spaces
helong to this class. Various results have been obtained by A. Lichnerowicz. R.S.
Couty and N.S. Sinjukov. The last author ([Si 1.2]) introduced the name “semi-
svimmetric spaces” for this class of Riemannian manifolds. (Sce [Sz 1] for the other
references). In 1968, IX. Nomizu [N] asked the question if there exist complete, irre-
ducible and simply connected Riemannian manifolds in dimension n > 3 satisfying
the identity R(X,Y) - R = 0 and not locally symmetric, i.e. such that VR # 0. The
first positive example was constructed by H. Takagi [T] in 1972 as a hypersurtace
A € RY with the induced Riemannian metric. The full local classification of Rie-
manunian spaces with the above property was given in 1982 by Z.I. Szabé [Sz 1]. The
completeness of semi-symmetric spaces was studied in the subsequent paper [Sz 2]
and the complete semi-symmetric hypersurfaces of Euclidean spaces in [Sz 3].

One possible interpretation of the work [Sz 1] says that all building stones for the
semi-syminetric spaces (SSS) arve divided into three classes:

(a) The “trivial” SSS: all locally symmetric spaces and all two-dimensional Rieman-
nian spaces.

() The “exceptional” SSS: elliptic cones, hyperbolic cones, Euclidean cones and
INachlerian cones.

'"This paper is a definitive version of a preprint which had been distributed in 1991 and pre-
sented at the Geometry meeting in Oberwolfach, October 1991. [t was partly supported
by the grant GA CR 201/93/6:169.
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(¢) The “typical” SSS: Riemannian spaces foliated by (n —2)-dimensional Euclidean
spaces.

Whereas all the “trivial” SSS are well-known and the “exceptional” ones are de-
scribed in [Sz 1], [Sz 2] by explicit constructions, the most ample family (c) has not
been much explored until recently. In [Sz 1] all foliated SSS are described by a (non-
linear and rather complicated) system of partial differential equations. The local
existence theorem in dimension n then says that all solutions depend on %n'z +n+2
arbitrary functions of 2 variables and %712 + n — 6 arbitrary functions of 1 variable).

Yet. no explicit solutions have been presented in [Sz 1]. In [Sz 3], some classes
of solutions are described as hypersurfaces of R™*!; they depend on arbitrary func-
tions of 1 variable only. To our knowledge, the first explicit class depending on one
arbitrary function of 2 variables was constructed by F. Tricerri, L. Vanhecke and the
present author in [KTV 1] and [KTV 2]. It was obtained as a generalization of two
examples by K. Sekigawa, [Se].

In the present paper we study the 3-dimensional case and we try to resolve ex-
plicitly the partial differential cquations by Z. Szabd (after deriving these PDE by
a different method and in a different form). We make a geometric classification
“in gross” of the 3-dimensional foliated SSS: we distinguish the elliptic, hyperbolic.
parabolic and planar ones. Then we give (local) explicit formulas for all hyperbolic,
parabolic and planar metrics (involving three, two or one arbitrary functions of 2
variables, respectively). In the elliptic case we obtain, in general, only a “quasi-
explicit” formula. Yet, some famnilies of explicit solutions are also constructed which
depend on one arbitrary function of 2 variables. Moreover, we prove that the local
isometry classes of metrics in the elliptic and the hyperbolic case still depend on 3
arbitrary functions of 2 variables.

Whereas Z.Szabd and other authors are primarily interested in the complete SSS,
our results show that most of our solutions are inherently incomplete. For instance,
all SSS of the hyperbolic type are incomplete. Thus. incompleteness is the price to
pay for a full and systematic classification of the SSS.

Our computational method is not closely connected with the dimension n = 3 and
it works in the arbitrary dimension, as well. Very recently, E. Boeckx, L. Vanhecke
and the present author have explicitly classified all nouhomogeneous semi-symmetric
spaces with constant scalar curvature (see [BIKV]). Morcover, a modification of our
method enables, surprisingly enough, to get a local classification of nonhomogencous
3-dimensional Riemannian manifolds with the preseribed constant eigenvalues of the
Ricci tensor (see [KX]).

The content of the paper is the following: In Section 1 we recall some basic facts
from [Sz 1]. In Section 2 we derive a canonical form for our metrics involving three
unknown functions of 3 variables and one unknown function of 2 variables. In Section
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3 we write down the basic system of 9 PDE for these unknown functions. In Section
4 this basic system of PDE is reduced to only three PDE and to a system of (many)
algebraic equations for new unknown functions of 2 variables which appeared in the
first integrals of the basic PDE system.

In Section 5 we study the Riemannian invariants for our class of spaces. Section 6
introduces the useful concept of asymptotic foliation and the geometric classification
“in gross”. The asymptotic foliations enable to introduce new coordinates which sim-
plify dramatically the further computations in the hyperbolic, parabolic and planar
case. The explicit classification of these cases is given in Section 7. Then Section 8
is devoted to the (more difficult) elliptic case. Finally, in Section 9 we study foliated
SSS with prescribed scalar curvature and we prove the main existence theorem.

1. THE BASIC CONCEPTS AND PROPERTIES

To be more precise, let us repeat that a semi-symmetric space is a Riemannian
manifold (M, g) satisfying the identity

(1.1) R(X,Y)-R=0 forall X.Ye€T,M, peM

where each curvature transformation R(.X,Y"), acts as derivation on the tensor al-
gebra of T,M. We always assume (M, g) to be of class C*°.

As we have mentioned in the Introduction, we shall limit ourselves to the foliated
SSS. In accordance with [Sz 1], a foliated SSS is a Riemannian manifold (M, g) whose
index of nullity v(p) is constant along M and equal to n — 2. This means that every
tangent space T\, M can be decomposed in the form

(1.2) T,M =V + 1M

where dim V,,(O) =n— 2, dim V,,“) =2 for all p € M, and ‘/_,1’(0) is the null-space of
the Riemannian curvature tensor R,, i.e.,

(1.3) VIO ={X eT,M|R,(X,Y)=0forallY € T,M}.

Hence we see that the curvature tensor R, (of type (0,4)) at each point p € M is “the
same” as the curvature tensor of the space M' = S?(A\?) x R, or M' = H?(=\?)x R
respectively, where the sectional curvature £A% depends on the point p, in general.
More precisely, for each p € A there is a linear isometry of tangent spaces, ¢:
T,M — ToM', where M' is one of the model spaces above and o € M’ is an
arbitrary base point, such that ¢*R; = R, holds for the corresponding curvature
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tensors. Because we exclude points of flatness, each connected foliated SSS has either
only points of the “spherical” type, or only points of the “hyperbolic” type.

Further, Z. Szab6 shows that the (n — 2)-dimensional distribution V() on M is
completely integrable, and the integral manifolds of 179 are totally geodesic and
locally Euclidean. This is why M is said to be “foliated by (n — 2)-dimensional
Euclidean spaces”.

We see that the Ricei curvature o(X, X) (X € TAL||X|| = 1) is zero along cach
Euclidean leaf, and it is a nonzero constant on the unit circle of each subspace 15"
(equal to the corresponding scctional curvature). If we double this constant. we
obtain the scalar curvature at the point p. In particular, for n = 3, the Euclidean
foliation is a family of geodesics which are lines of zero principal Ricei curvature.
Equivalently, a 3-dimensional foliated SSS can be characterized as a Riemannian
3-manifold whose Ricci tensor has, at each point, one nouzero double eigenvalue and
one zero eigenvalue.

We shall close this short section by a new simple characterization of semi-
symmetric spaces which is based on an idea by U. Lumiste [Lu]. It was noticed
already by E. Cartan that every Riemannian manifold )/ has, at each point, a first
order approximation, which is a Euclidean space. The present author and L. Van-
hecke have observed that any scmi-symmetric space has. at cach point. a second order
approximation, which is a symmetric space. In other words. each semi-symmetric
space is a 2™ order envclope of an n-parameter family of symmetric spaces. The
precise formulation and a very simple proof (using the normal coordinates) will
appear elsewhere. In particular, each foliated SSS is the 2@ order envelope of
symmetric spaces which arc all homothetic to S? x B" ~2 or to H? x R"~2.

2. THE CANONICAL LOCAL FORM FOR THE METRICS
The aim of this section is to prove the following

Theorem 2.1. Let (M, g) he a smooth foliated SSS of dimension 3. Then. in a
normal neighborhood U of any point p € M, there arc local coordinates w, &, y such
that g = (w')? + (wW?)? + (w*)*. where

b= fw,x,y) dw,
(2.1) w? = A(w,x,y) de + CLw..r.y) dw,
W= dy + H(w,x) dw

and fA # 0. Further

430



a) the equations w' = w? = 0 determine the principal directions of zero Ricci
curvature and the corresponding integral curves in (U, g) are geodesics,

b) the variable y measures the arclength along any geodesic of this family,

¢) there exists a function o(w,2) # 0 such that the sectional curvature k =
k(w,x,y) in the 2-direction w? =0 is given by

Lo
o
—

k=c(w,x)/fA.

Remark 2.2. For the scalar curvature we get Sc(g) = 2k.

Proof. According to Section 1, in a neighborhood U’ 3 p there is a unique
system of geodesics which are lines of zero Ricci curvature (one geodesic through
cach point). We shall call these lines “principal geodesics”. Choose an oriented
surface S: D? —s U’ through p which is transversal w.r. to the principal geodesics
at all cross-points but not orthogonal at p. Choose any coordinate system (w, )
on S. Then there is a normal neighborhood U 3 p, U C U’', with the property
that cach point m € U is projected to exactly one point w(m) € S via a principal
geodesic. Then we define a local coordinate system (w,x,y) in U by the formulas
wim) =w(w(m)), x(m) = a(w(m)), and

(2.3) y(m) = d*(w(m),m) = the oriented distance of m from m(m).

Obviously, ¥ measures the arclength along cach principal geodesic in U, and the
coordinate vector field /9y is a unit vector field generating these principal geodesics.
Now, choose in U an orthonormal moving frame {E\, E,, E3} such that E3 = 0/9y.
and let (W' w? w?) be the corresponding dual coframe.

Because w!' (E3) = w?(E3) = 0, the coordinate expression of w!, w? must be of the
form

(2.4) Wi=Pdr+Q dw (i=1,2)
whereas w? has the form

W= dy + PP da 4+ QP du.

—
o
[\a

-

Recall that the components w; of the connection form are uniquely determined by
the standard equations (see [IXN])

(2.6) dw' + ) winw =0, wi+w! =0 (i,j=12,3).
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The components Q; of the curvature form then satisfy
(2.7) Q) =hw' AW, Q)=03=0, Q@ +Q =0,

or, equivalently,

(2.8) dwl + wi Awl = kw' A w?,
(2.9) dws +wi Aw? =0,
(2.10) dw? + w? Awl =0,

where k = k(w, z,y) is the sectional curvature in the 2-direction w? = 0.
Taking the exterior differentials of (2.8)—-(2.10) and substituting into the new equa-
tions from (2.8)—(2.10) we obtain

(2.11) d(kw' Aw?) =0,
(2.12) wgl/\wl/\w2:0,w§/\w1/\u)3:0_

The last equations mean that w} and w? are linear combinations of w!, w? only.

According to (2.4), w!, w?, w} and w? are linear combinations of dw, da only.
The third equation of (2.6) says that

2.13 d + W AW +wiAw? =0
1 2

and hence

(2.14) dw?® = gdw A dr

where ¢ = ¢(w,x,y) is some function. After differentiating (2.5) and substituting
here from (2.14) we see that P*, Q* are independent of y. Because the vector field Ey
is not orthogonal to the surface S at p, some of the functions P, Q3 is nonvanishing
in a neighborhood of p.

Let us fix any potential function @ = @w(w,x) of the Pfaffian equation

(2.15) Pw,x)dz + Q% (w, ) dw =0

and let T(w,x) be another function such that (@, ¥) form a local coordinate system
in a neighborhood of p on S. Then (2.5) can be rewritten in the form

(2.16) = dy + H(w, 1) dw.
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Substituting the new variables @,Z also into (2.4), and using suitable orthogonal

combinations of w! and w? instead of w!,w?, we obtain the remaining formulas of

(2.1) up to a notation. (Here we use a smaller neighborhood U of p in U’ if need be).
Finally. the equation (2.11) means, due to (2.1),

d
(2.17) 5y AK) =0

and hence (2.2) follows. Here fA # 0 because (2.1) is a coframe. a

Convention. In the following, by a (foliated) semi-symmetric space (M, g) we
shall mean, as a rule, a local space in the sense of Theorem 2.1. In other words, we
shall suppose that M is a convex open domain in R3(w,z,y) on which the metric g
is defined by the formulas 2.1 (if not stated otherwise).

3. THE BASIC SYSTEM OF PDE FOR THE FOLIATED SPACES

First, we define the function ¢ by
(3.1) Y(w,a,y) =1/fA=k(w,z,y)/o(w,x)
(cf. (2.2)). Then it is easy to check, using (2.6), that the components of the connection
form are given by
wy = —Aadx + Rdw + 3 dy,
(3.2) wi = Apda + Sdw,
wi = A}, dr + Tdw

where
! ! ! 1 / ! !
(3.3) a=y(A,-C, — HAy), [ = E'IZJ(H_,. + AC'y - CAy),
and
R=yffl —-Ca+ Hp,
(3.4) S = f,+Cp,

T =0 - fp.

Now, in the notation given by (2.1) and (3.1)-(3.4), the curvature conditions (2.8)-
(2.10) take on the following form, respectively:

(A)  (Aa), +B,=0, R, -p,=0, (Aa), +R.+SA, - ABT = —o,

w

(B) Ay, —AB*=0, Al +T.+ABR+aS)=0, T,-Sp=0,

yw

(C)  (AB), +A,B=0, S.—(Ap), —(AaT + A R) =0, S, +Tp=0.
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4. THE FIRST INTEGRALS AND THE REDUCTION OIF THE BASIC PDE SYSTEM

The aim of this Section is to replace the PDE's of the series (B) and (C) by a
system of algebraic equations. First of all, we eliminate the equations (B2) and
(C2).

Proposition 4.1. The equation (B2) is a conscquence of (A1) and (B1).

Proof. Using (3.4) we obtain

T — A", + A(SR + aS)

yw

=C), = i3 = [B.— Ay, + AWSffL +af, + Hp3%).
From (3.3) we get, using also (3.1),

Al = (afA+CL+ HA),

yuw

and after the substitution we obtain, using again (3.1).

T! — A", + A(SR + aS)

yw

=—fB, — Afd, = a(Af), + Aaf, — A H + AH 3

by

= (=73, = (da),) + H(= A}, + 45°).

vy
This is zero w.r. to (Al) and (B1). a

Proposition 4.2. The equation (C2) is a consequence of (Al), (A2), (C1).
Proof. First we have, using (3.4) and (3.1),
(AR), = (fi — ACa + .-lH/i')'y = fl’,’y — A(Ca), = Cad + H(AB),.
Using also (C1 ), we get
(4.1) (AR), = [, = A(Ca)!, — Cad!, — HBA,

Further, using (A2) we get from (3.4)

St — (AaT + A" R) = (A8),
= [ 4+ C 4 OB = Aa(Cl — f1) - 34l — (AR)),.
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Substituting now from (4.1), we obtain
S' — (AaT + A R) — (AP,
=p(C, — A, + A H) + C(F'v + (Aa)) + 3(f Aa).
Due to (3.3) and (3.1), this is equal to
Bl—a/v) + C(3, + (Aa))) + Bla /),
which is zero due to (A1), q.e.d. g

Next, the equations (B1), (B3), (C1), (C3) will be resolved by finding some first
integrals of the system (A), (B), (C).

Proposition 4.3. If (A1)-(A3), (B1). (Cl) and (C3) hold. then
(4.2) fA=NKy> 4+ Ly+ M,
where K. L, M are functions of w, w only. Further, (A3) is reduced to the equation

(4.3) ((Ae)!, + 1) y=0 + K (w,2) = —o(w,x).

Proof. From (C3) we obtain, using also (3.4),
( . _ _ A! 1 2
(1.1) (SA), = SA, — ApT = f A, + B(CA, — AC)) + Afp°.
Duc to (B1) we get hence

(43) (S, =flAL 4+ A"

Yy

[+ BCA, = AC!) = (AL f)) + B(CAL — ACL).

On the other hand, using (3.4) first and (C1) later. we get

(-1.6) (SA), = (fy A+ (4B3)C), = (£, 4), = H(CA, = AC}).
As the arithmetic mean-value of (4.5) and (4.6) we obtain

(47) (54, = 5(74)],.

Using (A1) and (A2) we obtain

(18) ((AaY, + R, =0

Due to (4.4). (A3) takes on the form

(19) (Aa), + R, + (S4), = —o(w,.0).

Differentiating wa to y we get, due to (4.8), (SA4)), = 0. Then (4.7) implics
(f-1)},, = 0 and hence (4.2) follows. Finally, because (Aa)), + R, does not depend

on y. and (SA4)) = %(fA)’y/y = A (w,.r), the formula (4.3) follows from (4.9). ]
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In addition, we obtain hence
(4.10) SA=Ky+ ps4(w.x)
where ¢, is arbitrary.

Proposition 4.4. The equations (B1) and (C1) arce satisfied if and only if

(4.11) BA? = ag(w,x) (ag arbitrary)

and

(4.12) A’ =y +ay +az (a; = ai(w.r), i =1.2,3)
where

(4.13) (as)? = dayaz + 4(ag)* = 0

is the only relation between the arbitrary functions ag,ay, ay, as.

Proof. (C1)is obviously cquivalent to (3A*); = 0 and hence to (4.11). (B1)
then takes on the form

240 AV = 240 AB? = 2(ag)? A, A7
and integrating w.r. to y we obtain
()2 = —(ao)? A7 + p,
where p = p(w,z) 2 0 is arbitrary. This is equivalent to
(4.14) (Ad,)? = pA? = (ag)*.
Suppose first p > 0; then we have A? > (agp)?/p, and
(l“))'y = +2y/pA2 — (ug)*.
By a new integration w.r. to y we get hence, after a re-arrangement,
pA% = (py + q)? + (ag)?, where ¢ =q(w.r) is arbitary,

which is exactly (4.12) and (4.13).

Suppose now p = 0. Then (-+.14) implies ag = 0, .4 = 0, and thus a; = ay = 0.
(4.12) and (4.13) hold again.

Conversely, we see that (4.11)-(4.13) imply (B1) and (C1). q.e.d. O
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Proposition 4.5. The equations (B3) and (C3) are satisfied if and only if the
following formulas hold:

(4.15) fT = CS = gy,
(4.16) ST LT = gy,

— 5 . 1
(4.17) [P+ C* =i + ooy + s, [S+CT =gy + 5,

where @g, @1, @2, w3 are arbitrary functions of w, x satisfying the single relation

(4.18) (p2)? — 4103 + 4(0)? = 0.

Proof. a)Suppose first that (B3) and (C3) hold. We get directly (S*+T?), = 0,
i.e., formula (4.16). On the other hand, from the definition of S and T in (3.4) we
obtain

(f2P+C%, =2(ff,+CC,) =2(fS+CT).

Using also (B3) and (C3), we derive hence

2 20 _ _ o(Q2 2
(fP+C%)), =2(fS+CT), =2(S*+T°).
Using (4.16) and integration, we obtain (4.17). From (B3), (C3) and (3.4) we also
obtain (fT - CS);, =0, i.e., formula (4.15). Finally, (4.18) follows from the identity

(fT = CS)? + (fS+CT)* = (f* + C*)(S? + T?).

h) Let us now assume that (4.15) and (4.16) hold. Differentiating w.r. to y we
obtain a system of linear algebraic equations for S| and T, in the form

CS!, — T = fiT — CyS = ~3(CT + fS), SS., +TT, =0.

(Here we have substituted for f, and C; from (3.4)). If CT + fS # 0, we can solve
this system by the Cramer’s rule and we get the equations (B3), (C3).

Suppose now CT + fS = 0. Then (4.17) and (4.18) imply ¢; = p2 = o = 0.
(4.15) and (4.17) then give fT — CS =0, CT + fS = 0, where f?+ C? > 0. Hence
S =T =0 and (B3), (C3) hold once again.

Finally, let us observe that cach of the equations (4.17) is equivalent to the other
one (as follows from our calculations). a
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Proposition 4.6. The diffcrential equations (A). (B). (C) imply
(4.19) AC = byy® + bay + by
where b; = b;(w, x) are arbitrary functions.
Proof. Subtracting the equations (4.5) and (4.6) we obtain
(fA], = fA), +23(CA, — AC) =0,
i.e., using also (4.11),

(4.20) (fA, = Af)), =2a0(C A"

u

Integrating w.r. to y and multiplying then by A2 we get
(4.21) 200 AC = o5 A% + (fA) (A7) = A(fA)).

where @5 = @5 (w, x) is an arbitrary function. If we substitute into (4.21) from (-1.2)
and (4.12), we see that the right-hand side of (4.21) is a quadratic polvnomial w.r. to
y. Thus if ap # 0, then the formula (4.19) holds.

Assume now ag = 0. Then (4.11) gives 3 = 0 and the equation (B3) means T, = 0.

From (3.4) we get C']/, = 0, i.c.. C is a linear polynomial in y. On the other hand.

the equation (B1) means A, = 0 and A is also a lincar polynomial in y. Hence

(4.19) follows. O
For the later use, we shall write (4.21) more explicitly, using the notation (+4.19).
(4.2) and (4.12):
2apby = @say — ap N + a) L.
(4.22) 2anby = @say — 2a3 N + 2a M,
2(!(){';; = a3 — (lv;gL + 4l*_n\[.
Next, we have
Proposition 4.7. Put h(w.r) = HL(w,x). Then the PDE system (A). (B). (C)
implies
20N + ajby — axby —ayh =0,
(423) 2(!()[, + 2(!.11)3 - 2()1(I;; - (l~_>/l =0,
2000 — azby + axby — ayh = 0.
Proof. From (3.3)y we have H, =23¢07" — (AC), + 20 A Using (4.11) and
(3.1) we obtain hence
2apf 4 — A'“’(AC); + (AN, = IA?
Substituting from (4.2), (4.12) and (4.19) we get (4.23). O
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Many more algebraic equations are now obtained by using the “first integrals”
from Proposition 4.5. Using (4.10), (4.15) and (3.4), we obtain first

(4.24) S =fYQ, T =C0Q + potvdA, where Q= Ky + 4.
Let us substitute (4.24) into the equation (C3). We obtain, using also (4.11),
(4.25) Q' A* = QAA + (agAC)YQ + anpoy A* = 0.

Substituting from (4.21) into the third term of (4.25) and then dividing by ¥A4? we
obtain (using also (3.1))

2fAQ, + ¢sQ — Q(fA), + 2p0a0 = 0.
This means, due to (4.2),
(4.26) K(L+¢5 —2p4) =0, 2KM + p4(ps — L) + 2ppa0 = 0.

Next, we use the equation (4.17),:

1
CT+ fS=py+ P2

in which we substitute from (4.24). We obtain easily, using also (4.17);,
(4.27)  200AC = (201 L — 2N = 20104)y% + (201 M + 02 L — 2031 — 20004)Yy
+ (2 M — 2p3004).
This is equivalent to the system
20001 =201 L — 2 N — 214,
(4.28) 200by = 201 M + oL — 203N — 20004,
20003 = w2 M — 2p304.

Next we substitute from (4.24) into (4.16): S? + T? = ;. We get
(2 +C*Q° + (200 AC)Q + ph A* = o1 (fA)*.

Using (4.27) and then (4.17);, we obtain an explicit formula for p3A? as a quadratic
polynomial w.r. to y. At the cocfficient level we have
wgar = 3K — o2 KL + o1 L? 4+ 9204 K — 20104 L + 0193,
(4.29) 0gaz = =2 KM + 20, LM + 20304 N — paa L — 20104 M + @203,
@haz = o1 M? — papq M + 033
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Finally, the equation (4.17);: f? + C? = 019% + pay + @3 implies

(4.30) (AC)* = A2(p1y? + @2y + 24) — (AN,

ie.,

(b1y” + bay + b3)* = (1y? + @2y + v3) (W y* + azy + as)
— (Ky? + Ly + M)*.

This is equivalent to the system of algebraic equations

(4.31) (b1)* = pra; — K2,
20105 = pras + w201 — 2L,
(b2)? 4 2b1bs = @1a3 + pras + 3a; — (L* + 2K M),
2b2b3 = a3 + w3ay — 2LM,
(b3)* = p3az — M*>.

We shall summarize the content of this Section in the basic

Theorem 4.8. Let ¢g,91,...,9s, Ao, ay, a2, asz, by, by, b3, K, L, M, h by
functions of two variables, w, v, satisfying the whole set of algebraic equations (4.13).
(4.18), (4.22), (4.23), (4.26), (4.28), (4.29) and (4.31). Let A, f, C, H, v be functions
defined by
(4.32) { A? = a1y® + avy +az,  AC =biy? + bay + by

1/ =Af=RKy*+Ly+ M, H,=0, H,=h(w,z),

and let a metric g be defined by (2.1). Further, let a. 3, R be defined as in (3.3),
(3.4). Then the curvature conditions (2.8)—(2.10) are satisfied for some function
k = k(w, z,y) if and only if the differential equations (Al) and (A2) are satisfied.

The proof follows from the whole series of propositions and formulas given before.
Let us only point out that the cquation (A3) (or, equivalently, (4.3)) does not mean
any new condition for the functions involved. It gives, in fact, a formula for the
computation of the curvature k(w,z,y) = o(w,x)¢(w,r.y).

Let us also notice that the algebraic equations (4.13), ..., (4.31) from Theorem
4.8 are not all independent. Yet, all of them are useful when a detailed analysis is
made.
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Remark 4.9. Theorem 4.8 says that one should start with an algebraic classi-
fication, i.e., to work out the list of all classes of solutions of the algebraic system
above. Each separate class of solutions can be given in the form where some of the
functions g, ¢1,..., M, h are chosen as arbitrary and the others are fixed algebraic
functions of the previous ones. In order not to expand this paper too much, we
shall limit ourselves here to the “generic” cases, and we shall put aside the singular
cases of various level. The generic algebraic solutions will be calculated in the next
sections (and the singular cases will be treated in a separate paper).

We shall conclude this section by proving additional algebraic equations between
our basic functions of two variables.

Proposition 4.10. The following algebraic formulas hold:

(4.33) as L — 2a3IC — 2a; M = —2agh,
(4.34) boL — 2b3 I — 201 M = —psh,
(4.35) w2 L = 293K — 201 M = 20,
(4.30) azby — 2a,b3 — 2a3by = —2apps.

Proof. From (4.29) we obtain
(4.37) ei(asl — 2a3KX — 2a; M) = —poao(pal — 20, M — 2¢3I5),
from (4.28) we get
(4.38) 2¢00(b2L — 203X — 21 M) = —p5(p2L — 201 M — 2p3IK),
from (4.23) we get
(4.39) ap(ay L — 2a3I —2a, M) = —-2(Lgh,
and (4.22) implies
(4.40) 2a9(baL — 2bs N — 2b1 M) = ps5(az L — 2a3 K — 2a, M).

If appo # 0, then all formulas (4.33)—-(4.36) follow from (4.37)-(4.40). For agpo = 0
we ecither use the continuity argument (or a rather lengthy direct check). 0
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Proposition 4.11. The algebraic formula
(4.41) 0o d? —ao(f2+C%*) + s AC + hAf =0,
or, equivalently,

(4.42) wolary® + asy + as) — (1v0(<f91;1/2 + 2y + v3)
+ @5 (b1y* + bay + b3) + h(Ky* + Ly + M) =0
holds.

Proof. First we shall prove
(4.43) L+ o5 —2p4 =0.

In fact, for I # 0 this follows from (4.26),. For ' = 0 we use the continuity
argument (or a rather lengthy direct check).

Suppose now ¢y # 0 and multiply the equation (4.42) by ¢g. Then substitute
for nga,- and ¢ob; from (4.29) and (4.28), respectively: further, substitute for «gag
from (4.26), and for poh from (4.35). Then we sce casily that (4.42) holds as a
consequence of (4.43).

If o9 = 0, we use the continuity argument (or a lengthy direct check). O

5. RIEMANNIAN INVARIANTS AND ISOMETRIES

Let us rewrite the formulas (3.2) using the forms w’ as a basis. Then we obtain

ws
(5.1) wh = fHfaw! + Bw?,
wi

;=B —hy)w' + A7 W7
We shall also write, for the simplicity
(5.2) wi = aw' + bt Wi =0+ cw?.

Counsider the orthonormal friune {Ey, Eo, E3} introduced in Section 2. As we sce.
E3 is uniquely determined by the geometry of (A, ¢) up to a sign, and E,. E» are
uniquely determined up to an orthogonal transformation (with the coefficients which
are functions of w, z,y).
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Let Ey, Ey be chosen in the standard way, i.e., so that (2.1) holds. Using the
well-known formula for the covariant differentiation

(5.3) Vi, Ei = wa(Ej)Ek (i,j=1,2,3)
k

we obtain
Ve By =—0flEy—aEs, Vg Ey,=¢f E —cEs,
Ve, Bl =aFE, —bE;, Vp,Ey=—-aFE), —ekEs,
Vi, Es=aFE) +cEy,, Vp,E3=0E +ekE,,
Ve, By =—-bEy, Vpg,E,=0E, VpE;=0.

Due to (2.7), the Ricci form o is given by

0=k(w'ow +w? ©w?)

—
Ct
Ct

b

where A is the sectional curvature given by (2.8), A = %S(:(g). Because p is an

invariant tensor, Vo is also an invariant tensor. Using the standard formula
(5.6) Tyw ==Y wi(X)w
we obtain easily

(5.7) Vo= dk (W 0w +w? trw?)
— k{(aw! + bw?) D (W' 0w+ e wh)
+ (cw' + ew?) @ (W O w? +w? O w?)}.

Hence we see that the tensor

(5.8) Q = (aw' + bw?) & (W' Ot 0 O wh)

)

D B . R B
+ (cw!' +ew?) o (W? W + w? G w?)
is also invariant. Now, because E3 = 9/0y is determined up to a sign, and E,. E.

are determined up to an orthogonal transformation (with functional coefficients). the
functions

(5.9) Q(E,Ei.E3) + Q(Es. Ey Ey) = a+e,
Q(Ey, B\ Es) = Q(E1 By Ey) =b—c.

are Riemannian invariants up to a sign.
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The square of the norm, [|Q]|? = 2(a® + b? + ¢? + ¢?) is a Riemannian invariant
and hence (equivalently) ae — be is a Riemannian invariant. We summarize:

Proposition 5.1. Denote

(5.10) a=f71fl, b=3=ap/A?, c=p—hy, e:A_lA'y.

Y

Then ae — be is a Riemannian invariant, and a + e, b — ¢ are Riemannian invariants
up to a sign (i.e., depending on the orientation of the principal geodesics). Further,
the partial derivative of any Ricmannian invariant with respect to y is a Riemannian
invariant up to a sign, and conversely.

Using (3.1) we get, in addition

(5.11) a+e=(n(fA), =-nk),,b—c=hy=hkjo.
Further, we have

(5.12) ae — be = K.

The last formula is obtained hy a lengthy calculation using (4.33) and the obvious
identities

(5.13) a1 A? = (AA))? + (ag)?,  Af, = (Af), 4% — (Af)(AA)).
Using (5.11), (5.12) and differentiations w.r. to y we see that

1 Ky +Ly+M K 2Ky+L
5.14 1 _AyAly+ MoK ,
( ) ha h h I

are Riemannian invariants up to a sign, and

I Ky*+Ly+M 2Ky+L L?—4KAN  L*—4KM

(5.15) IS IS ’ I < I

are Riemannian invariants (assuming everywhere that i # 0, or ' # 0, respectively).

Next, we shall prove some simple results concerning isometries of SSS to be used
later. Let (MM, g) be and SSS given by (2.1) and let (/. 7) be another SSS with the
metric § given by the orthonormal coframe

(5.16) ol =fdo, & =Adr+Cdw, &' = dj+ Hdwm.
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Suppose that there is an isometry F': (M, g) — (M, §) given by
(5.17) o =w(w,zy), T==zwzy), §=7gw,zy).
Proposition 5.2. The equations (5.17) can be reduced to the form
(5.18) 0 =w(w,z), T==z(wz), §=ey+ P(w,x), ==l
Proof. According to the geometric meaning of the principal geodesics we have
(writing always @ instead of F*&@?)
(5.19) @' = (cosp)w! — (sin)w?, @ =¢'((sing)w! + (cos@)w?), @° =ew?,
where ¢ is a function of w,z,y and €,¢’ = £1. Hence
@H? + (@%)? = (W)? + (W2 = f2dw? + (Cdw + Adz)?.
Oun the other hand, from (5.16) and (5.17) we get
(@")?% + (0%)? = [f*(0w/9y)* + (C(9w/dy) + A(9T/dy))?] dy? + other terms.

Hence 0w /0y = 0z /dy = 0.

3 means dj — edy = eHdw — Hdw = P¢dzx + QF dw, where
P<, Q¢ are functions of w, z only (depending on ¢). Hence we get § = ey + & (w, a),
where ®¢ is a potential function of the (integrable!) form P¢ dv + Q¢ dw, q.e.d. O

Finally, @ = sw

Proposition 5.3. Suppose that ag = 0 on (M, g) and Go = 0 on (M, 3). Further,
assume that a —e # 0, or ¢ # 0 holds on (M, g). Then any isometry F: (M, g) —
(M, §) implies the equalities

(5.20) O =ewt, =41 (i=1.2,3).

Proof. We have b = b = 0 and, according to Proposition 5.1, we obtain, via
the isometry F, '

(5.21) a=ca, €=¢ce, C=¢ccC.

Here € is the sign from (5.18) (as follows from (5.11),) and € is another sign. (The
other possibility @ = ee, € = a can be eliminated by choosing new local coordinates
and a new coframne.)

Suppose now that sing # 0 holds in (5.19). Substituting (5.21) and (5.19) iuto
the invariant equation Q@ = Q (cf. (5.8)), we obtain after a routine calculation that
a—ec =0 and ¢ =0 along (M, g). This completes the proof. O
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6. ASYMPTOTIC FOLIATIONS AND GEOMETRIC CLASSIFICATION

Let us recall that the principal geodesics are trajectories of the vector field Ej.
We shall introduce two basic definitions.

Definition 6.1. A smooth surface N C (M, g) is called an asymptotic leaf if it
is generated by the principal geodesics and its tangent planes are parallel along these
principal geodesics (w.r. to the Riemannian connection ¥ of (M. g)).

Definition 6.2. An asymptotic distribution on (M. g) is a 2-dimensional smooth
distribution which projects into a l-dimensional distribution via the map w:
(w,x,y) — (w, ), and satisfics the equation

(6.1) ag e + s da dw — o du? = 0.
The following Proposition is obvious:

Proposition 6.3. Let A = 22 + dagpy denote the discriminant of (6.1).

a) If A <0 on (M,g). then there is no real asymptotic distribution on Al.

b) If A > 0on (M,q), then there are exactly two different asvmptotic distributions
on M.

c) If A =0 on (M.g) and some of the functions ay. ¢g. @5 is nonzero at cach
point, then there is a unique asymptotic distribution on A .

d) If ap = 9o = @5 = 0 on M. then any w-projectable smooth 2-dimensional
distribution on M is asviuptotic.

Definition 6.4. The space (M, g) is said to be clliptic, or hyperbolic, ov parabolic.
or planar, respectively, if the case a), or b), or ¢), or d) of Proposition 6.3 occurs on
the whole M, respectively.

Because we are interested in the local classification ouly, we shall investigate only
the “pure” cases and not the combined ones in the sequel. (For a global treatment
of some of our geometric types see [Sz 2]).

Now, the following theorem gives the connection between the definitions 6.1 and

6.2 and thus ensures the geometric meaning of Definition 6.4:

Theorem 6.5. Let (M. g) be hyperbolic, or parabolic, or planar. Then the cor-
responding asymptotic distributions are integrable and their integral manifolds are
asymptotic leaves. Conversely. cach asymptotic leat is an integral manifold of some
asyvmptotic distribution. Conscquently, (M, g) acinits two, or one, or infinitely many

asymptotic foliations, respectively.
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Proof. In the hyperbolic case, the both asymptotic distributions are given for
@5 2 0 by

(6.2) 2a0 dz + (@5 + VA)dw =0, (g5 + VA) da — 2¢0 dw = 0,
and for g5 < 0 by
(6.3) 2a0 dz + (5 — VA)dw =0, (¢5 — VA)da — 200 dw = 0.

In the parabolic case, the unique asymptotic distribution is given by some (or both)
of the equations

6.4 2ap dz + 5 dw = 0, s dr — 299 dw = 0.
( @ @ ©

To cach of these asymptotic distributions one can find (at least locally) a potential
function P(x,w), i.e., such function that the distribution is given by the ecquation
dP = 0, and hence the integrability follows. In both cases we see that our distribu-
tions contain the vector field Ey.

In the planar case we know that a 2-dimensional distribution on (M, g) is asymp-
totic if and only if it is w-projectable. Because a w-projection is 1-dimensional and
hence integrable, all these distributions are integrable (and contain the vector field
E3). Let us notice that the projection 7 is not orthogonal w.r. to the metric ¢, in
general.

Let now N C M be an asymptotic leaf. Then the tangent planes along N arc
determined by the formula

(6.5) sing - w! 4+ cosg - w? =0,

where ¢ is a smooth function on N. This means

(6.6) T,.N =span(cosyp - Ey —sing - By, E3),,, m € N.
Now, the integrability condition

(6.7) [cosp - Ey —sing - Ey, E3] € span(cos - E| — sinp - Ey, E3)
and the asymptoticity condition

(6.8) Vi, (cosg - By —sing - Ey) € span(cos ¢ - E] —siny - By, E3)
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must be satisfied along N. Hence it follows that also

(6.9) V(cos - Er—sin o £) E3 € span(cos ¢ - Ey —sing - Ey, E3)

holds along N. From the formulas (5.4) we obtain that (6.9) is equivalent to
(6.10) sin® - b+ sinpcosp(e —a) — cos® - ¢ = 0.

Using (6.5) as a proportion formula, we see that the tangent distribution of N satisfies
the equation

(6.11) c(w")? 4 (e — a)w'w? — b(w?)? = 0.
Now, substituting for w',w? from (2.1) and form a. b. ¢, e from (5.10) we get hence

(6.12) agA% da? + (agC* + AC(Afy, — fA,) + hAF — aof?) dw?
+ (2a0AC + Az(Af; - fA;/)) dordw =0.

According to (4.21) we see that
(613)  ANAS~ JA,) = A(fA), ~ (AD)(A), = g3 A4 — 2a0AC.

Substituting from (6.13) into (6.12), and using the algebraic formula (4.41), we obtain
the equation (6.1). Thus we have proved that the tangent distribution along N is a
part of some asymptotic distribution on M, and hence N is an integral manifold of
this distribution.

The assertion that the integral manifolds of any asymptotic distribution are asymp-
totic leaves can be now proved just by reversing our procedure. a

Let us point out that the nontrivial part of the proof is the algebraic formula
(4.41), which involves most of the computations of Section 4.

Now, the following Theorem will be crucial for the explicit geometric classification
of the non-elliptic SSS in Section 7.

Theorem 6.6. In the hypcrbolic and parabolic case, there exists a transformation
of local coordinates preserving the form (2.1) of the metric and annihilating the
function ag(w, x).

Proof. Suppose that (M, g) is hyperbolic, i.e.. A > 0. Then at the basic point
p € M either ps # 0 or g # 0. In each case, one of the equations (6.2), (6.3) has
a nonzero coefficient at dw in a neighborhood of p. If we fix any potential function
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w = (w,z) of such an equation, then (@w(w, x), z,y) is a new local coordinate system
in a neighborhood of p. Now, one can find an orthonormal coframe (&', &%, w?) such
that

(6.14) o' = fdw, & =Adr+Cdw, w*= dy+ Hdw.
Further, we look for a substitution § = y + ®(w, x) such that

(6.15) dy + Hdw = dg + H dw,

where H = H(w,z) is the second unknown function. We get the conditions
(6.16) ®' + Hw',=H, & +Hw, =0.

The corresponding (local) integrability condition is

(6.17) H'w!, — H, @, = H,,

which is a PDE for H.

Let us fix one solution H(w,x) of (6.17). Then the function ® is determined by
(6.16) up to a constant. As we see, (6.14) and (6.15) give the standard form (2.1)
for our metric in the new local coordinates @w. T = x, §.

Now, the couple #;, %, of the asymptotic foliation of (M, g) is described by the
equation analogous to (6.1):

(6.18) o dz* + @5 dZ dw — @y dw? = 0.

Because one of these foliations, say #;, is given by the equation dw = 0, we get
hence dp = 0 in the whole neighborhood, q.e.d.

Suppose now that (M, g) is parabolic. If p5 # 0 or wo # 0 at p, we make use of
(6.4) and the proof is similar as in the hyperbolic case. Assume now s = g = 0
and thus ap # 0 at p. We first substitute @ = @, & = w, then the formulas (2.1) take

on the form
(6.19) w'=fdz, w*=Ado+Cdi, o= dy+ Hdz.

Now we construct a new orthonormal coframe

(6.20) ' =cosp-w? —sing-w!, T =sinp-w?+cosp-w!, @ =uw3,
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such that

(6.21) o' = fdw, &*=Adr+ Cdam,

and introduce a new variable § = y + ®(w, ) such that

(6.22) w? = dg+ H dw.

We obtain easily

(6.23) cosp #0, tanp=cf', Af=Af, 2= 4+C? [fP4C%=47

We see that the coframe (@) given by (6.21), (6.22) is of the standard form (2.1).
Then, in the notation of the proposition 4.4, 4.5, we have

(624) P1=ay, @y =ay—2%a;, @3= (11(1’2 —ay® + as,
and due to (4.13), (4.18) we obtain @y = *ag # 0. Then we continue as in the

hyperbolic case. O

Remark. As concerns the planar case, we have ap = 0 (in a neighborhood of
p) by definition. Thus for every non-elliptic space (M. g) we can assume ag = 0.
Conversely, from (6.1) we see that ap = 0 always implies that (M, g) is non-elliptic.

In the second part of this Section we shall prove a number of geometric results on
asymptotic foliations. We shall also compare our Definition 6.4 with the terminology
of Z. Szabé.

First, let us notice that the discriminant of (6.1) is given alternatively by the
formula

(6.25) A= L*—4K M.
Indeed, combining (4.43) with (4.26); we obtain at once
(6.26) 4NN — L? + (¢5)? + 4poap = 0.
Hence we get

Proposition 6.7. The space (M,g) is elliptic if L? — 4K M < 0, hyperbolic if
L? — 4K M > 0. and parabolic or planar if L? — 4IxA = 0. In the nonplanar case
and for I # 0, the number of asymptotic foliations is the same as the number of real
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roots of the quadratic equation Ky? + Ly + M = 0, i.e., the number of singularities
of the scalar curvature Sc(g) along a principal geodesic.

On the other hand, from (6.11) we obtain
Proposition 6.8. The space (M, g) is elliptic if (a — e)? + 4bc < 0, hyperbolic if

(a — e)? + 4bc > 0, and parabolic or planar if (a — €)* +4bc = 0. (M, g) is planar if
andonlvifa—e=b0=c=0.

Corollary 6.9. The space (M,g) is planar if and only if f = Mw,2)A, C =
(. x)A and ag = 0. Assuming ag = 0, (M, g) is parabolic if and only if f

A(w, ) A and v # 0 (A, are arbitrary functions).

Proof. a—e=0means (f/A), =0, b =0 means ap = 0, and ¢ = 0 means
=0 (see (5.10)). Due to (3.3)2, ap = h = 0 is equivalent to (C'/A), = 0.
Next, we have a

Proposition 6.10. Ifh = 0, then (M, g) is hyperbolic or planar. In the hyperbolic
case. h = 0 means that the asymptotic foliations 7|, F, are mutually orthogonal.

Proof. h = 0 means b = ¢ (cf. (5.11)) and hence (a — €)? + 4bc > 0. In
the hyperbolic case, the equation (6.10) means that 2bcos2y¢ + (a — e) sin2¢ = 0.
Hence if ¢ characterizes one of the asymptotic foliations, then ¢ + 3 characterizes
the second one. From (6.5) we see that both foliations are mutually orthogonal.

The asymptotic foliations are not totally geodesic, in general. Yet, we have the
following O

Proposition 6.11. Let the metric g be hyperbolic, or parabolic, or planar, and
expressed in such a coordinate system that ag = 0. If o = 0, then at least one of the
asyiptotic foliations is totally geodesic.

Proof isstraightforward: hecause b = 0, formulas (5.4) show that span(E,, E3)
s an asymptotic distribution. But the corresponding asymptotic foliation is totally
geodesic if and only if

Vi, By € span(Esy, E3), ie. a=0.

We shall conclude this Section with the following O

Remark 6.12. Proposition 6.8 cnables to compare our geometric terminology
with that used by Z. Szabd in this study of complete foliated manifolds satistying
R(X.Y)- R =0 (see [Sz 2]). For the 3-dimensional case, the definitions by Szahé
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can be presented in the following way: let B denote the endomorphism of T M over
the identity id: M — M defined by the formula

(6.27) B(X)=VxE3;, X eTM.
Then we have, according to (5.4),
(628) B(El) =aF) + cE,, B(Ez) =b0E) + ¢E,, B(E3) =0.

Now, the foliated space (M, ¢) is said to be trivial if B = 0. and parabolic if B # 0
but B? = 0 on M. We shall show later that the trivial case means the product case.
and that the parabolic case in the above sense is a special subcase of our parabolic
case (the only one in which the completeness can occur). Further, a space (M, g)
is said in [Sz 2] to be hyperbolic if B has two imaginary eigenvalues along M. This
condition means

(6.29) (a+e)? —4(ae —bec) <0, e, (a—e)?+4bc<0.

Hence the hyperbolic spaces by Szabé are just elliptic foliated SSS in our sense.

7. THE EXPLICIT CLASSIFICATION OF GENERIC NONELLIPTIC SPACES

In this section we shall explicitly classify all generic hyperbolic, parabolic and
planar foliated SSS, and we shall also present some nongeneric but interesting exam-
ples. Moreover, we shall answer the question how the distinct local isometry classes
can be parametrized. In this scction we always assume ag = 0 (which is allowed by
Theorem 6.6).

We shall start with some general results.

Proposition 7.1. The coefticients A, C, f from (2.1) can be expressed in the
form

(7.1) A=py+q, C=ry+s, f=ty+u,

where p, q, r, s, t, u are functions of w, x only, such that

—
=1
o

—

ps—qr =h.

Moreover, if h # 0, we can assume h = 1, H = v: and if h = 0, we can assuue
H=0.
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Proof. Because ag =0, i.c., § =0, the equation (B1) implies Ay, = 0, and the
equations (B3), (C3) together with (3.4) imply Cy, = f,\, = 0. The formula (7.2)
follows from (3.3), and (7.1) because h = H., 3 = 0.

It remains to prove the last part. If h # 0, then H. # 0 and one can introduce
the new variable £ = H(w, ) instead of x. Then we get our orthonormal coframe in
the standard form

W= fdw, w?=(A/h)dz+ (C - H, /h)dw, w?= dy+7dw.

Let now i = 0. Because H depends only on w, we get w® = dg, where § = y+ [ H dw.
This concludes the proof. O

Proposition 7.2. The differential equation (Al) is satisfied if and only if the
following equation holds:

(7.3) u? —t&§ =0,
where
(7.4) D =p, =1\ E=d,—s, —pH.

Proof. Substituting from (7.1) into (3.3); we get

_ Qy+ &
- _— 1 r_ r_ Iy — )
(7.5) Aa= f~Y (A, - CL - HA)) b

Because 3 = 0, the equation (A1) simply means that Aa does not depend on y and
hence (7.3) follows. ]

Proposition 7.3. Assuming that (A1) is satisfied and
(7.6) Aa = ¥ (w, ),
then (A2) is satisfied if and only if
(7.7) pul, —qt'. = hy.
Proof. We have first, using (3.4) and (7.6),

_ th—r¥ )y + (4, —s¥)
R:w ;—C :Al l_—WC:(‘r z )
ff «a (f: ) pe——

But the equation (A2) only means that R does not depend on y, and (7.7) follows
from (7.2). a
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Now, we can state the “converse” of Proposition 7.1.

Proposition 7.4. Let p, q. r, s, t, u be arbitrary functions of two variables w, .
Let us define the functions A. C', f by (7.1), and let H = H(w,z) be any function
satisfying

(7.8) H! =h=ps—qr

If the equations (A1), (A2) are satisfied, then (2.1) defines a foliated semi-symmetric
metric of nonelliptic type.

Proof. Define the functions I, L, M and a;, b;. »; (i = 1,2,3) by the formulas
(4.2), (4.12), (4.17) and (4.19). respectively. Put. in addition.

1

(7.9) s = tqg —up. g = 2(L +¢5). Yo =ru—ts.

Then we check easily that all algebraic conditions of Theorem 4.8 are satisfied. and
hence the result follows.
We can now prove our main results. a

Theorem 7.5. The generic tamily of hyperbolic (foliated semi-symmnietric) metrics
in dimension 3 is given by
w!' = (ty + u) dw,
(7.10) w? = (py+ ¢)da + (ry + 5) dw,

wii

Il

dy + x dw,

where p, ¢, r, s are arbitrary tunctions of w, x such that ps —qr =1, and t, u are
calculated from p, q, r. s as follows:

2

. . 1/2
(7.11) U = exp <l) / P(l.l‘) {/Q exp ( - / 1’(11') (1.1} , t=ul/8.

where
205D — PE! 252
(7.12) p= 2L TE) . 20
(P8 —q2) pE = qs
(7.13) D=pe =1 S=q,— sy —pr, S(ps—q) #0.

The local isometry classes of the metrics (7.10) are parametrized by 3 arbitrary

functions of 2 variables modulo 2 arbitrary functions of 1 variable.
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Proof. In the generic case we can assume h # 0 and hence H = z,h =1
(Proposition 7.1). One can also assume & (p& — q2) # 0. We express (7.3) in the
form t = u2/& and substitute into (7.7), where ¥ = &/u. We obtain easily the
differential equation

(7.14) (u?), — Pu* = Q,

which can be solved by the standard method of “variation of constants”. Because
pE = q2 # 0, Formula (7.3) implies pu — tq # 0, i.e., (f/A), # 0. According to
Corollary 6.9, our metrics are neither parabolic nor planar. Because ag = 0, they
must be hyperbolic. This proves the first part of Theorem 7.5.

We now prove the statement about the local isometry classes. Let (M, g), (M, §)
be two spaces with the metrics of the form (7.10) and let F: M — M be an isometry.
We shall identify the forms F*&' with @, as usual. Because b = 0 and h # 0, (5.11),
implies ¢ # 0 and we can use Proposition 5.3. Let us assume, for the simplicity,
€y = 3 = 1 (for the other signs, the argument is similar). We get first &' = ew! and
hence

(7.15) 0 = p(w), do = ¢'(w)dw, §+a= (ty +u)/ (w).

3

The equation @% = w?

means d(g — y) = (x — T¢'(w)) dw, i.e.,
(7.16) g=y+¢(w), T=@@-—¢'(w))/e(w).
Finally, @® = w? implies easily

(717) [Py + ¥(w)) + ql(1/¢"(w)) dv + &, duw]
+[F(y + ¥ (w)) + 5] (w) dw = (py + ¢) da + (ry + s) dw.

Comparing the coefficients of . and dw. respectively, and then the coefficients of
y' and ¥° in each case, we obtain

(7.18) p=pe(w), §=¢' (w)(qg—pPw)), 7o' (w)=r—pe(w)T,,

where 7, can calculated from (7.16). Further, § obviously satisfies the relation
ps —rqg = 1.

The formulas (7.15)—(7.18) show that the function w, z, ¥, p, q, ¥, 3, t, @ can be
expressed through w, 2. y, p, ¢. r, s, t. v and the arbitrary functions p(w), ¥ (w) of
one variable. Thus each local isometry class depends on 2 arbitrary functions of 1
variable. This completes the proof. g
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Let us notice that the isometry part of Theorem 7.5 can be stated more precisely
using the concept of germs (cf. [KTV 1]).
Next, we have

Theorem 7.6. The generic family of parabolic metrics is given by

w' = Mpy + q) dw,

(7.19) (py + ¢)dz + (ry + s) dw,

Il

2

w
w‘}

dy + z dw,

where p, q are arbitrary functions of 2 variables, (p/q)". # 0, and

pE +p/ qE + ¢/
7.20 =2 -2 T
(7.20) r oS o
(721) /\ = [(plul - r;)/pD]l/2’
(7.22) D =pq. —qpl, E=-p’z+pq, - qpl,.

The local isometry classes are parametrized by 2 arbitrary functions of 2 variables
modulo 2 arbitrary functions of 1 variable.

Proof. According to Corollary 6.9 we only have to assume h = 1 and the
parabolicity condition f = A(w,x)A. Thus, the only algebraic relations for the basic

functions are

(7.23) ps —qr =1,

(7.24) t=Ap, u=>X\g.
Now, the equation (7.3) can be rewritten as
(7.25) q2 — p& =0,
which means

(7.26) ps, —ar, = E,
or, due to (7.23),

(7.27) rq., — sp., = E.
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Here (7.23) and (7.27) form a system of linear algebraic equations for r, s with the co-
efficients depending on p, q only. Hence we get the expressions (7.20) by the Cramer’s
rule.

An concerns the equation (7.7), it can be written, via (7.24), in the form

(7.28) ANpa, —qp,) =V = 2/t = 2/ p.

Hence the formula (7.21) follows.
Let us notice that the functions p,q only have to satisfy a differential inequality
pD(pl, —s’) = 0; thus p, ¢ can be still considered as arbitrary functions of 2 variables.
The last assertion about the local isometry classes can be proved exactly in the
same way as we did for the hyperbolic case. a

Now. we shall recover a (nongeneric) family of parabolic metrics from [KTV 1].

Theorem 7.7. Let (M,g) be 3-dimensional foliated SSS such that the scalar
curvature Sc(g) is constant along each principal geodesic. If (M, g) is not locally a
direct product, then it is parabolic and the metric g is locally determined by the
orthonormal coframe

(7.29) w' = f(w,z)dw, w?=de-ydw, = dy+zdw.

The asymptotic leaves are totally geodesic and Euclidean. The local isometry classes
depend on 1 arbitrary function of 2 variables modulo some constants.

Proof. DBecause the scalar curvature is given by the formula
Sc(g) = 20(w,z)/(Ky* + Ly + M),

our condition means that ¥ = L = 0, and hence the discriminant A = L? — 4\ M
is zero. Thus (M, g) is either parabolic, or planar. We can assume that A, C, f arc
given by formulas (7.1), (7.2). Here h = 1 if g is parabolic, and h = H =0 if ¢ is
planar (cf. Corollary 6.9). Because ' = L = 0, we get Af = M(w,z), and hence
p=t=0.

Consider first the parabolic case. Here C = ry + s and r¢ = —1. From (7.3) we
get v/ = 0 and hence r = r(w),q = q(w). From (7.7) we get ¥ =0, ie., & = 0,
which means

(7.30) ¢, — s, =0.
Introducing a new variable @ = — [ r(w) dw, we obtain our metric in the form
(7.31) w'=adw, w?=qdz-(y+35)dw, *= dy+ Hdw,



where

(7.32) §=s/r(w), H=-x/r(w).

Hence we get H' = ¢, and introducing the new variable # = H we can write
(7.33) W= d7 - (y+ 5+ Hy)dw, * = dy+ 7dw.

Now, (34 H%)" =5, + = = (s, —¢.,)/r(w) = 0 according to (7.30). We can write.

£

denoting @ once again as w,

(7.34) w'=adw, W= di-(y+ew)de, W= dy+ T dw.
Finally, consider the new variables

(7.35) XN =r+A@w), Y =y+Bw),

and try to determine the functions A(w), B(w) so that

(7.36) w? =d\N = Ydw, «=dY + Xdw.

We obtain a system of ordinary differential equations

(7.37) A'(w) = B(w) — o(w), B'(w) = —A(w),

which is easy to solve. Then we get the expression (7.29) in the new variables.
Suppose now that (A, g) is planar, i.e., h = H = 0 and rq¢ = 0. Because ¢ # 0,
we get 1 = 0 and C = C(w,x). We see that all functions 4. C, f depend on w. &
only, and w® = dy; thus we obtain a product metric.
The rest of Theorem 7.7 has been proved in [KNTV 1]. O

Remark 7.8. It is casy to show that the spaces described in Theorem 7.7 are

exactly the parabolic spaces in the sense of Szabd (see the previous Remark 6.12).

Remark 7.9. Let us recall (see [IKTV 1,2,3]) that a Riemannian manifold (/. ¢)
is said to be curvature homogeneous if, for any two points p.q¢ € A, there is a
linear isometry @: T,A/ — T,\ such that p*(7,) = I?,, holds for the corresponding
curvature tensors. In [KTV 2] the authors have proved that, in dimension n. all
irreducible and locally nonhomogeneous curvature homogeneous spaces (M, g) which
have the same curvature tensor as a fixed symmetric space must be foliated SSS. (The
proof is based on the paper [Sz 1]). The symmetric model space is then either of the
form S2(A?) x R*~2, or of the form H?(=\?) x R"~2 (cf. Section 1).
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In dimension 3 we can now describe all such spaces explicitly. In fact, if (M, g)
is curvature homogenous (and semi-symmetric), then the scalar curvature Sc(g) is
constant on the whole space, and if (M, g) is not locally a direct product, then it
must belong to the family described in Theorem 7.7. Then the formula (4.3) implics
that the function f(w,z) must be either of the form f = a(w)e® + b(w)e™** or of
the form f = a(w) cos \x + b(w) sin Ax (see [KNTV 1] for the details).

We are now left with the planar case.

Theorem 7.10. All locally irreducible planar mectrics are locally determined by
an orthonormal coframe

(7.38) wl = fGw, )y dw, W =yde, W= dy.

The local isometry classes are parametrized by the function f(w,z) modulo 2 arbi-
trary functions of 1 variable.

Proof. According to Corollary 6.2 we have f = Mw,2)d, C = p(w,x)A and
H = 0. We can write hence

(7.39) t=Ap, u=J>\q,
(7.40) rT=up, S = ug.

If we substitute (7.39) and 1 = 0 into the equation (7.7), we get
(7.41) pq. —qp. = 0.

The equation (7.3) can be written again in the form (7.25). Substituting here from
(7.4) and using (7.40), (7.41), we get

(7.42) D0 = qp = 0.

Hence, if p # 0, (7.41) and (7.42) imply ¢/p = constant. We can express the or-
thonormal coframe (2.1) in the form

wh = Apy + ¢) dw,

(7.43) w? = p(y +c) da + up(y + ¢) dw,
WP = dy.

Substituting the new variable § = y + ¢, we eliminate the constant ¢. Let us

introduce the new variable & = (w, 1) as a potential function of the Pfaffian equation
da 4+ prdw = 0. Then we can write (7.43) in the form

(7.44) W' =tydw, WP =pydr, W= dy.



Now, solving a 1st order linear PDE, we can find a function ¢(w, ) such that
(cos )t dw+(sin p)p dz is (locally) a total differential, say dX. Using a new orthonor-
2 2 = cos - w! +sing-w?.
and denoting by W a potental function of @' = 0, we obtain (7.38) up to a notation.

mal coframe (@', @2, w?) where @' = sin - w! —cos ¢ -w?,@

Suppose now p = 0. Then by the analogous calculation we obtain the coframe
(7.45) W= fw.x)dw, w?=dz, «*=dy,

which gives a direct product metric. It is obvious that to classify the isometry classes
of the metrics (7.45) is (locally) the same as to classify the surfaces in E£3 up to an
isometry. This problem was solved (in the analytic case) by E. Cartan: All surfaces
in E3 which are (locally) isometric to a fixed generic surface My C E® depend on 2
arbitrary functions of 1 variable (see [Ca2], Part II, Problem V).

Now we see that the problem to characterize the local isometry classes of the met-
rics (7.38) is equivalent to the same problem for the metrics (7.45). This concludes
the proof of Theorem 7.10. a

Remark 7.11. The direct product metrics (7.45) are semi-symmetric for a triv-
ial reason. The metrics (7.38) are obviously warped products. Introducing a new
variable by y = eV we see that they are conformaly equivalent to the product metrics.

Finally, we have the following result about the completeness:

Theorem 7.12. A hyperbolic SSS is never complete. A parabolic SSS can be
complete only if it belongs to the family (7.29), and a planar space can be complete
only if it is a direct product.

(This is an a full accordance with the more general results by Z. Szabé, [Sz 2], if
one takes into cosideration Remark 6.12).

Proof. If(M,g)iscomplete, then all principal geodesics must be defined for y €
(=00, +00). This means that we have the formula Sc(g) = 20(w,2)/(Ky?+ Ly + M)

in an infinite 3-dimensional strip. If K'y? + Ly + A/ = 0 has a real root for some
(w,x) = (wo, xp), then the corresponding principal geodesic meets a singularity. O
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8. THE ELLIPTIC CASE

The elliptic case is much more difficult to deal with because the coefficients f, A, C
in (2.1) cannot be linearized and they are always algebraic functions of y. We are
not able to solve the classification problem explicitly, but we can still prove that the
local isometric classes in the generic case depend essentially on 3 arbitrary functions
of 2 variables. Also, we give examples of explicit families depending on 1 arbitrary
function of 2 variables.

We see first that the functions ag, o and h are always nonzero in the elliptic
case (cf. (6.1) and Proposition 6.10). From (4.13) and (4.18) we see that a;az > 0,
@13 > 0, and from Proposition 6.7 we see that ’'M > 0. Thus A%, f2 + C? and
fA are proper quadratic polynomials w.r. to y (with the imaginary roots).

Now, we have

Proposition 8.1. Every elliptic metric g can be expressed locally, using the con-
venient coordinates and the convenient coframe, in the form (2.1), where either

(Case I) L=0, a#0, b,=0,
or
(Case II) L=0, a;=0, b =03=0.

Proof. First,if L # 0, we substitute the new variable § = y + L/2I in (2.1).
Then we can introduce new functions @ and H such that

(8.1) dj+ Hdw = dy + H dw.
In fact, is suffices to fix @ as a potential function of the equation
(8.2) (H — (L/2K)!,)dw — (L/2LK)" dx = 0.

Now, it is casy to find an orthonormal coframe (@', %, w?) such that, using a new

local coordinate system (o, , j),
(8.3) o' = fdw, @*=Adi+Cdw, o®= dj+ Hdo.

Due to (5.15), (Ky* + Ly + Al)/I¥ is a Riemannian invariant, and hence

Ky +Ly+M  NKy*+Ly+M _ Ky*+ (M — L?/4K)

8.4
(8.4) K I i ’

which implies I = 0. 0
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Now, we restore the original notation as in (2.1) and continue as follows:
a) Suppose first a; # 0. Let us fix a potential function T = ¥(w, x) of the equation
ay dw + by dw = 0; then there is another function P(w..r) such that

(8.5) P(uw,x)dT = ay da + by duw.
We obtain w? = Adr + C dw. where A = (P/ay)A. C = C — (by/az)A, and hence
(8.6) Aw? = (ayy” + axy + az) dz + (b1 y* + b3) dw,

as required.
b) Suppose now a, = 0 in a neighborhood, then (4.23), for L = a2 = 0 means
by = Aay, b3 = Aa3z and hence

(8.7) Aw? = (a1 y?* + a3)(dz + Xdw) + byy du.

Introducing a new variable & as a potential function of the equation da + A dw = 0.
we conclude the proof.
We shall now study the “finc structure” of the differential equations

(A1) (Aa), + 9, =0, (42) R} — 3, =0 (5 £0),

i.c., we shall rewrite (A1) and (A2) as a system of PDE for the functions of 2 variables
only.

First, using (3.3), we express a4 in the form
1 . PR 5
(8.8) ad = —¢[(AH), = 2(AC). + (AC) A2 (A%, — H(A?)'].

9 a

Then we substitute for ¢» = 1/f4, A%, AC from (4.2). (+.12) and (4.19). Hence we
obtain aA as a rational function w.r. to y with the cocefficients depending on «;. b;.
I, L, M, H and their first partial derivatives w.r. to w. .. Thus the coefficients ave
functions of w, x only.

Further, using (3.4) and(3.3)., we express R in the form

(8.9) R=Sy[(f + ) 4 HH] + (AC),) = (AC) AT (42),,],

B | =

and we substitute here from (4.2), (4.12), (4.19) and (4.17). putting also H! = /.
We obtain another rational function w.r. to y; the coetficients depend, in addition.

on the functions (y;)’.. i = 1.2.3. Finally, we put
(8.10) ' 3 = agayy® + asy + ay) !
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as follows from (4.11), (4.12).

Substituting (8.8)—(8.10) into (A1) and (A2), and using the common denominator
(Ky* + Ly + M)?(a1y? + azy + a3)? in each case, we see that the corresponding
numerators are polynomials of degree 7 w.r. to y. Now, these polynomials have to
be zero and hence all the coefficients must vanish.

For the equation (A1), each coefficient equation involves a linear combination of
(a;)!,, (ai)\, ()% (@ = 1,2,3), (ao), and H. For the equation (A2), each coeffi-
cient equation involves a linear combination of («;)!,, (¢:), (i = 1,2,3), (ap)), and
H. Taking suitable linear combinations of the coefficient equations we see that the
number of these equations is reduced to five, in each case.

We can make some additional simplifications using the equations (4.23) and (4.33),
(4.34). After a very long but routine calculation we obtain (in the generic case

ayaz # 0, which includes the elliptic case) the final form of the equation (A1) as the
PDE system

3 3
(8.11) S PiVi+ > Qial, + Raaj, =0 (a=1,...,5),

i=1 i=1

where

(8.12) Vi =daly, — 20, Vo=a), —2by, —2aH, V3 =a}, —2b;, —axH,

ay L —a IV 0
ay L + 2a, M —as Iy —2a1 Iy
(8.13) (Ply=|2a;M +a3L ayM — a3k —(2a;K +a,L) |,
2a3 M asM —(2a3I + ayL)
0 az M —asL
by L—Ik —by IV 0 2K
(ba—h)L4+2by M —(ba+h) IS —2by I 4N
(8.14) ( f\,RO) = | (2ba—h)A4b3L —b3 K ~hL+bM —[(2ba+h)K+b; L] 4K M+2L>
2b3 Al (ba—h) M —[(2bs K +(ba+h)L]  4LM
0 by M — (b3 L4+h M) 202

Analogously. the equation (A2) gives the PDE system

—
2]
—_
[

=

3 3
SOPIW: =" Qlal, — Raaf, =0 (a=1,...5)

i=1 i=1
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where
(8.16) Wi =¢l,, Wo=¢h, +200H, Ws=; +(by+h)H.

Now, if ap # 0 (which is our case), (4.13) implies

1 1
(817) aéz = %(aga'lz = 5&2(1:,21. + alagr),

and a similar expression for ag,,. If we substitute into (8.11) and (8.15), respectively,
each of the new equations will he a linear combination of six terms only, with modified
coefficients. The following Proposition can be checked by a direct (but rather long)
computation:

Proposition 8.2. The rank of the matrix

[Pl , P2, }\+ Ra,Qz 4(1?",@? QOR]

is not greater than 2.
Hence we have
Corolary 8.3. If ag # 0 and the partial derivatives of ag are eliminated in (8.11)

and (8.15), then each of the new PDE system contains at most two linearly indepen-
dent equations.

Thus, in the most general case, the equations (A1), (A2) are reduced assentially to
4 PDE in two variables. We shall see later that we can make an additional reduction
to only two equations (one of the form (8.11) and one of the form (8.15)). This will
be in the full accord with the nonelliptic case, in which we also had two PDE, namely
(7.3) and (7.7).

THE ELLIPTIC CASE I (THE GENERIC CASE)

Suppose ay # 0, L = by = 0, which is the generic case of Proposition 8.1. We have
first

Proposition 8.4. The following algebraic formulas must hold due to algebraic
equations of Theorem 4.8:

(818) p1=Vay, @2 = —Yay, 3= Vas,
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where

(8.19) Vo= (112 + ((,05)2)/4111(1,3, Y = -Lpo/a0.
Further
(8.20) K= 2a0h + azps L—0 M= 2a0h — azps
- 4as ’ ’ 4a, ’
—axh + 2apps azh + 2agps

(8.21) by = , be=0, b3=

4das 4a,y

On the other hand, if a1, ay, ay, h, @5 are arbitrary functions and if the other basic
functions are defined by (8.18)-(8.21), then all algebraic equations of Theorem 4.8
hold.

Proof. We shall show only the necessity of (8.18)—(8.21); the sufficiency will
be proved by the direct check.

The second and the fourth equation (4.31) imply pjax+@2a1 = 0, 2a3+p3a = 0,
i.e. (8.18). The first and the last equations (4.22) and (4.23) form a system of lincar
equations from which by, b3, I and M can be expressed by means of ay, as, as, ag, I
and v5. Hence we obtain (8.20) and (8.21). Substituting for b; and K into the first
equation (4.31), we obtain formula (8.19);. Finally, from (8.18), (4.13) and (4.18)
we get (¢0)? = 7?(ag)?. Here ¥ > 0 due to (8.19); and 4agpo = A — (p5)? < 0
because A < 0. Hence we get formula (8.19),. O

Now, consider the PDE systems (8.11) and (8.15) in which the derivatives ay,,
ap,, are eliminated by means of (8.17) and its analogue. According to proposition
8.2, it suffices to use any two lines of the new coefficient matrix. The first two lines
lead to the (equivalent) coefficient matrix

(8 22) < 0 2ap 0 2M Y5 —21()

2M  —p; 2K 0 2¢o 0
Hence we get the corresponding PDE system in the form

2a0Va + 2Maj, + psah, — 2K ay, =0,
2a0W, — 2Mat,, — psab,, + 2K a5, =0,
2MV; — kp5V2 - 2KV3 + 2(,90(1-/21: =0,
2MW, — psWy — 2KW5 — 2¢pa%,, = 0,

(8.23)

where Vi, W; are defined by (8.12) and (8.16).




Substituting for ¢; and b; from (8.18) and (8.21) we sce. after a lengthy but routine
calculation, that the last two cquations of (8.23) arc consequences of the first two
ones.

Due to (8.20) we see that

. 1 .
(8.24) 2Maj, + psay, — 2K ay, = agh[ln(a, /ay)],. + 3995(:2[111(@2/(1,1ag)]_'l..

and a similar formula holds for 2Maj,, + ¢sah,, — 2K aj,. Introducing the new
functions U(w, z), V(w,x), V < In4, by the formulas

(8.25) ayfay = eV, (L22/(L1(lg =
we can rewrite the first two equations of (8.23) in the form

(8 26) { 2(!0((!.{2“, — Z(LIH) + (Iv()hU_,l_. + %L;‘*,(I_g"r, =0,

2('()(&,0-’2_1. + Zl)lH) - U’Oh'[«[{u — %k,?r,(l;)‘” =0.

w

From (8.25) we get
1y 1/2
(8.27) ap = as (O_V — —)

and hence the equations (8.26) take on the form

1 1 —1/2
(8.28) o = 2011 + WU, = = 5V ((‘_\ - 1) ,
1 . 1 —1/2
(8.29) oo+ 20 H — WU = =5V (o-‘ -
' 4 4
Moreover, we can substitute
(8.30) ay = aze/DW=1)
into (8.28), and
N2+ g3 IPTIRT AT O 1
(8.31) 0s = ——4”;“’—‘«‘ 20 H = o3V ’[(u v 1) 5 — 5/,]11

into (8.29).

Let now H, U,V be arbitrary analytic functions. Expressing o5 from (8.28) in the
form 5 = fiah, + foaz + f3. where f; are known functions, and substituting this in
(8.29) (which has been transformed by (8.31)), we obtain a PDE of the form

(8.32) al, .= F(ay,, ah az,w.r).
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where Fis a fixed analytic function of 5 variables. Then general solution of (8.32)
depends on two arbitrary (analytic) functions of 1 variable. Thus the elliptic family
I depends on 3 arbitrary functions of 2 variables, namely on H, U and V.

The equation (8.32) cannot be solved explicitly, in general. Yet, we shall give an
explicit example in this place. Let us choose H = H(w,x) as arbitrary function, and
U, V' as functions of w satisfying the equation V'(w) = e2("+V)(e=V — 7). Then
(8.28), (8.29) are reduced to the form

(8.33) aby = gra2 =0, @5, + g2 =0,

where g1, g2 are known functions of w, x. Then we obtain, using also (8.18),

(8.34) ay = exp < / g1 (l'w). y = ( / 2 d;l:) /(:2.

Henee 5 can be determined using (8.19), and all hasic functions are determined.

Remark. If o5 = 0 holds in (8.28), (8.29), we can choose H, U as arbitrary
analytic functions and then express e(!/2)Y" from (8.28) as a function of Ay 2, W0,
2. Substituting in (8.29), we obtain again a PDE for a, in the form (8.32).

Now. we shall prove the main theorem of this Section:

Theorem 8.5. The local isometry classes of genceric elliptic metrics are par-
ameotrized by the arbitrary functions H. U, V7 of 2 variables modulo two arbitrary
functions of one variable.

Proof. It suffices to prove that cach local isometry class depend only on 2
arbitrary functions of 1 variable. We get first the formula
9

(8.35) (W) + (W2 = (ayy® - asy + az) dw? + (a1y® + avy + az) da?
+2(byy? + by) da dw.

Let (M. g) be another elliptic space which is isometric to (A, g). Then the corre-
sponding isometry is given by formulas of the form (5.18). Now, because 1/Nh¢ is a
Ricmannian invariant (see (5.15)), we get
K2 +M  Ky*+ M
(8.36) y ra _ sy T
I K

Substituting from (5.18) in (8.36) we get ®(w,x) = 0 and hence § = ey. Then we
obtain @* = cw® and Hdo = H dw. We get finally

(8.37) o =p(w). H'(w)=cH.

i
I
(n
=
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Next, analogously to (8.35), we obtain

(@2 + (@%)2 = T(0§? — @29 + G3) A + (@,§° + Go¥ + as) Az
+ 2(b,7? + b3) dz dw

7 (¢ (w)*(a19° — @29 + az) dw?

+(@g? + a2§ + a3)((7)* da?

+ 22,7, de dw + (T),)? dw?)

(8.38)

L +2(b15% + b3) ' (w) (7, de dw + T, dw?).
Now, we can compare the coefficients of the expressions (8.35) and (8.38). Comparing
the coefficients of y dz dw, we obtain @z, z!, = 0. Because we assume a; # 0, and

we have @, = g(i’z; (@' (w))~" # 0, this implies ¥/, = 0. Hence

(8.39) T =g(z), dz = ¢'(x) de.

Comparing the coefficients of dx? we obtain

(8.40) A? = A%(g'(2))?, e, =<' A¢' (2),

and comparing the coefficients of dz dw we obtain

(8.41) AC = ACY' (w)g'(z), ie., C=¢<C¢ (w).

Because Hy'(w) = eH, we get cH' = H,¢'(w) = H'¢'(2)¢' (w), i.e.,

(8.42) eh = hg' ()¢’ (w).

Finally according to (5.14) we have

(8.43) Af/h=¢€Af/h, ie, Af=ccAf¢(0)¢ (w).

Using (8.40) we infer hence

(8.44) f=cofo(w), eq=ccs

We conclude that the functions A, C', f, H can be obtained from the functions 4. C,
f, H (expressed in the same variables w, @, y!) by a transformation involving only

two arbitrary functions of 1 variable and some signs. Hence Theorem 8.5 follows.
O
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THE ELLIPTIC CASE II

We shall study also this nongeneric case because it gives some more examples.
Here we have, in an open domain,

(845) L= az = 0, bl = 1)3 =0.
First, we need information about the algebraic structure:

Proposition 8.6. In the elliptic case 11, the following algebraic formulas must
hold:

(8.46) w2 =5 =0,

(8.47) Yo = —&\/P193, ao = e/aias,

(8.48) K =¢&\/pia1, M =é&\/psas,

(3.49) by = ce(y/Fom — GrGs, b = ee(\/Faar + VPG

where €, € = 1 are some signs.
On the other hand, if ay, ajz, ¢y, @3 are arbitrary positive functions, and other

basic functions are defined by (8.45)—(8.49), then all algebraic equations of Theorem
4.8 hold.

Proof. Using (8.45) and having still in mind that aja3 = ap? > 0, we get
w5 = 0 from (4.36) and ¢ = 0 from (4.31),. Also we have @103 = pp? > 0 and
woao < 0; hence (8.47) follows. Further, (8.48) is a consequence of (4.31);, (4.31)5
and of the inequality XM > 0. Finally, (8.49) follows from (4.28), and (4.33).

The second part of the proof is a direct check. a

Now we pass over to the PDE systems (8.11) and (8.15). Considering the first
two equations of each system and substituting here all formulas (8.45)-(8.49), we sce
that the given four equations are reduced to the following two equations:

(3.50) Vaspsay,, — Jargras,, =0,
Vaz@sel, — Jarores, — 2a1/@rpsH = 0.

Let us put

(8.51) p=vai, q=\/a3, r=\p1, s=/p3.
Then we can rewrite (8.50) in the form

(8.52) spl, —rql, =0, qr —ps, —p*H =0.
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Moreover, we have the algebraic relations

h + bQ h— [)2
= -, T =

8.53 S
(8.53) ) 2p 2q

as consequence of (8.49). Then (8.52) takes on the form

(854) l['(qplur - 1)(1:17) + 1)2((11):11 + 1)(1;,) = ()‘ /I' # 0‘

(8.55) =222, + h(pPd = @pl) + b (VP + ) = 2p P H.

If p, ¢ are now fixed arbitrary functions of two variables such that (p/q)!. # 0.
(pq), # 0, we can express b, through h from (8.54) and then substitute into (8.55).
We obtain a PDE of the form

(8.56) BH! + DH. =FH, DB #0,

where B, D, E are fixed functions.

Hence our metrics depend on two arbitrary (analytic) functions of 2 variables and
two additional arbitrary functions of 1 variable. By the same method that was usced
in the generic case, we can show that the local isometry classes in the elliptic case
IT are parametrized by two arbitrary functions of 2 variables modulo two arbitrary
functions of 1 variable.

In the particular cases, we can get new explicit families of solutions.

a) If p/q = f(x) and by = 0. then (8.54) is identically satisfied and (8.55) takes on

the form DH! = EH, which can be solved by an explicit formula.
b) If p = p(a), ¢ = ¢(x), and by = by(w, ) are arbitrary but fixed, we get (8.55) in
the form BH, = C'H + D. which can be solved by an explicit formula, again.

We shall conclude with an additional example which does not involve integration.
Let us consider the “singular™ case of Proposition 8.4, namely the case ay = ¢» = 0.
Then the first two PDE of (8.23) can be written in the form
(8.57) darH — h{ln(a, fa3)], =0, 4biH = h{ln(a, /a3)], = 0.

Let H = H(w,x) and U = In(a, /az) be fixed arbitrary functions. Then we obtain

(8.58) ay = hU'JAH, by = hU' J4H (h = H')

and hence

,  hU. . : nooo, R ST
(8.59) 4% = ;H (W +e7 V), AC = ﬁ(y' +o7y. Af= 3/1@5( (> +e 1)

By the similar computation as in the proof of Theorem 8.5 we can see that the local
isometry classes are parametrized by the arbitrary function U7(w..r) only. Thus we
canput H =x, h =1 1in (8.59).
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Remark 8.7. According to [Sz 2], Theorem 4.5, a foliated SSS of arbitrary
dimension can be complete only if it is (generically) a 3-dimensional elliptic space
(i.c.. 3-dimensional hyperbolic space in the Szabd’s terminology), or a k-dimensional
parabolic space in the sense of Z. Szabd. The last spaces can be characterized as
foliated SSS with constant scalar curvature along each (k — 2)-dimensional Euclidean
leaf (sce [BIKV]). These spaces have been constructed explicitly and studied already
in [KTV 2], including simple criteria for the completeness. As concerns the complete
3-dimensional elliptic spaces, a geometrical construction was described in [Sz 3],
which 7nay produce elliptic semi-symmetric hypersurfaces in R*. Yet, to the author’s
knowledge, the only known eaplicit example so far was that by H. Takagi, [T]. A
new family of examples was found recently by E. Boeckx (to appear in Tsukuba
Math. J.).

9. SEMI-SYMMETRIC SPACES WITH THE PRESCRIBED SCALAR CURVATURE

From the formulas (2.2), (4.2) and Remark 2.2 we see that the scalar curvature of
a 3-dimensional foliated SSS is locally of the form

20 (w, x)

9.1 Sc = ="\
(0-1) “(9) KNy? + Ly + M

where I\, L, M are functions of two variables w,x only. We shall now state the
converse.

Theorem 9.1. Let k; = k;(w,2), i = 1,2,3, be analytic functions in a domain
W C R?(w,x) such that " (k:)? > 0. Let (wo,20) € W be a fixed point and yo € R
a fixed number such that

(9.2) ky (wo, 20)yo? + ka(wo, x0)yo + k3 (wo, xg) # 0.

Then there is a neighborhood U C¢ W x R C R3(w.x,y) of the point (wo. 0. yo)
and a semi-symmetric metric g defined on U whose scalar curvature is given by the
formula

1

9.3 Sc(g) = —5——+—.
( ) ‘ (Q) l\fl]j.‘z + /\32]/ + :l\';;

In particular, if the quadratic polynomial kyy? + koy + ks has two imaginary roots
for (w,.r) = (wo,xg), then there exists a neighborhood W C W of (wq,xg) and an

clliptic metric g defined in the infinite strip 1V x R C R? such that its scalar curvature
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is given by (9.3). The local isometry classes of all such that metrics are parametrized
by one arbitrary function H of 2 variables modulo 2 arbitrary functions of 1 variable.

Remark. The last assertion is not always true if the prescribed scalar curvature
is not “of elliptic type”. For example, if Sc(g) is prescribed as a nonzero constant.,
then the corresponding (local) isometry classes of semi-symmetric metrics depend on
two arbitrary functions of 1 variable modulo some constants (see Remark 7.9 and

KTV 1)).

Proof. We shall only prove the second part of our theorem (the elliptic case).
In the nonelliptic situations (and, in particular, if Aj A3 = 0), the proof can be done
case by case, using the same main argument.

Thus we can assume, e.g., ky > 0, k3 > 0 at (wy, ). Using a substitution
§ = y + k2/2k;1, we can reduce our problem to the case &, = 0 in some neighborhood
W' C W of (wp,zo) (which corresponds to the assumption L = 0). We shall look
for the solutions in the elliptic family I; thus we shall assume that the formulas
(8.18)—(8.21) hold. Now, we have to satisfy the following conditions:

a) The first two partial differential equations of the system (8.23).

b) The proportion formula M/K = ks /k;.

c¢) The partial differential equation
(9.4) [(Aa)!, + Ri]y=0 + ¥ = —IN/2ky.

Here the equation (9.4) follows from (4.3) and (9.1), (9.3), because o = I\'/2k;.

We shall write down our system of three PDE a) aund c¢) in a more explicit form:

(9.5) 2ap(ay,, — 2a1 H) + 2Ma}, + psa,, —2Kaj, =0,
(9.6) 2a0(ph, + 201 H) —2Ma),, — psab,. + 2Kaj, =0,
9 (1 ,
(9.7) %{m["%w — 2by, + (b3/az)ay, — flel}
a 1 ’ / - -
+E{~)—/\7[<p3r +hH — (bg/(l;;)(l:h“]} + K = —-K/2k,.

We shall now assume that the neighborhood W' is of the form
W' = (wg — 6,wo + 8) X (xg — &, r0 +€) C W.

Thus, in W' we have k; > 0,k3 > 0,ky = 0.

We fix an arbitrary analytic function H = H(w,x) in W' and put M = (k3/k1)\.
Then we see easily from (8.18)-(8.21) and (4.13) that all basic functions involved in
(9.5)-(9.7) can be expressed as fized functions of a;. ay, ag and w, . On the other
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hand, the functions a; remain independent. Then (9.5) and (9.6) can be written in
the form

(9.8) ahe = g1(Qly. ai,w, ),
(99) _Alalm + I‘ u‘3w = 92( Ligs
M = M(a;,w,z), K = K(a;,w,z),

ai,w,x),

and (9.7) takes on the form

(910) agww = ‘{13( ;,/wr" (leld:aﬂ anu’ alr’ A, W, 1’)
where g1, g2, g3 are fixed analytic functions.

Differentiating (9.8) and (9.9) with respect to w, we obtain finally a system of 2nd
order PDE of the form

(011) a;’ww = fj(a'ilurx ’aer?aiuH 11’”17,w I) (J = 1’2’3)

where f; are fixed analytic functions.

Now, it is always possible to choose analytic functions ¢;(x), ¥;(z) (: = 1,2,3) on
(ro — €, 20 + €) such that the functions f;(¢i(2), ¢! (x), ¥i(x), ¢i(z), i(x), wo, )
are defined on the whole of (x¢p — ¢, 20 + ¢), and

(9.12) 0> 0, 93>0, pigs— (02 >0,
(9.13) Yo () = g1(9i(x), pi(x), wo. x),
(9.14) —Motp1 (x) + Koz () = ga(pi(2), i), wo, x),

where My, Iy denote the functions M, I from (9.9) in which a; is replaced by ¢;(r)
for i = 1,2,3 and w is replaced by wg.

According to the Cauchy-IKowalewski Theorem, there exists a unique solution
(ar,az,az) of (9.11) in a neighborhood W" C W’ of the set {wo} X (o — &, 20 + €)
such that

(915) a’i(“)O7 ) 937( )? zw(woﬂ‘ ) - (/’( ) = 1'2’3'

Due to (9.13), (9.14), the equations (9.8), (9.9) are satisfied for w = wp, and hecause
the derivatives of these equations with respect to w are also satisfied (as a part of
(9.11)), the equations (9.8), (9.9) are satisfied identically. Moreover, because (9.12)
holds, then ap # 0 and a1, ag > 0 holds on the set {wg} x (xg — ¢, 2o + €), and hence
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on a neighborhood W C W" of this set. Then a1y* + azy +az > 0 holds on the strip
W x R.

Thus a semi-symmetric metric g of the elliptic type is well-defined on W xR by

the standard formulas (2.1), where A is given by (4.12), C by (4.19), f is equal to
K (y? + k3/k1)/A and H is the function which was fixed in advance.
The rest of the proof now follows from Theorem 8.5. a
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