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Czechoslovak Mathematical Journal , 46 (121) 1996, P raha 

AN EXPLICIT CLASSIFICATION OF 3-DIMENSIONAL 

RIEMANNIAN SPACES SATISFYING R(X,Y) • I? = 0 

OLDRICH KOWALSKI, P r a h a 1 

(Received April 5, 1994) 

INTRODUCTION 

The Riemannian spaces with the curvature tensor R satisfying the identity 

I?(A'.Y) • I? = 0 were recognized already by E. Cartan (see [Cal], p. 265), who 

noticed that all locally symmetric spaces and all 2-diniensional Riemannian spaces 

belong to this class. Various results have been obtained by A. Lichnerowicz, R.S. 

Coutv and N.S. Sinjukov. The last author ([Si 1,2]) introduced the name "senri-

syininotric spaces" for this class of Riemannian manifolds. (See [Sz 1] for the other 

references). In 1968, K. Noinizu [N] asked the question if there exist complete, irre

ducible and simply connected Riemannian manifolds in dimension n ^ 3 satisfying 

the identity R(X, Y) • I? = 0 and not locally symmetric, i.e. such that VI? ^ 0. The 

first positive example was constructed by H. Takagi [T] in 1972 as a hypersurface 

MA C U4 with the induced Riemannian metric. The* full local classification of Rie-

niannian spaces with the above property was given in 1982 by Z.I. Szabo [Sz 1]. Tlie 

completeness of semi-symmetric spaces was studied in the subsequent paper [Sz 2] 

and the complete semi-symmetric hypersurfaces of Euclidean spaces in [Sz 3]. 

One possible interpretation of the work [Sz 1] says that all building stones for the 

semi-symmetric spaces (SSS) are divided into three classes: 

(a) The "trivial1' SSS: all locally symmetric spaces and all two-dimensional Rienian-

nian spaces. 

(b) The "exceptional" SSS: elliptic cones, hyperbolic cones, Euclidean cones and 

Kaehlerian cones. 

1 This paper is a definitive version of a preprint which liad been dis t r ibuted in 1991 and pre
sented at tlie Geometry meeting in Oberwolfach, October 1991. lt was part ly suppor ted 
by the grant GA OR 201/93/0109. 

427 



(c) The "typical" SSS: Riemannian spaces foliated by (n -2)-dimensional Euclidean 

spaces. 

Whereas all the "trivial" SSS are well-known and the "exceptional" ones are de

scribed in [Sz 1], [Sz 2] by explicit constructions, the1 most ample family (c) has not 

been much explored until recently. In [Sz 1] all foliated SSS are described by a (non

linear and rather complicated) system of partial differential equations. The local 

existence theorem in dimension n then says that all solutions depend on \n2 + n + 2 

arbitrary functions of 2 variables and \n2 + n — 6 arbitrary functions of 1 variable). 

Yet, no explicit solutions have been presented in [Sz 1]. In [Sz 3], some classes 

of solutions are described as hypersurfaces of (R7l+1; they depend on arbitrary func

tions of 1 variable only. To our knowledge, the first explicit class depending on one 

arbitrary function of 2 variables was constructed by F. Tricerri, L. Vanhecke and the 

present author in [KTV 1] and [KTV 2]. It was obtained as a generalization of two 

examples by K. Sekigawa, [Se]. 

In the present paper we study the 3-dimensional case and we try to resolve ex

plicitly the partial differential equations by Z. Szabo (after deriving these P D E by 

a different method and in a different form). We make a geometric classification 

"in gross" of the 3-dimensional foliated SSS: we distinguish the elliptic, hyperbolic, 

parabolic and planar ones. Then we give (local) explicit formulas for all hyperbolic, 

parabolic and planar metrics (involving three, two or one arbitrary functions of 2 

variables, respectively). In the elliptic case we obtain, in general, only a "quasi-

explicit" formula. Yet, some families of explicit solutions are also constructed which 

depend on one arbitrary function of 2 variables. Moreover, we prove tha t the local 

isometry classes of metrics in the elliptic and the hyperbolic case still depend on 3 

arbitrary functions of 2 variables. 

Whereas Z.Szabo and other authors are primarily interested in the complete SSS, 

our results show tha t most of our solutions are inherently incomplete. For instance, 

all SSS of the hyperbolic type are incomplete. Thus, incompleteness is the price to 

pay for a full and systematic classification of the SSS. 

Our computational method is not closely connected with the dimension n — 3 and 

it works in the arbitrary dimension, as well. Very recently, E. Boeckx, L. Vanhecke 

and the present author have explicitly classified all nonhomogeneous semi-symmetric 

spaces with constant scalar curvature (see [BKV]). Moreover, a modification of our 

method enables, surprisingly enough, to get a local classification of nonhomogeneous 

3-dimensional Riemannian manifolds with the prescribed constant eigenvalues of the 

Ricci tensor (see [K]). 

The content of the paper is the following: In Section 1 we recall some basic facts 

from [Sz 1]. In Section 2 we derive a canonical form for our metrics involving three 

unknown functions of 3 variables and one unknown function of 2 variables. In Section 
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3 we write down the basic system of 9 P D E for these unknown functions. In Section 

4 this basic system of P D E is reduced to only three P D E and to a system of (many) 

algebraic equations for new unknown functions of 2 variables which appeared in the 

first integrals of the basic P D E system . 

In Section 5 we study the Riemannian invariants for our class of spaces. Section 6 

introduces the useful concept of asymp to t ic foliation and the geometric classification 

"in gross". The asymp to t ic foliations enable to introduce new coordinates which sim

plify drama t ically the further compu ta t ions in the hyperbolic, parabolic and planar 

case. The explicit classification of these cases is given in Section 7. Then Section 8 

is devoted to the (more difficult) elliptic case. Finally, in Section 9 we study foliated 

SSS with prescribed scalar curvature and we prove the main existence theorem. 

1. T H E BASIC C O N C E P T S AND P R O P E R T I E S 

To be more precise, let us repeat that a semi-symmetric space is a Riemannian 

manifold (AJ, g) satisfying the identity 

(1.1) R{X,Y)-R = 0 for all X,Y eTpM, peM 

where each curva ture transformation R(X,Y)P acts as derivation on the tensor al

gebra of TPM. We always assume {M,g) to be of class C°°. 

As we have mentioned in the Introduction, we shall limit ourselves to the foliated 

SSS. In accordance with [Sz 1], a foliated SSS is a Riemannian manifold (M, g) whose 

index of nullity v{p) is constant along M and equal to n — 2. This means that every 

tangent space TpM can be decomposed in the form 

(1.2) TpM = VpW + VpW 

where dim Vp ' = n — 2, dim Vp ' = 2 for all p G A/, and Vp ' is the null-space of 

the Riemannian curva ture tensor Rp, i.e., 

(1.3) Vp
(0) = {X G TPM | Rp{X, Y) = 0 for all Y G TPM). 

Hence we see that the curva ture tensor Rp (of type (0,4)) at each point p G M is " the 

same'1 as the curva ture tensor of the space M' = 52(A2) x 1t, or M' = H2{-\2) x R 

respectively, where the sectional curva ture ±A2 depends on the point p, in general. 

More precisely, for each p G M there is a linear isometry of tangent spaces, <p: 

TPM —> To A-/', where M' is one of the model spaces above and o G M' is an 

arbi trary base point, such that <p*R'0 = Rp holds for the corresponding curva ture 
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tensors. Because we exclude points of flatness, each connected foliated SSS has either 

only points of the "spherical11 type, or only points of the "hyperbolic" type. 

Further, Z. Szabo shows that the (n - 2)-diinensional distribution V(0) on M is 

completely integrable, and the integral manifolds of V(Q) are totally geodesic and 

locally Euclidean. This is why M is said to be "foliated by (n — 2)-dimensional 

Euclidean spaces1 '. 

We see tha t the Ricci curvature a(X,X) (X e TM. \\X\\ = 1) is zero along each 

Euclidean leaf, and it is a nonzero constant on the unit circle of each subspace \';, ' 

(equal to the corresponding sectional curvature). If we double this constant, we 

obtain the scalar curvature at the point p. In particular, for n = 3, the Euclidean 

foliation is a family of geodesies which are lines of zero principal Ricci curvature. 

Equivalently, a 3-dimensional foliated SSS can be characterized as a Riemannian 

3-manifold whose Ricci tensor has, at each point, one nonzero double eigenvalue and 

one zero eigenvalue. 

We shall close this short section by a new simple* characterization of semi-

symmetric spaces which is based on an idea by U. Lumiste [Lu]. It was noticed 

already by E. Cartan that every Riemannian manifold M has, at each point, a first 

order approximation, which is a Euclidean space. Tin* present author and L. Yan-

hecke have observed that any semi-symmetric space* has. at each point, a second or (lei-

approximation, which is a symmetric space. In other words, each semi-symmetric 

space is a 2nd order envelope of an n-parameter family of symmetric spaces. The 

precise formulation and a very simple proof (using the normal coordinates) will 

appear elsewhere. In particular, each foliated SSS is the 2nd order envelope of 

symmetric spaces which are all homothetic to S 2 x [R"~2, or to H2 x {R"~2. 

2. THE CANONICAL LOCAL FORM FOR THE METRICS 

The aim of this section is to prove the following 

T h e o r e m 2 .1 . Let (M,g) I>c a smooth foliated SSS of dimension 3. Then, in a 

normal neighborhood U of any point p G M, there are local coordinates z/>, x, y such 

that cj = (CJ 1 ) 2 + (u2)2 4- ( u 3 ) 2 . where 

{
ujl = f(w,x, y) dm, 

J1 — A(iu, x, y) dx + C(w. x. y) dw, 

u)'A = dy + H(w,x)dw 

and fA f 0. Further 
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a) the equations u1 — UJ'2 — 0 determine the principal directions of zero Ricci 

curvature and the corresponding integral curves in (U, g) are geodesies, 

b) the variable y measures the arclength along any geodesic of this family, 

c) there exists a function (j(w,x) / 0 such that the sectional curvature k — 

k(w,x,y) in the 2-direct ion UJ3 = 0 is given by 

(9..9Л k = а(w,x)/fЛ. 

R e m a r k 2.2. For the scalar curvature we get Sc(g) = 2k. 

P r o o f . According to Section 1, in a neighborhood U' ^ p there is a unique 

system of geodesies which are lines of zero Ricci curvature (one geodesic through 

each point). We shall call these lines "principal geodesies". Choose an oriented 

surface S: D2 —1> U' through /; which is transversal w.r. to the principal geodesies 

at all cross-points but not orthogonal at p. Clioose any coordina te system (ic,x) 

on S. Then there is a normal neighborhood U ^ p, U C U', with the property 

that each point 777 E U is projected to exactly one point 77(77/.) G S via a principal 

geodesic. Then we define a local coordinate system (iu,x,y) in U by the formulas 

//>(///,) — u)(n(m)), x(m) — x(i\(m)), and 

(2.3) y(in) = c/+(77(777), ///) = the oriented distance of 777 from 77(777). 

Obviously, y measures the arclength along each principal geodesic in U, and the 

coordina te vector field d/dy is a unit vector field generating these principal geodesies. 

Now, choose in U an or thonormal moving frame {Ei, E2,Es} such that E3 = d/dy, 

and let (LJ[.LJ'2,LJ3) be the corresponding dual coframe. 

Because UJ1(E^) — UJ'2(E-S) = 0, the coordinate expression of UJ1 , u2 mus t be of the 

form 

(2.4) J = Pl dx + 07' dw (i = V 2) 

whereas UJ3 has the form 

(2.5) UJ3 = dy + P3dx + Q3dw. 

Recall tha t the components uj'j of the connection form are uniquely determined by 

the s tandard equations (see [KN]) 

(2.C) du;' + ^ u ; J A ^ - - 0 , uj) + u)-j = 0 (i,j = 1,2,3). 
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The components Q,1- of the curvature form then satisfy 

(2.7) n1 = kJ AUJ2, n\ = nl = o, u) + ni=o, 

or, equivalently, 

(2.8) duj.j + UJ\ A UJ3
2 = kJ A J2, 

(2.9) dj\ +Ldl AUJ'I = 0, 

(2.10) du;2 +LJ'2AUJ\ = 0, 

where k = k(w,x,y) is the sectional curvature in the 2-direction UJ3 = 0. 

Taking the exterior differentials of (2.8)-(2.10) and substituting into the new equa

tions from (2.8)-(2.10) we obtain 

(2.11) d(kJ AUJ'2) = 0, 

(2.12) LJ\ Auj1 Auj2 = 0,uj2 ACJ 1 A J2 = 0. 

The last equations mean that UJ\ and J3 are linear combinations of uj1, J2 only. 

According to (2.4), J , J2, UJ\ and UJ3 are linear combinations of dw, dx only. 

The third equation of (2.6) says that 

(2.13) du3 +UJ\AJ+ UJ3
2 A UJ'2 = 0 

and hence 

(2.14) du/3 = qdw A dx 

where q = q(w,x,y) is some function. After differentiating (2.5) and substituting 

here from (2.14) we see that P3,Q3 are independent of y. Because the vector field E:i 

is not orthogonal to the surface4 S at p, some of the functions P3, Q3 is nonvanishing 

in a neighborhood of p. 

Let us fix any potential function w = w(w,x) of the Pfaffian equation 

(2.15) P3(w,x) dx + Q3(w,x) dw = 0 

and let x(w,x) be another function such that (w,x) form a local coordinate system 

in a neighborhood of p on 5 . Then (2.5) can be rewritten in the form 

(2.16) uj3 = dy + H(w,x)dw. 
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Substituting the new variables w,x also into (2.4), and using suitable orthogonal 

combinations of UJ1 and UJ2 instead of UJ1,UJ2, we obtain the remaining formulas of 

(2.1) up to a notation. (Here we use a smaller neighborhood U of p in U' if need be). 

Finally, the equation (2.11) means, due to (2.1), 

(2.17; 
дy 

(fЛk) = 0 

• and hence (2.2) follows. Here f A ^ 0 because (2.1) is a coframe. 

Convention. In the following, by a (foliated) semi-symmetric space (M,g) we 

shall mean, as a rule, a local space in the sense of Theorem 2.1. In other words, we 

shall suppose that M is a convex open domain in U3(w,x,y) on which the metric g 

is defined by the formulas 2.1 (if not stated otherwise). 

3. T H E BASIC SYSTEM OF PDE FOR THE FOLIATED SPACES 

First, we define the function tp by 

(3.1) ip{w,x,y) = 1//.4 = k(w,x,y)/a(w,x) 

(cf. (2.2)). Then it is easy to check, using (2.6), that the components of the connection 

form are given by 

(3.2) 

where 

(3.3) 

and 

-Aaáx + Ráw + /i dg, 

LO1
6 = A(3dx + Sdw, 

V UJ2 = A'y dx + T dw 

a = І,(A'W - Cx - HA'y), ß = -ф(H'x + AC'y - CA'y), 

' R = ipff'x - Ca + Hii, 

(3A) \ s = f'y + Cli, 

,T = C'y- f/i. 

Now, in the notation given by (2.1) and (3.1)-(3.4), the curvature conditions (2.£ 

(2.10) take on the following form, respectively: 

(A) (Aa)'y + f3'x = 0, R'y-,i'w = 0, (Aa)'w + R'x + SA'y - A/3T =-a, 

(B) A'ly-A02=O, -A';jw+T'x+A(l3R + aS) = 0, Ty-S0 = O, 

(C) (A)3)'y + A'yf3 = 0, S'x-(A!3)'w-(AaT + A'IJR) = 0, S'y + T(i = 0. 
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4. T H E FIRST INTEGRALS AND THE REDUCTION OF THE BASIC PDE SYSTEM 

The aim of tliis Section is to replace the PDEs of tlie series (B) and (C) by a 
system of algebraic equations. First of all, we eliminate the equations (B2) and 
(C2). 

Proposi t ion 4 .1 . The equation (B2) is a consequence of (Al) and (Bl). 

P r o o f . Using (3.4) we obtain 

T'x - A';„, + A(liR + aS) 

= C - f'J ~ f0'x ~
 A'yw + AWff, + Q-f'y + H/32). 

From (3.3) we get, using also (3.1), 

Al^WA + C't+HA'X 

and after the substitution we obtain, using again (3.1). 

T'x - A'lJW + A(/iR + aS) 

= -fli. - Afa'y - a(Af)'y + Aaf'y - A"yyH + AH02 

= f(-ll-(Aa)'y) + H(-A'y'y + A:f). 

This is zero w.r. to (Al) and (Bl). • 

Proposi t ion 4.2. Tije equation (CI) is a consc<iucuce of (Al), (A2), (CI). 

P r o o f . First we have, using (3.4) and (3.1), 

(AR)'y = (f'x - AC a + AH/3)'y = f'x'y - A^'n)',, - CaA'y + H(Af3)'y. 

Using also (Cl ), we get 

(4.1) (AR)'y = f';.y - A(Ca)'y - CaA'u - H0A'y 

Further, using (A2) we get from (3.4) 

S'x - (AaT + A'yU) - (AH)'W 

= f'Jy + C!r/1 + Cft'x - Aa(C'y - f!i) - JA'W - (AR)'y. 
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Substituting now from (4.1), we obtain 

5 ; _ (AaT + A'yR) - (Al3)'w 

= D(C'X - A'w + A'yH) + C(fi'x + (Aa)'y) + fi(fAa). 

Due to (3.3) and (3.1), this is equal to 

li(-a/v) + C(fi'x + (Aa)'y) + fl(aH>), 

which is zero due to (Al ) , q.e.d. • 

Next, the equations (Bl ) , (B3), (CI) , (C3) will be resolved by finding some first 

integrals of the system (A), (B), (C). 

P r o p o s i t i o n 4 . 3 . If (Al ) - (A3) , (Bl ) , (CI) and (C3) hold then 

(4.2) f'A = Ky2 + Lij + M, 

where K. L, M arc functions of w, x only. Further, (A3) is reduced to the equation 

(4.3) {{Aa)'w + R'x)y=Q + K{w,x) = -a{w,x). 

P r o o f. From (C3) we obtain, using also (3.4), 

(4.4) (SA)'y = SA'y - A/iT = f'yA'y + fl(CA'y - AC'y) + Af02. 

Due to (Bl) we get hence 

(4.5) (SA)'y _ f'yA'y + A'yyf + H(CA'y - AC'y) _ (A'yf)'y + ,3(CA'y - AC'y). 

On the other hand, using (3.4) first and (CI) later, we get 

(4.G) (SA)'U = (f'yA + (Ap)C)'y _ (f'yA)'y - U(CA'y - AC'y). 

As the arithmetic mean-value of (4.5) and (4.C) we obtain 

(-!•") (SA)'U = \(fA)"yy. 

Using (Al) and (A2) we obtain 

(4-S) {{Aa)'w+R'X = 0. 

Due to (4.4), (A3) takes on the form 

(4.9) {Aa)'w + R'r + {SA)'U = ~cr{w,x). 

Differentiating w.r. to y we get, due to (4.8), {SA)''n/ = 0. Then (4.7) implies 

{fA)"/yu = 0 and hence (4.2) follows. Finally, because {Aa)'w + R'x does not depend 

on //. and (5.4)^ = ^ ( M ) " y = K{w,.v), the formula (4.3) follows from (4.9). • 
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In addition, we obtain hence 

(4.10) SA = Ky + ip4(w,:r) 

where (D4 is arbi t rary 

P r o p o s i t i o n 4 .4 . The equations (Bl) and (Cl) are satisfied if and only if 

(4.11) f3A2 = o0(xv, x) (ao arbitrary) 

and 

(4.12) A2 = avy
2 + a2y + a3 {en = a{{w, .r), i = 1,2,3) 

where 

(4.13) ( o 2 ) 2 - 4 o 1 o 3 - f 4 ( o . 0 ) 2 = 0 

is the only relation between the arbitrary functions o(), 01, o2 , 03 . 

P r o o f . (Cl) is obviously equivalent to (fiA2)'y = 0 and hence to (4.11). (Bl) 

then takes on the form 

2A'yA';w = 2A'yA/32 = 2(a0)
2 A'^A'3 

and integrating w.r. to y we obtain 

(A'u)
2 = -(a0)

2A-2 + ,>, 

where p = p(w,x) ^ 0 is arbi t rary This is equivalent to 

(4.14) (AA'y)
2=pA2-(a0)

2. 

Suppose first p > 0; then we have A2 ^ (ao)2/p, and 

(.4-)'y = ±2 N / P A- - («o ) a . 

By a new integration w.r. to // we get hence, after a n^-arrangement, 

pA2 = (py + q)2 + (o 0 ) 2 , where q = q(uux) is arbitary, 

which is exactly (4.12) and (4.13). 

Suppose now p = 0. Then (4.14) implies o0 = 0, .4'; = 0, and thus oi = o2 = 0. 

(4.12) and (4.13) hold again. 

Conversely, we see that (4.11) (4.13) imply (Bl) and (Cl ) , q.e.d. • 
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P r o p o s i t i o n 4 . 5 . The equations (B3) and (C3) are satisfied if and only if the 

following formulas hold: 

(4+5) / T - C S = v?o, 

(4.16) S2 + T2 = vi, 

(4.17) f2+C2=<piy*+<p2y + <p3, fS + CT = ipiy + ~ip2, 

where <pQ, ipi, <p2, V?3 are arbitrary functions ofw, x satisfying the single relation 

(4.18) ( ^ 2 ) 2 - 4 ^ i V 3 + 4 ( ^ 0 ) 2 = 0 . 

P r o o f , a) Suppose first tha t (B3) and (C3) hold. We get directly (S 2 +T 2 ) ' y = 0, 

i.e., formula (4.16). On the other hand, from the definition of S and T in (3.4) we 

obtain 

(f + C% = 2 ( / / ; + CC'y) = 2 ( /S + CT). 

Using also (B3) and (C3), we derive hence 

(f + C*)"uy = 2 ( / 5 + CT)'y = 2 (S 2 + T2). 

Using (4.16) and integration, we obtain (4.17). From (B3), (C3) and (3.4) we also 

obtain (fT - CS)'y = 0, i.e., formula (4.15). Finally, (4.18) follows from the identity 

(fT - CS)2 + (fS + CT)2 = (f2 + C72)(52 + F2). 

b) Let us now assume tha t (4+5) and (4.16) hold. Differentiating w.r. to y we 

obtain a system of linear algebraic equations for S'y and T'y in the form 

CS'y - fT'y = fyT - C'yS = -i3(CT + / S ) , SS'y + TTy = 0. 

(Here we have substi tuted for f and C'y from (3.4)). If CT + fS / 0, we can solve 

this system by the Cramer 's rule and we get the equations (B3), (C3). 

Suppose now CT + fS = 0. Then (4.17) and (4.18) imply (p\ — ^2 = ^o = 0. 

(4.15) and (4.17) then give fT -CS = 0, C F + fS = 0, where f2 + C2 > 0. Hence 

S = T = 0 and (B3), (C3) hold once again. 

Finally, let us observe that each of the equations (4.17) is equivalent to the other 

one (as follows from our calculations). • 
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P r o p o s i t i o n 4 .6 . The diHcrcntial equations (A). (B), (C) imply 

(4.19) AC = bxy
2 + b2y + b:,. 

where by = bj(w,x) are arbitrary functions. 

P r o o f . Subtracting the equations (4.5) and (4.6) we obtain 

(fA'y-f'yA)'y + 2j5(CA'y-AC'tl) = ^ 

i.e., using also (4.11), 

(4.20) (fA'!l-Af'y)'y = 2a0(CA->)'„. 

Integrating w.r. to y and multiplying then by A'2 we got 

(4.21) 2a0AC = ^A2 + (fA)(A% - A\fA)'!r 

where (p$ = (ps(iu,x) is an arbitrary function. If wo substitute into (4.21) from (4.2) 

and (4.12), we see that the right-hand side of (4.21) is a quadratic polynomial w.r. to 

y. Thus if O0 ^ 0, then the formula (4.19) holds. 

Assume now O0 = 0. Then (4.11) gives fl = 0 and the equation (B3) means T[ = 0. 

From (3.4) we get C" = 0, i.e., C is a linear polynomial in y. On the other hand, 

the equation (Bl) means A" = 0 and A is also a linear polynomial in y. Hence 

(4.19) follows. • 

For the later use, we shall write (4.21) more explicitly, using the notation (4.19). 

(4.2) and (4.12): 

{ 2(/()bL — (y?5Oi - a2K + Oi L. 

2(l()b2 = (̂ 5O2 - 2O3N + 2(1 \\L 

2(/ob3 = (D5<7<:, — O3L + a j A I. 

Next, we have 

P r o p o s i t i o n 4.7. Put Ji(u\x) = H'X(LL\X). Then the PDE system (A), (B). (C) 

implies 

{ 2(l()K + O!b2 - O2^1 — Oib = 0, 

2OoE + 2Oi63 - 2b!O3 - O-jb = 0, 

2(/o.1I — O3b2 + O2^ — (l:d> — ^-

P r o o f . From (3.3)2 we have H'x = 2/J0~ l - (AC)'t/ + 2CA'y. Using (4.11) and 

(3.1) we obtain hence 
2Oo/A - A2(AC)'y + (AC)(A2)'y = hA2. 

Substi tuting from (4.2), (4.12) and (4.19) we get (4.23). • 
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Many more algebraic equations are now obtained by using the "first integrals" 

from Proposition 4.5. Using (4.10), (4.15) and (3.4), we obtain first 

(4.24) 5 = /V'Q, T = C<K? + <A)-<M, where Q = Ky + <p4. 

Let us substi tute (4.24) into the equation (C3). We obtain, using also (4.11), 

(4.25) Q'yA
2 - QAA'y + (a0AC)i/>Q + aoW^A2 = 0. 

Substituting from (4.21) into the third term of (4.25) and then dividing by ^A'2 we 

obtain (using also (3.1)) 

2fAQ'y + ^Q - Q(fA)'y + 2^0«o = 0. 

This means, due to (4.2), 

(4.2G) K(L + <pr0 - 2<p4) = 0, 2KM + <p4(<p^ - L) + 2p0a0 = 0. 

Next, we use the equation (4.17)2: 

CT + fS = ^iy+
l-<p2, 

in which we substitute from (4.24). We obtain easily, using also (4.17)i, 

(4.27) 2p>0AC = (2<piL - <p2K - 2<pi<p4)y
2 + (2<pYM + <p2L - 2 ^ 3 K - 2<p2<p4)y 

+ (<p2M - 2<p3<p4). 

This is equivalent to the system 

{ 2p)0bi = 2<piL - <p2K - 2<pi<p4, 

2<p0b2 = 2 ^ i M + <p2L- 2<p3K - 2<p2<p4, 

2<p0b3 = <p2M - 2<p3<p4. 

Next we substi tute from (4.24) into (4.16): S2 + T2 = <pv. We get 

(f2 + C2)Q'2 + (2<p0AC)Q + p>'2A2 = 9 i ( f A ) 2 . 

Using (4.27) and then (4.17)i, we obtain an explicit formula for <p0A'2 as a quadratic 

polynomial w.r. to y. At the coefficient level we have 

(PoOi = <p3K
2 - <p2KL + <piL'2 + <p2<p4K - 2<pv<p4L + <pi<p'j, 

(4.29) <{ <pla2 = -<p2KM + 2<piLM + 2<p3<p4K - <p2<p4L - 2<pi<p4M + <p2<p2
4, 

. v?oft3 = <P{M'2 - <p2<p4M + <p3<p2
4. 
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Finally, the equation (4+7)!: f2 + C2 = (piy2 + <p2y + <.D3 implies 

(4.30) (AC)2 = A2 fay2 + <p2y + v>0 - (Af)2, 

i.e., 

(biy2 + b2y + b3)
2 = fay2 + <p2y + <p3)(a{y

2 + a2y + a3) 

-(Ky
2 + Ly + M)2. 

This is equivalent to the system of algebraic equations 

(4.31) (bl)
2=^la1-K

2, 

2bib2 = Lp\a2 + ip2ai — 2KL, 

(b2)
2 + 2b!b3 = ^a3 + (D2a2 + <p3a{ - (L2 + 2/vM), 

2b2b3 = (D2a3 + ip3a2 - 2LM, 

( M 2 = ^3^3 - M2 . 

We shall summarize the content of this Section in the basic 

Theorem 4.8. Let </?0, <Pi, • • -, <Pb, a,Q, a\, a2, O,,, b1; b2, b3, K, L, M, h by 
functions of two variables, w, x, satisfying the whole set of algebraic equations (4+3), 
(4+8), (4.22), (4.23), (4.26), (4.28), (4.29) and (4.31). Let; A, / , C, H, i/; be functions 
defined by 

( A2 = aiy
2 + a2y + a3, AC = biy

2 + b2y + b3, 
(4.32 { 

[l/tl> = Af = Ky2 + Ly + M, H'y = 0, H'x = h(w, x), 

and let a metric g be defined by (2.1). Further, let a, ft, R be defined as in (3.3), 
(3.4). Then the curvature conditions (2.8)-(2.10) are satisfied for some function 
k = k(w,x,y) if and only if the differential equations (Al) and (A2) are satisfied. 

The proof follows from the whole series of propositions and formulas given before. 
Let us only point out that the equation (A3) (or, equivalently, (4.3)) does not mean 
any new condition for the fanctions involved. It gives, in fact, a formula for the 
computation of the curvature k(iu,x,y) = a(w,x)ij'(iu^i\y). 

Let us also notice that the algebraic equations (4.13), . . . , (4.31) from Theorem 
4.8 are not all independent. Yet, all of them are useful when a detailed analysis is 
made. 
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R e m a r k 4 .9 . Theorem 4.8 says that one should start with an algebraic classi

fication, i.e., to work out the list of all classes of solutions of the algebraic system 

above. Each separate class of solutions can be given in the form where some of the 

functions ip0, ipi,..., M , h are chosen as arbitrary and the others are fixed algebraic 

functions of the previous ones. In order not to expand this paper too much, we 

shall limit ourselves here to the "generic" cases, and we shall put aside the singular 

cases of various level. The generic algebraic solutions will be calculated in the next 

sections (and the singular cases will be treated in a separate paper) . 

We shall conclude this section by proving additional algebraic equations between 

our basic functions of two variables. 

P r o p o s i t i o n 4 .10 . The following algebraic formulas hold: 

(4.33) a2L - 2a3K - 2axM = - 2 a 0 l i , 

(4.34) b2L - 2b3K - 2biAL = - ^ A 

(4.35) (p2L - 2ip3K - 2(piM = 2<p0h, 

(4.36) a2b2 - 2Oib3 - 2a3bi = -2a0(D5 . 

P r o o f . From (4.29) we obtain 

(4.37) P>l(a2L - 2a3K - 2arM) = -<p0a0(ip2L - 2<DXM - 2(D3Iv"), 

from (4.28) we get 

(4.38) 2(D0(b2L - 2b3K - 2b iM) = -<pb(<p2L - 2<pYM - 2(p3K), 

from (4.23) we get 

(4.39) a0(a2L - 2a3K - 2aYM) = -2a2
0h, 

and (4.22) implies 

(4.40) 2a0(b2L - 2b3Iv - 2b : M) = <p5(a2L - 2a3K - 2axM). 

If a0ip0 7- 0, then all formulas (4.33)-(4.36) follow from (4.37)-(4.40). For O0(D0 = 0 

we either use the continuity argument (or a rather lengthy direct check). • 
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Proposition 4.11. The algebraic formula 

(4.41) <p0A'2 - O0(f
2 + C'2) + <phAC + hAf = 0, 

or, equivalently, 

(4.42) vo{o>iy2 + «2y + o>3) - a>o{<Piy2 + v>2// + <#*) 

+ ^ ( o i y 2 + b2y + b3) + M IO/ + U) + M) = 0 

noids. 

P r o o f . First we shall prove 

(4.43) L + (D5 - 2(D4 = 0. 

In fact, for A' ^ 0 this follows from (4.26)i. For A' = 0 we use the continuity 
argument (or a rather lengthy direct check). 

Suppose now (Do 7̂  0 and multiply the equation (4.42) by <D0. Then substitute 
for (DQ̂ i and <D0̂  from (4.29) and (4.28), respectively: further, substitute for yYK'o 
from (4.26)2 and for <D0h from (4.35). Then we see easily that (4.42) holds as a 
consequence of (4.43). 

If (Do = 0, we use the continuity argument (or a lengthy direct check). • 

5 . R.IEMANNIAN INVARIANTS AND ISOMETRIES 

Let us rewrite the formulas (3.2) using the forms uj' as a basis. Then we obtain 

{ UJ\ = ipfy - auj'2 + /Ju/\ 

uj\ = f-iry + i3uj\ 

uj* = {l3-h4>)ujl+A-lA'y. 

We shall also write, for the simplicity 

(5.2) cO3 = (iujl + buj2, UJ\ = CuJ1 + cuj2. 

Consider the orthonormal frame {Ei,E-2,E3} introduced in Section 2. As we see. 
E3 is uniquely determined by the geometry of (M, y) up to a sign, and Fi. E-> are 
uniquely determined up to an orthogonal transformation (with the coefficients which 
are functions of w, x, y). 
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Let E\, E2 be chosen in the standard way, i.e., so that (2.1) holds. Using tlie 

well-known formula for the covariant differentiation 

(5.3) 

we obtain 

VEJEÍ = J^u^E^E, (ij = 1,2,3) 

(5.4) 

( VElEx = -V>/;F2 - oE3l X7EiE2 = 0 /^F i - cF3 , 

VE2Ei = aE2 - bE3, V E2E2 = -c\Ex - eE:i, 

VElE3 = aEx + cE2, VE2E3 = bEY + eE2, 

{ VE.E, = -bE2, VE3E2 = bEu V E 3 F3 = 0. 

Due to (2.7), the Ricci form g is given by 

(5.5) g = k(ujl 0 UJ1 + Ld2 O LJ2) 

where A; is the sectional curva ture given by (2.8), A; = ^Sc(g). Because g is an 

invariant tensor, VO is also an invariant tensor. Using the standard formula 

(5.G) 

we obtain easily 

V A V = - ^ c j } ( A ' ) w j 

VO = dA: (cJ1 C:) LÜ1 + LÜ2 

- k{(aujv + bcO2) :•) (CJ 1 co L J 3 + cO3 0 C J 1 ) 

+ (CCJ1 + ecO2) co (cO2 O cO3 + cO3 © u 2 ) } . 

Hence we see that the tensor 

(5.8) Q = (O.O1 + b c O 2 ) 0 ( c J 1 C:)CJ3+cO3OcOL) 

+ (cujv + ecj2) ('•) (UJ2 io cO3 + cO3 0 UJ2 

is also invariant. Now, because E3 = d/dy is determined up to a sign, and Ey, E2 

are determined up to an orthogonal transformation (with functional coefficients), the 

functions 

• 9 ) Q(Ei, £ľ,. E-л) + Q(E-,.E2,E-t) = a + e, 

Q(E2) E,. E3) - Q(E{, E2,E-:t) = b - c. 

are Rieinannian invariants up to a sign. 
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The square of the norm, ||Q||2 = 2(a2 + b2 + c2 + e2) is a Riemannian invariant 
and hence (equivalently) ae — be is a Riemannian invariant. We summarize: 

Proposition 5.1. Denote 

(5.10) a = rlf'y, b = iJ = a0/A
2, c = l3-hi>, e = A~x A'y. 

Then ae — be is a Riemannian invariant, and a + e, b — c are Riemannian invariants 
up to a sign (i.e., depending on the orientation of the principal geodesies). Further, 
the partial derivative of any Riemannian invariant with respect to y is a Riemannian 
invariant up to a sign, and conversely. 

Using (3.1) we get, in addition 

(5.11) a + e = {ln{fA))y = -(In k)'y,b - c = //V = hk/cr. 

Further, we have 

(5 + 2) a e - b c = KXIK 

The last formula is obtained by a lengthy calculation using (4.33) and the obvious 

identities 

(5.13) a,A2 = (AA'yf + (a0)2, A3f'y = (Af)'tlA
2 - (Af)(AA'y). 

Using (5.11), (5.12) and differentiations w.r. to y we see that 

. . . . . 1 A V + Ly + M K 2/v y + L 
(5-14) M< = 1 ' P -ir~ 
are Riemannian invariants up to a sign, and 

1 Ky2 + Ly + M 2Ky + L L2 - 4NA/ L2 - 4KM 
( 5 - 1 5 ) IV^" K ' h ' K2 , 1? 

are Riemannian invariants (assuming everywhere that h / 0, or K / 0, respectively). 
Next, we shall prove some simple results concerning isometries of SSS to be used 

later. Let (M,g) be and SSS given by (2.1) and let (M.g) be another SSS with the 
metric g given by the orthonoriiial coframe 

(5.16) Ol = f (he, Co2 = A dx + C dw, OA = dy + H dw. 
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Suppose tha t there is an isometry F: (M,g) —•> (M,g) given by 

(5.17) w = w(w,x,y), x = x(w,x,y), y = y(w,x,y). 

P r o p o s i t i o n 5.2. The equations (5.17) can be reduced to the form 

(5.18) w = w(w,x), x = x(w,x), y = ey + §(w,x), e = ±1. 

P r o o f . According to the geometric meaning of the principal geodesies we have 

(writing always Cul instead of F*Ql) 

(5.19) u)1 = (cos(f)ujl — ( s in^)c j 2 , u)2 = e1 ((sin (f)ujl + (cos(D)u;2), Co3 = euj3, 

where ip is a function of w, x, y and e,e' = ± 1 . Hence 

(u;1)2 + (UJ2)2 = (a;1)2 + (CJ 2 ) 2 = f2 dw2 + (C dw + Adx)2. 

On the other hand, from (5.16) and (5.17) we get 

(cD1)2 + (a;2)2 = [f2(dw/dy)2 + (C(dw/dy) + A(dx/dy))2} dy2 + other terms. 

Hence dw/dy = dx/dy = 0. 

Finally, Co3 = eu3 means dy — edy = eH dw — H dw = Pe dx + Q£ dw, where 

PE, Q£ are functions of w, x only (depending on e). Hence we get y = ey + $£(w, x), 

where $£ is a potential function of the (integrable!) form P£ dx + Q£ dw, q.e.d. • 

P r o p o s i t i o n 5 .3 . Suppose that On = 0 on (M,g) and Oo = 0 on (M,g). Further, 

assume that a - e ^ O , o r c ^ O holds on (M,g). Then any isometry F: (M,g) —•> 

(M,g) implies the equalities 

(5.20) Cdi=e1-uji, £{ = ±\ (i = l , 2 , 3 ) . 

P r o o f . We have 6 = 5 = 0 and, according to Proposition 5.1, we obtain, via 

the isometry F, 

(5.21) d = ea, e = ee, c = sc. 

Here e is the sign from (5.18) (as follows from (5.1 l ) i ) and e is another sign. (The 

other possibility a = ee, e = ea can be eliminated by choosing new local coordinates 

and a new coframe.) 

Suppose now that s in^ ^ 0 holds in (5.19). Substituting (5.21) and (5.19) into 

the invariant equation Q = Q (cf. (5.8)), we obtain after a routine calculation tha t 

a — e = 0 and c = 0 along (M,g). This completes the proof. • 
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6. A S Y M P T O T I C FOLIATIONS AND G E O M E T R I C CLASSIFICATION 

Let us recall tha t the principal geodesies are trajectories of the vector field E:i. 

We shall introduce two basic definitions. 

Def in i t ion 6 .1 . A smooth surface IV C (M,g) is called an asymptotic leaf if it 

is generated by the principal geodesies and its tangent planes are parallel along these 

principal geodesies (w.r. to the Riemannian connection V of (M.g)). 

Def in i t ion 6.2 . An asymptotic distribution on (M.g) is a 2-dimensional smooth 

distribution which projects into a 1-dimensional distribution via the map ~: 

(w,x,y) i—> (w,x), and satisfies the equation 

(6.1) Oo dx2 + v?5 dx die — cpo dw2 — 0. 

The following Proposition is obvious: 

P r o p o s i t i o n 6 .3 . Let A = y>| + 4a0^o denote the discriminant of (6.1). 

a) If A < 0 on (M,g), then there is no real asymptotic distribution on M. 

b) If A > 0 on (M,g), then there are exactly two different asymptotic distributions 

on M. 

c) If A = 0 on (ALg) and some of the functions r/(), (p0, <p$ JS nonzero af each 

point, then there is a unique asymptotic distribution on M. 

d) If Oo = ^o — ^5 = 0 on M, then any TI-projectable smooth 2-dimensional 

distribution on M is asymptotic. 

Def in i t ion 6.4 . The space (A/, O) is said to be elliptic, or hyperbolic, or parabolic. 

or planar, respectively, if the case a), or b), or c), or d) of Proposition 6.3 occurs on 

the whole M, respectively. 

Because we are interested in the local classification only, we shall investigate only 

the "pure" cases and not the combined ones in the sequel. (For a global t reatment 

of some of our geometric types see [Sz 2]). 

Now, the following theorem gives the connection bet ween the definitions 6.1 and 

6.2 and thus ensures the geometric meaning of Definition 6.4: 

T h e o r e m 6.5. Let (M,g) be hyperbolic, or parabolic, or planar. Then the cor

responding asymptotic distributions are integrable and their integral manifolds are 

asymptotic leaves. Conversely, each asymptotic leaf is an integral manifold of some 

asymptotic distribution. Consequently, (M,fj) admits two, or one, or infinitely many 

asymptotic foliations, respectiv(iy. 
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P r o o f . In the hyperbolic case, the both asympto t ic distributions are given for 

<pr, ^ 0 by 

(6.2) 2O0 da; + (<p5 + V/A) dw = 0, ((D5 + N / A ) d:r - 2p0 duj = 0, 

and for ^ 5 ^ 0 by 

(6.3) 2Oo dx + ((/?5 - v/A) dw = 0, (<p5 - \ /A) dT - 2(p0 dw = 0. 

In the parabolic case, the unique asymp to t ic distribution is given by some (or both) 

of the equations 

(6.4) 2a0 dx + v?5 dw = 0, <.p5 dx — 2(^0 di/j = 0. 

To each of these asymp to t ic distributions one can find (at least locally) a potential 

function P(x,w), i.e., such function that the distribution is given by the equation 

d P = 0, and hence the integrability follows. In both cases we see that our distribu

tions contain the vector field E3. 

In the planar case we know tha t a 2-dimensional distribution on (M, a) is asymp

totic if and only if it is 7r-projectable. Because a jr-projection is 1-dimensional and 

hence integrable, all these distributions are integrable (and contain the vector field 

E:i). Let us notice tha t the projection n is not orthogonal w.r. to the metric a, in 

general. 

Let now IV C M be an asymptotic leaf. Then the tangent planes along IV are 

determined by the formula 

(6.5) sin (D • (JU1 + cos (f • uj2 = 0, 

where ip is a smooth function on N. This means 

(6.6) T11XN = span(cos<p • E\ — siii<p • E2, E%).w, m G N. 

Now, the integrability condition 

(6.7) [cos (D • Ei — sin <D • E2, E3] e span(cos (D • E\ — sin p • E2, E3) 

and the asymptoticity condition 

(6.8) V/73(cos<p • E\ — sin ĉ  • E2) E span (cos <£ • Fi — shup • E2:E3) 
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must be satisfied along N. Hence it follows that also 

(6.9) ^{coa^p-Ei-simp-E2)
E^ G span(cosip • Ei -simp- E2,E3) 

holds along N. From the formulas (5.4) we obtain that (6.9) is equivalent to 

(6.10) sin ip - b + sin (D cos <p(e — a) — cos2 p • c — 0. 

Using (6.5) as a proportion formula, we see that the tangent distribution of N satisfies 
the equation 

(6.11) C(LO1)2 + (e - a)ujlLU2 - b{uj2)2 = 0. 

Now, substituting for LJ1,LJ2 from (2.1) and form a, b, r, e from (5.10) we get hence 

(6.12) a0A
2 dx2 + (a0C

2 + AC(Afy - fA'y) + hAF - a0f
2) dw2 

+ (2a0AC + A2(Afy - fA'y)) dxdw = 0. 

According to (4.21) we see that 

(6.13) A2(Afy - fA'y) = A2(fA)'y - (Af)(A% = ^A1 - 2a0AC. 

Substituting from (6+3) into (6.12), and using the algebraic formula (4.41), we obtain 
the equation (6.1). Thus we have proved that the tangent distribution along N is a 
part of some asymptotic distribution on M, and hence N is an integral manifold of 
this distribution. 

The assertion that the integral manifolds of any asymptotic distribution are asymp
totic leaves can be now proved just by reversing our procedure. • 

Let us point out that the nontrivial part of the proof is the algebraic formula 

(4.41), which involves most of the computations of Section 4. 

Now, the following Theorem will be crucial for the explicit geometric classification 

of the non-elliptic SSS in Section 7. 

Theorem 6.6. In the hyperbolic and parabolic case, there exists a transformation 
of local coordinates preserving the form (2.1) of the metric and annihilating the 
function a0(w,x). 

P r o o f . Suppose that (AI,g) is hyperbolic, i.e., A > 0. Then at the basic point 
p G M either ^ 5 ^ 0 or p0 / 0. In each case, one of the equations (6.2), (6.3) has 
a nonzero coefficient at dw in a neighborhood of p. If we fix any potential function 
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w = w(w, x) of such an equation, then (w(w, x),x, y) is a new local coordinate system 

in a neighborhood of p . Now, one can find an orthonormal coframe (cD1 ,CJ2,LJ3) such 

tha t 

(6.14) u ) 1 = f d u j , CD2 = Adx + Cdw, LJ3 = dy + Hdw. 

Further, we look for a substitution y = y + $(w,x) such tha t 

(6.15) dy + Hdw = Ay + H dw, 

where H = H(w,x) is the second unknown function. We get the conditions 

(6.16) *'w + Hw'w = H, *'x+Hw'x=0. 

The corresponding (local) integrability condition is 

(6.17) H'xw'w-H'ww'x=Hx, 

which is a P D E for H. 

Let us fix one solution H(w,x) of (6.17). Then the function $ is determined by 

(6.16) up to a constant. As we see, (6.14) and (6.15) give the s tandard form (2.1) 

for our metric in the new local coordinates w. x = x, y. 

Now, the couple ^ \ , 3^2 of the asymptotic foliation of (M,g) is described by the 

equation analogous to (6.1): 

(6.18) On div2 + ĉ 5 da; dw — <po dw2 = 0. 

Because one of these foliations, say &\, is given by the equation dw = 0, we get 

hence Oo = 0 in the whole neighborhood, q.e.d. 

Suppose now that (M,g) is parabolic . If CDs -^ 0 or <po ^ 0 at p, we make use of 

(6.4) and the proof is similar as in the hyperbolic case. Assume now <D5 = p0 = 0 

and thus Oo ^ 0 at p. We first substi tute w = x, x = w, then the formulas (2.1) take 

on the form 

(6.19) ujl=fdx, LJ2 = Adw + Cdx, LJ3 = dy + H dx. 

Now we construct a new orthonormal coframe 

(6.20) cD1 = cos cD • LJ2 — sincD • cD1, cD2 = sincD • u2 + coscD • cD1, cD3 = cD3, 
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such tha t 

(6.21) Qi=]dw, uj'2 = Adx + Cdw, 

and introduce a new variable y = y + $(w,x) such that 

(6.22) c^3 = dy + Hdiu. 

We obtain easily 

(6.23) c o s ^ O , tamp = cf-\ Af = Af, A2 = f'2 + C2, ]2 + C2 = A2. 

We see tha t the coframe (u)') given by (6.21), (6.22) is of the s tandard form (2.1). 

Then, in the notation of the proposition 4.4, 4.5, we have 

(6.24) <fi = Oi, p>2 = O2 - 2 $ O i , (f>3 = CH&2 - (1-2$ + O3, 

and due to (4.13), (4.18) we obtain (po = +a0 / 0. Then we continue as in the 

hyperbolic case. • 

R e m a r k . As concerns the planar case, we have O() — 0 (in a neighborhood of 

p) by definition. Thus for every non-elliptic space (ALg) we can assume O0 = 0. 

Conversely, from (6.1) we see that On = 0 always implies that (Ad, g) is non-elliptic. 

In the second part of this Section we shall prove a number of geometric results on 

asymptotic foliations. We shall also compare our Definition 6.4 with the terminology 

of Z. Szabo. 

First, let us notice that the discriminant of (6.1) is given alternatively by the 

formula 

(6.25) A = L2 - 4 A M . 

Indeed, combining (4.43) with (4.26)2 we obtain at once 

(6.26) 4 A M - L2 + (^ 5 ) 2 + 4<JAX/O = 0. 

Hence we get 

P r o p o s i t i o n 6 .7 . The space (M,g) is elliptic it' L'2 - 4 A M < 0, hyperbolic if 

L2 - 4KM > 0, and parabolic or planar if L2 - 4KAI = 0. In the nonplanar case 

and for K ^ 0, the number of asymptotic foliations is the same as the number of real 
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roots of the quadratic equation Ky2 + Ly + M = 0, i.e., the number of singularities 

of the scalar curvature Sc(g) along a principal geodesic. 

On the other hand, from (6.11) we obtain 

P r o p o s i t i o n 6 .8 . The space (M, g) is elliptic if (a - e)2 + 4bc < 0, hyperbolic if 

(a - e)2 + 4bc > 0, and parabolic or planar if (a - e)2 + 4bc = 0. (M, g) is planar if 

and only if a — e = b = c = 0. 

Corol lary 6.9. The space (M,g) is planar if and only if f = \(w,x)A, C = 

p(u\.v)A and O0 = 0. Assuming O0 = 0, (M ,g) is parabolic if and only if f = 

\(u\.v)A and Ji ^ 0 (A,/t are arbi trary functions). 

P r o o f . O - c = 0 means (f/A)' = 0, b — 0 means O0 = 0, and c = 0 means 

h = 0 (see (5.10)). Due to (3.3)2, Oo = h = 0 is equivalent to (C/A)'y = 0. 

Next, we have • 

P r o p o s i t i o n 6 .10. IfJi = 0, then (M,g) is hyperbolic or planar. In the hyperbolic 

case. Ji = 0 means that the asymptotic foliations J^i, ^ are mutually orthogonal. 

P r o o f . h = 0 means b = c (cf. (5.11)) and hence (O — e)2 + 4bc ^ 0. In 

the hyperbolic case, the equation (6.10) means that 2bcos2<p + (O — e)sin2<£ = 0. 

Hence if <p characterizes one of the asymptotic foliations, then <p + ^ characterizes 

the second one. From (6.5) we see that both foliations are mutually orthogonal. 

The asymptotic foliations are not totally geodesic, in general. Yet, we have the 

following • 

P r o p o s i t i o n 6 .11 . Let the metric O be hyperbolic, or parabolic, or planar, and 

expressed in such a coordinate system that O0 = 0. If a = 0, then at least one of the 

asymptotic foliations is totally geodesic. 

P r o o f is straightforward: because b = 0, formulas (5.4) show tha t span(£2 . £;,) 

is an asymptotic distribution. But the corresponding asymptotic foliation is totally 

geodesic if and only if 

X7E2E2 e spaai(E2,E3), i.e., o = 0. 

We shall conclude this Section with the following • 

R e m a r k 6 .12 . Proposition 6.8 enables to compare our geometric terminology 

with that used by Z. Szabo in this study of complete foliated manifolds satisfying 

R(X,Y) - R: = 0 (see [Sz 2]). For the 3-dimensional case, the definitions by Szabo 
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can be presented in the following way: let B denote the endomorphism of TM over 

the identity id: M —>• M defined by the formula 

(6.27) B(X) = V X F 3 , X e TM. 

Then we have, according to (5.4), 

(6.28) B(EX) = a ^ + cE2, B(E2) = bEs + cE2) B(E3) = 0. 

Now, the foliated space (M,cj) is said to be trivial if B = 0, and parabolic if H 7̂  0 

but H2 = 0 on M . We shall show later that the trivial case means the product case, 

and tha t the parabolic case in the above sense is a special subcase of our parabolic 

case (the only one in which the completeness can occur). Further, a space (M,g) 

is said in [Sz 2] to be hyperbolic if B has two imaginary eigenvalues along M. This 

condition means 

(6.29) (a + e)2 - 4(ac - be) < 0, i.e., (a - c)2 + 4bc < 0. 

Hence the hyperbolic spaces by Szabo are just elliptic foliated SSS in our sense. 

7. T H E E X P L I C I T CLASSIFICATION O F GENERIC N O N E L L I P T I C SPACES 

In this section we shall explicitly classify all generic hyperbolic, parabolic and 

planar foliated SSS, and we shall also present some nongeneric but interesting exam

ples. Moreover, we shall answer the question how the distinct local isometry classes 

can be parametrized. In this section we always assume UQ = 0 (which is allowed by 

Theorem 6.6). 

We shall s tar t with some general results. 

P r o p o s i t i o n 7 .1 . The coefficients A, C, f from (2.1) can be expressed in the 

form 

(7+) A = py + q, C — ry + 5, f — ty + a, 

where p, q, r, s, t, u are functions ofiu, u' only, such that 

(7.2) ps — qr = h. 

Moreover, if h ^ 0, we can assume h = 1, H — x: and if h = 0, we can assume 

H = 0. 

452 



P r o o f . Because O0 = 0, i.e., (3 = 0, the equation (Bl) implies Ayy = 0, and the 
equations (B3), (C3) together with (3.4) imply C'y\ = fyy = 0. The formula (7.2) 
follows from (3.3)2 and (7.1) because h = H'x, 0 = 0. 

It remains to prove the last part. If h ^ 0, then H'x / 0 and one can introduce 
the new variable x = H(w, x) instead of x. Then we get our orthonormal coframe in 
the standard form 

to1 = fdw, u2 = (A/h) dx + (C - H'w/h) dw, UJ3 = dy + xdw. 

Let now h = 0. Because H depends only on uj, we get UJ3 = dy, where y = y+f H dw. 

This concludes the proof. D 

Proposition 7.2. The differential equation (Al) is satisfied if and only if the 

following equation holds: 

(7.3) u$-t£> = 0, 

where 

(7.4) & = p'm-r'x, S = q'w-s'x-pH. 

P r o o f . Substituting from (7.1) into (3.3)i we get 

(7.5) Aa = rl(A'w -C'x- HA'y) = ^ ± * . 
J ty + U 

Because ft = 0, the equation (Al) simply means that Aa does not depend on y and 

hence (7.3) follows. D 

Proposition 7.3. Assuming that (Al) is satisfied and 

(7.G) Aa= r(w,x), 

then (A2) is satisfied if and only if 

(7.7) pu'x-qt'x = hr. 

P r o o f . We have first, using (3.4) and (7.6), 

(t'x-rr)y + (u'x-sr) 
R = 1pffx-Ca = A-l(f'1.-rC) = 

PУ + 4 

But the equation (A2) only means that R does not depend on y, and (7.7) follows 
from (7.2). D 
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Now, we can state the "converse" of Proposition 7.1. 

P r o p o s i t i o n 7.4 . Let p, q. r, s, t, u be ãľbitrary ťunctions oť two variables w, r. 

Let us defìne the ťunctions Л. C, f by (7.1), and let H = H(гu,x) be any ťunction 

satisťying 

(7.8) H; =h = ps - qr. 

ťťthe equations (Al), (A2) are satisťied, then (2.1) detìnes a ťoliated semi-symmetric 

metńc oť nonelliptic type. 

P r o o f. Define the functions K, L, M and O/, b/, ÇІ (І — 1,2, 3) by the formulas 

(4.2), (4.12), (4.17) and (4.19), respectively. Put , in addition. 

(7.9) <p5 = tq - up. if4 = - ( L + (̂  ), yo = ru - ts. 

Then we check easily that all algebraic conditions of Theorem 4.8 are satisfied, and 

hence the result followrs. 

We can now prove our main results. ü 

T h e o r e m 7.5. The generic ťamily oťhyperbolic (ťohated semi-symmetric) metrics 

in dimension 3 is given by 

Í
iüx = (ty + u) dw, 

u2 = ІPУ + q) d-i- + (ry + s) dw, 

LÜЛ = dy + rrdnj, 

where p, q, r, s are arbitraгy ťunctions oťw, r such tliat ps — qr = 1, and t, u nre 

calculated ťrom p, q, r. s as ťollows: 

(7 .11) 

where 

(7 .12) 

(7 .13) 

u = exp ( - / P ' a.v Qexp - / Pdr) du 
1/2 

t = u.9/Є. 

p=2<l(Wx-9^)^ Q _ 2 " 2 

(
c>\p£ - q9) p<c> - q9 

9 = p'tr - /•.;., <<> = q'w - s'v - pr, ^ ( / ^ - q9) / 0. 

TLe 1ocai isometry classes of the metrics (7.10) are parametrized by 3 arbitrary 

functions of 2 variables modulo 2 arbitrary functions of 1 variable. 
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P r o o f . In the generic case we can assume h / 0 and hence H = x,h = 1 

(Proposition 7.1). One can also assume &(p£ — q&) / 0. We express (7.3) in the 

form t = u3 /£ and substi tute into (7.7), where Y = £ fu. We obtain easily the 

differential equation 

(7.14) (u% - Pu2 = Q, 

which can be solved by the s tandard method of "variation of constants". Because 

p£ - q9 ^ 0, Formula (7.3) implies pu - tq / 0, i.e., (f/A)'y / 0. According to 

Corollary 6.9, our metrics are neither parabolic nor planar. Because Oo = 0, they 

must be hyperbolic. This proves the first part of Theorem 7.5. 

We now prove the statement about the local isometry classes. Let (M,g), (M,cj) 

be two spaces with the metrics of the form (7.10) and let F: M -> M be an isometry 

We shall identify the forms K*cj7 with Qz, as usual. Because b = 0 and h ^ 0, (5.11)2 

implies c ^ 0 and we can use Proposition 5.3. Let us assume, for the simplicity, 

so = £3 = 1 (for the other signs, the argument is similar). We get first Co1 = ecu1 and 

hence 

(7.15) w — p(w), dw = p'(w) dm , iy + u = (ty + u)/p'(w). 

The equation Co3 = uo3 means d(y — y) = (x — xp'(w)) dw, i.e., 

(7.16) y = y + V ' W , ^ = (^ " ^'(w))/p'(iu). 

Finally, O2 = UJ2 implies easily 

(7.17) [p(y + *P(w)) + q][(WM) dx + x'w dw] 

+ [f(y + il)(iv)) + s]ip'(w) dw = (py + q) dx + (ry + s) dw. 

Comparing the coefficients of dx and dm, respectively, and then the coefficients of 

/ / and y° in each case, we obtain 

(7.18) p = pp'(w), q = p(w)(q - pip(w)), f<p'(w) = r - pp'(w)x'w, 

where x'w can calculated from (7.16). Further, s obviously satisfies the relation 

ps - rq = 1. 

The formulas (7.15)-(7.18) show that the function w, x, y, p, q, f, s, t, u can be 

expressed through w, x, y, p, q, r, s, l, u and the arbitrary functions <p(w), ip(iv) of 

one variable. Thus each local isometry class depends on 2 arbitrary functions of 1 

variable. This completes the proof. • 
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Let us notice that the isometry part of Theorem 7.5 can be stated more precisely 
using the concept of germs (cf. [KTV 1]). 

Next, we have 

Theorem 7.6. The generic family of parabolic metrics is given by 

(
UJ1 = \(py + q) dw, 

UJ2 = (py + q)dx + (ry + s) du\ 

UJ3 = dy + xdw, 

where p, q are arbitrary functions of 2 variables, (p/q)'x / 0, and 

(7.20) r = *=±±, s=<=±±, 

(7-21) ^ = [(p'w-r'x)/pD]ll\ 

(7-22) D = pq'x - qp'x, E = -p2x + pq'w - qp'w. 

The local isometry classes are parametrized by 2 arbitrary functions of 2 variables 

modulo 2 arbitrary functions of 1 variable. 

P r o o f . According to Corollary 6.9 we only have to assume h = 1 and the 
parabolicity condition / = \(w,x)A. Thus, the only algebraic relations for the basic 
functions are 

(7.23) ps-qr = l, 

(7.24) t = Ap, u = \q. 

Now, the equation (7.3) can be rewritten as 

(7.25) q@-p£ = 0, 

which means 

(7.26) ps'x - qr'x = E, 

or, due to (7.23), 

(7.27) rq'x - sp'x = E. 
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Here (7.23) and (7.27) form a system of linear algebraic equations for r, s with the co

efficients depending on p, q only. Hence we get the expressions (7.20) by the Cramer 's 

rule. 

An concerns the equation (7.7), it can be written, via (7.24), in the form 

(7.28) \{pq'x - qp'x) = V = 9jt = 9 / Xp. 

Hence the formula (7.21) follows. 

Let us notice that the functions p, q only have to satisfy a differential inequality 

pD(;p'w — sx) ^ 0; thus p, q can be still considered as arbitrary functions of 2 variables. 

The last assertion about the local isometry classes can be proved exactly in the 

same way as we did for the hyperbolic case. • 

Now, we shall recover a (nongeneric) family of parabolic metrics from [KTV 1]. 

T h e o r e m 7.7. Let (M,g) be 3-dimensional foliated SSS such that the scalar 

curvature Sc(g) is constant along each principal geodesic. If (M, g) is not locally a 

direct product, then it is parabolic and the metric g is locally determined by the 

orthonormal coframe 

(7.29) cD1 = f(w,x)dw, LO2 = dx — ydw, LU3 = dy-\-xdw. 

The asymptotic leaves are totally geodesic and Euclidean. The local isometry classes 

depend on 1 arbitrary function of 2 variables modulo some constants. 

P r o o f . Because the scalar curvature is given by the formula 

Sc(g) = 2a(w,x)/(Ky2 + Ly + M ) , 

our condition means tha t K = L = 0, and hence the discriminant A = L2 — 4KM 

is zero. Thus (M,g) is either parabolic, or planar . We can assume tha t A, C, f are 

given by formulas (7.1), (7.2). Here ft = 1 if y is parabolic, and ft = H = 0 if g is 

planar (cf. Corollary 6.9). Because K = L = 0, we get Af = M(w,x), and hence 

p = t = 0. 

Consider first the parabolic case. Here C = ry + s and rq = —I. From (7.3) we 

get r'x = 0 and hence r = r(w),q = q(w). From (7.7) we get f = 0, i.e., £ = 0, 

which means 

(7-30) q'w - s'x = 0. 

Introducing a new variable w = - f r(w) dw, we obtain our metric in the form 

(7.31) Ldl = udw, LO2 = qdx - (y + s) dw, uj3=dy + Hdw, 
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where 

(7.32) s = s/r(w), H = -x/r(w). 

Hence we get H'x = q, and introducing tlie new variable x = H we can write 

(7.33) u2 = dx - (y + s + H'-) dw, ^ = dy + x dw. 

Now, (s + H'-)'x = s'x + q'- = (s'x - q'w)/r(w) = 0 according to (7.30). We can write, 

denoting w once again as w, 

(7.34) UJ1 = u dw, uo2 = dx — (y + <p(w)) dw, LJ3 = dy + x dw. 

Finally, consider the new variables 

(7.35) X = x + A(iu), Y = y + D(w), 

and try to determine the functions A(w), D(w) so that 

(7.36) UJ2 = (IX - Y dw, UJ3 = dY + X dw. 

We obtain a system of ordinary differential equations 

(7.37) A'(w) = D(w) - <p(w), D'(iu) = -A(w), 

which is easy to solve. Then we get the expression (7.29) in the new variables. 

Suppose now tha t (M,g) is planar, i.e., h = H = 0 and rq = 0. Because q / 0, 

we get ?' = 0 and C = C(w,x). We see that all functions A, C, f depend on ir. x 

only, and CJ3 = dy; thus we obtain a product metric. 

The rest of Theorem 7.7 lias been proved in [KTV 1], • 

R e m a r k 7.8. It is easy to show that the spaces described in Theorem 7.7 are 

exactly the parabolic spaces in the sense of Szabo (see the previous Remark G.12). 

R e m a r k 7 .9. Let us recall (see [KTV 1,2,3]) that a Riemannian manifold (M.g) 

is said to be curvature homogeneous if, for any two points p, q G M, there is a 

linear isometry <p: TpM —> T(]M such that <p*(R(}) = Rp holds for the corresponding 

curvature tensors. In [KTV 2] the authors have proved that , in dimension /?. all 

irreducible and locally nonhomogeneous curvature homogeneous spaces (M,g) which 

have the same curvature tensor as a fixed symmetric space must be foliated SSS. (The 

proof is based on the paper [Sz 1]). The symmetric model space is then either of the4 

form S2(X2) x Rn~2, or of the form H2(-X2) x U"-'2 (cf. Section 1). 
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In dimension 3 we can now describe all such spaces explicitly. In fact, if (M,g) 

is curvature homogenous (and semi-symmetric), then the scalar curvature Sc(g) is 

constant on the whole space, and if (M,g) is not locally a direct product, then it 

must belong to the family described in Theorem 7.7. Then the formula (4.3) implies 

that the function f(w,x) must be either of the form / = a(w)eXx + b(iu)e~Xx, or of 

the form / = a(w) cos AT + b(iv) sin AT (see [KTV 1] for the details). 

We are now left with the planar case. 

T h e o r e m 7.10. All locally irreducible planar metrics are locally determined by 

an orthonormal coframe 

(7.38) ujl = f(w,x)ydw, to2 = ydx, uo^ = dy. 

The local isometry classes are parametrized by the function f(w,x) modulo 2 arbi

trary functions of 1 variable. 

P r o o f. According to Corollary 6.9 we have / = X(iu, x)A, C = u,(iv, x)A and 

H = 0. We can write hence 

(7.39) t = Xp, u = Xq, 

(7.40) r = Lip, s = u,q. 

If we substi tute (7.39) and h = 0 into the equation (7.7), we get 

(7.41) pqfr-qpfr=0. 

The equation (7.3) can be written again in the form (7.25). Substituting here from 

(7.4) and using (7.40), (7.41), we get 

(^•42) pq'w - qp'w = 0. 

Hence, if /; ^ 0, (7.41) and (7.42) imply q/p = constant. We can express the or

thonormal coframe (2.1) in the form 

.43) 

Lül = Xp(íJ + (') (ҺE, 

ІJ'2 = p(y -f c) dx + џp(y + c) dw, 

t LÜЛ = dy. 

Substituting the new variable y = y + c, we eliminate the constant c. Let us 

introduce the new variable x = x(w, x) as a potential function of the Pfaffian equation 

d r + // dw = 0. Then we can write (7.43) in the form 

(7.44) CJ1 =tfjdw, UJ2 = pjjdx, UJA = dy. 
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Now, solving a 1st order linear PDE, we can find a function ip(w,x) such that 

(cos ip)t cluj-f (sin (p)p dx is (locally) a total differential, say dX. Using a new orthonor-

mal coframe (CD1 ,LJ2,LJ3) where CJ1 = simp-uj1 - c o s ^ -u/ 2 ,u 2 = C O S ^ - C J 1 + s i n ^ - ^ 2 , 

and denoting by W a potental function of u)1 = 0, we obtain (7.38) up to a notation. 

Suppose now p = 0. Then by the analogous calculation we obtain the coframe 

(7.45) u;1 = f(uKx) dw, UJ2 = dx, J3 = Ay, 

which gives a direct product metric . It is obvious that to classify the isometry classes 

of the metrics (7.45) is (locally) the same as to classify the surfaces in E3 up to an 

isometry. This problem was solved (in the analytic case) by E. Cartan: All surfaces 

in E3 which are (locally) isometric to a fixed generic surface M2 C E3 depend on 2 

arbitrary functions of 1 variable (see [Ca2], Par t II, Problem V). 

Now we see tha t the problem to characterize the local isometry classes of the met

rics (7.38) is equivalent to the same problem for the metrics (7.45). This concludes 

the proof of Theorem 7.10. D 

R e m a r k 7 . 1 1 . The direct product metrics (7.45) are semi-symmetric for a triv

ial reason. The metrics (7.38) are obviously warped products. Introducing a new 

variable by y = ev we see that they are conformaly equivalent to the product metrics. 

Finally, we have the following result about the completeness: 

T h e o r e m 7 .12 . A hyperbolic SSS is never complete. A parabolic SSS can be 

complete only if it belongs to the family (7.29), and a planar space can be complete 

only if it is a direct product. 

(This is an a full accordance with the more general results by Z. Szabo, [Sz 2], if 

one takes into cosideration Remark 6.12). 

P r o o f . If (M, g) is complete, then all principal geodesies must be defined for y e 

( - c o , -foo). This means that we have the formula Sc(g) = 2c(iv, x)/(Ky2 + Ly + M) 

in an infinite 3-climensional strip. If Ky2 + Ly + M = 0 has a real root for some 

(iu, x) = (WQ, XQ), then the corresponding principal geodesic meets a singularity. D 
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8. T H E ELLIPTIC CASE 

The elliptic case is much more difficult to deal with because the coefficients f,A,C 

in (2.1) cannot be linearized and they are always algebraic functions of y. We are 
not able to solve the classification problem explicitly, but we can still prove that the 
local isometric classes in the generic case depend essentially on 3 arbitrary functions 
of 2 variables. Also, we give examples of explicit families depending on 1 arbitrary 
function of 2 variables. 

We see first that the functions an, v?o and h are always nonzero in the elliptic 
case (cf. (6.1) and Proposition 6.10). From (4.13) and (4.18) we see that Oia3 > 0, 
^1^3 > 0> a n d fr°m Proposition 6.7 we see that KM > 0. Thus A2, f2 + C2 and 
f A are proper quadratic polynomials w.r. to y (with the imaginary roots). 

Now, wc have 

Proposition 8.1. Every elliptic metric g can be expressed locally, using the con
venient coordinates and the convenient coframe, in the form (2.1), where either 

(Case I) L = 0, a2 ^ 0, b2 = 0, 

or 

(Case II) L = 0, a2 = 0, bx = b3 = 0. 

P r o o f . First, if L ^ 0, we substitute the new variable y = y + L/2K in (2.1). 
Then we can introduce new functions w and H such that 

(8.1) dy + Hdw = dy + Hdw. 

In fact, is suffices to fix w as a potential function of the equation 

(8.2) (H - (L/2K)'W) dw - (L/2AX dx = 0. 

Now, it is easy to find an orthonormal coframe (u;1 ,^2 ,^3) such that, using a new 
local coordinate system (iD,x\g), 

(8.3) CD1 = / dfD, (I)2 = A dx + C du>, CJ3 = dy + H dw. 

Due to (5.15), (A'y2 + Ly + M)/K is a Riemannian invariant, and hence 

, 0 .. Ktf + Ly + M Ky2 + Ly + M Ktf + (M - L2/4K) 
(8.4) j , = = , 

which implies L = 0. • 
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Now, we restore the original notation as in (2.1) and continue as follows: 

a) Suppose first a2 / 0. Let us fix a potential function x = x(w, x) of the equation 

O2 dx + b2 diu = 0; then there is another function P(u\ x) such that 

(8.5) P(u\x)dx = a2dx + b2dir. 

We obtain tu2 = Adx + Cdu\ where A = (P/a2)A. C = C - (b2/a2)A, and hence 

(8.6) Ajj2 = (d\\f + O2?j + a3) da; + (bi//2 + b3) <hv, 

as required. 

b) Suppose now O2 -=- 0 in a neighborhood, then (4.23)2 for L = a2 = 0 means 

bi = AOi, b.3 = AO3 and hence 

(8.7) Au)2 = (O,//2 + O3)(dT + Ad«0 + b2ydw. 

Introducing a new variable x as a potential function of the equation dx + Xdw = 0. 

we conclude the proof. 

We shall now study the ufine structure" of the differential equations 

041) (Aa)'u + Jx = 0, (A2) R'tl - Ju. = 0 (,i ± 0), 

i.e., we shall rewrite (Al) and (A2) as a system of PDE for the functions of 2 variables 

only. 

First, using (3.3) i we express a A in the form 

(8-8) aA = lvi(A2)'w - 2(AC% + (AC)A~'2(A% - H(A2)'y). 

Then we substi tute for </' = l/fA,A2,AC from (4.2). (4.12) and (4.19). Hence we 

obtain a A as a rational function w.r. to y with the co(ifficients depending on a;, b;. 

A', L, M , H and their first partial derivatives w.r. to //'. .r. Thus the coefficients arc* 

functions of iv, x only. 

Further, using (3.4) and(3.3)2, we express R in the* form 

(8.9) 7? = -2^[(f2 + C2)',. + H(H'V + (AC%) - (AC)A"2(A2)'lL], 

and we substi tute here from (4.2), (4.12), (4.19) and (4.17). putt ing also H'r = //. 

We obtain another rational function w.r. to y\ tin* coefficients depend, in addition . 

on the functions (<fi)[v, / = V2.3. Finally, we put 

(8.10) i1 = a0(aiy2 + a2y + a->)~l 
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as follows from (4.11), (4.12). 

Substituting (8.8)-(8.10) into (Al) and (A2), and using the common denominator 

(Ky2 + Ly + M)2(a\y2 + a2y + as)2 in each case, we see that the corresponding 

numerators are polynomials of degree 7 w.r. to y. Now, these polynomials have to 

be zero and hence all the coefficients must vanish. 

For the equation (Al) , each coefficient equation involves a linear combination of 

(a,-);,,, (a7-)'r, (bi)'x (i = V2,3), (a0)x and H. For the equation (A2), each coeffi

cient equation involves a linear combination of (O?)'/;, (<pi)'x (!' = 1,2,3), (Oo)'u, cind 

H. Taking suitable linear combinations of the coefficient equations we see tha t the 

number of these equations is reduced to five, in each case. 

We can make some additional simplifications using the equations (4.23) and (4.33), 

(4.34). After a very long but routine calculation we obtain (in the generic case 

OK'3 7-= 0, which includes the elliptic case) the final form of the equation (Al) as the 

P D E system 

(8.11) E P«V> + E °a<4 + R«a0x = 0 (o• = 1,..., 5), 

(8.1. җ* V2 = a'2w - 2b'.2x •2«iЯ, V3=a^u-2b^x-a2H, 

(8.13) (PL) = 

OiL —a\K 

a2L + 2O i M -a2K 

2O2 M + O3L ai M - O3 A' 

2O3jU a2M 

0 O3M 

0 

- 2 O i K 

-(2O2N + O1L) 

— (2«зIÍ + O2L) 

- O з L 

(8.i4) ( Q ; ; , я a ) = 

biL-hk -biK 0 2K~ 

{b2-h)L + 2blA4 -(h2 + h)K -2b XK AKL 

{2b2-h)M + b3L -b3K-hL + b1M ~[{2b2 + h)K+biL] 4KM+2L2 

2b3M {b2-h)M -[{2b3K + {b2 + h)L] ALM 

0 b3M ~{b3L + hM) 2M2 

Analogously, the equation (A2) gives the P D E system 

3 3 

(8.i5) Y V ' i ^ - y ^ x , , - / ? ^ , , ^ (« = i,. 
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where 

(8.16) VV! = <p'lx, W2 = <p'2x + 2b!H , VV3 = < ^ + (62 + h)H. 

Now, if a0 ^ 0 (which is our case), (4.13) implies 

(8*17) a0x = ^ ~ ( a 3 a i * ~ 2a2<1'2x + a i a 3 - = ) » 

and a similar expression for a'0w. If we substitute into (8.11) and (8.15), respectively, 
each of the new equations will be a linear combination of six terms only, with modified 
coefficients. The following Proposition can be checked by a direct (but rather long) 
computation: 

Proposition 8.2. The rank of the matrix 

is not greater than 2. 

Hence we have 

Corolary 8.3. If on ^ 0 and the partial derivatives of Go are eliminated in (8.11) 
and (8.15), then each of the new PDE system contains at most two linearly indepen
dent equations. 

Thus, in the most general case, the equations (Al), (A2) are reduced assentially to 
4 PDE in two variables. We shall see later that we can make an additional reduction 
to only two equations (one of the form (8.11) and one of the form (8.15)). This will 
be in the full accord with the nonelliptic case, in which we also had two PDE, namely 
(7.3) and (7.7). 

THE ELLIPTIC CASE I (THE GENERIC CASE) 

Suppose a2 7- 0, L = b2 = 0, which is the generic case of Proposition 8.L We have 
first 

Proposition 8.4. The following algebraic formulas must hold due to algebraic 

equations of Theorem 4.8: 

(8.18) y?i = tau ^2 = ~ ^ a 2 , y?3 = */'a3, 
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where 

(8+9) r = (li2 + ( ^ 5 ) 2 ) / 4 a i a 3 , f = -<A)M>. 

Further 

K = 2o 0 / t + cW5 L M = 2a0h - otto 

4a3 4ai 

, 0 0 1 x , -a2h + 2a0<p5 a2h + 2a0cD5 

(8.21) Oi = , b2 = 0, b3 = • 
4a3 4ai 

On the other hand, if a\, a2, a/,, h, <D5 are arbitrary functions and if the other basic 

functions a ie defined by (8+8) -(8.21), then all algebraic equations of Theorem 4.8 

hold. 

P r o o f . We shall show only the necessity of (8+8)-(8.21); the sufficiency will 

be proved by the direct check. 

The second and the fourth equation (4.31) imply p\a2 + p2a\ = 0, <p2a^+(p2>a2 = 0, 

i.e. (8.18). The first and the last equations (4.22) and (4.23) form a system of linear 

equations from which bi, 63, K and M can be expressed by means of a\, a2, a3, a0 , h 

and p>$. Hence we obtain (8.20) and (8.21). Substituting for b{ and K into the first 

equation (4.31), we obtain formula (8.19)i. Finally, from (8.18), (4+3) and (4.18) 

we get ((D0)
2 = y / 2 ( a 0 ) 2 . Here V > 0 due to (8.19)i and 4a0(D0 = A - (<D5)

2 < 0 

because A < 0. Hence we get formula (8+9) 2 . • 

Now, consider the P D E systems (8.11) and (8.15) in which the derivatives a 0 r , 

a'0w are eliminated by means of (8.17) and its analogue. According to proposition 

8.2, it suffices to use any two lines of the new coefficient matrix. The first two lines 

lead to the (equivalent) coefficient matr ix 

/ 0 2a0 0 2M p5 -2K 
1 ' j \2M -ps -2K 0 2p0 0 

Hence we get the corresponding P D E system in the form 

( 2a0V2 + 2Ma'lx + yha'2x - 2Ka'3x = 0, 

2a0VV2 - 2 M a l u ; - p5a'2w + 2Ka'3w = 0, 

2MV! - ^5V2 - 2NV3 + 2p0a'2x = 0, 

L 2M1V1 - CD5VF2 - 2NIV3 - 2<p0a'2w = 0, 

(8.23) 

where Vu W{ are defined by (8+2) and (8.16). 

465 



Substituting for (^ and b; from (8.18) and (8.21) we see, after a lengthy but routine 

calculation, t h a t the last two equations of (8.23) are consequences of the first two 

ones. 

Due to (8.20) we see that 

(8.24) 2Ma[x + ̂ a'2x - 2Ka'3x = a o / ^ l n ( a i / a ; 0 ] /

r + ^a2[\n(a2

2/aia3)]'x. 

and a similar formula holds for 2Ma'lw + '^^a'2w - 2Ka'3w. Introducing the new 

functions U(w,x), V{w,x), V < In 4, by the formulas 

(8.25) ai/On = e11, a 2

2 / a i a 3 = e r . 

we can rewrite the first two equations of (8.23) in the form 

(8.26) 
2ao{a'2u, - 2a, H) + a0ҺU'x + Wr.a-Л^ = 0, 

{ 2a0{ro'.lx + 2hH) - aohUi - ^;>«2V«, = 0. 

From (8.25) we get 

(8.27) «0 = a-2 ( e v 

4 

and hence the equations (8.26) take on the form 

.28) a!iш-2aiH + ҺU'x = --ч>5VÏ\o 
1 „,( _y 1 \ - ' / ' 2 

4 r ' J XV \, 

(8.29) v'2x + 2ln H - hU'w = -<p5Vw ( e " r - - ) 

Moreover, we can substi tute 

(8.30) ai=a2e^^u-V) 

into (8.28), and 

/ , 2 + j d « V oh.rr-»h(u+V)\(„-v ^ l 
(8.31) ^ 2 = - ^ - 1 ^ L ^ , 2b1H = e ^ ' ^ ) [ ^ - i j > 5 - - / ; j H 

into (8.29). 

Let now H, U, V be arl)itrary analytic functions. Expressing ^5 from (8.28) in the 

form <p5 = f\a2w + / 2 a 2 + / , , where fi are known functions, and substituting this in 

(8.29) (which has been transformed by (8.31)), we obtain a P D E of the form 

(8.32) «•",„, = F(a'2ana!2x,a2, </>..«•). 
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where F is a fixed analytic function of 5 variables. Then general solution of (8.32) 

depends on two arbitrary (analytic) functions of 1 variable. Thus the elliptic family 

I depends on 3 arbitrary functions of 2 variables, namely on H, U and V. 

The equation (8.32) cannot be solved explicitly, in general. Yet, we shall give an 

explicit example in this place. Let us choose H = H(w,x) as arbitrary function, and 

U, V as functions of w satisfying the equation V'(w) = e^^u^v\e~v — \)- Then 

(S.2S), (8.29) are reduced to the form 

(8.33) a2w - (jxa2 = 0, ip'2jc + fj2 = 0, 

where OL, cj2 are known functions oiw, x. Then we obtain, using also (8.18), 

(8.34) a2 = exp ( / cj\ dw J, r = f I cj2 dx J a2. 

Hence v>, can be determined using (8.19), and all basic functions are determined. 

R e m a r k . If </>, = 0 holds in (8.28), (8.29), we can choose H, U as arbitrary 

analytic functions and then express e^1//2)V from (8.28) as a function of a2w, a2, ILK 

x. Substituting in (8.29), we obtain again a PDE for a2 in the form (8.32). 

Now. we shall prove the main theorem of this Section: 

T h e o r e m 8 .5 . Tiie local isometry classes of generic elliptic metrics are par

ametrized by the arbitrary functions H. U, V of 2 variables modulo two arbitrary 

functions of one variable. 

P r o o f . It suffices to prove that each local isometry class depend only on 2 

arbitrary functions of 1 variable. We get first the formula 

(8.35) (LJ 1 ) 2 + (UJ2)2 = r(ciMJ2 - ci2y + O3) dw2 + (avy
2 + a2y + O3) dx2 

+ 2(b\ij2 + b3)d.rdm. 

Let (M. (j) he another elliptic space which is isometric to (M,g). Then the corre

sponding isometry is given by formulas of the form (5.18). Now, because 1/A'V' i>s '<*> 

Riemannian invariant (see (5.15)), we get 

(8.36) / T g - + j t 7 = Ky2 + AI. 
K K 

Substituting from (5.18) in (8.3G) we get <&(w,x) = 0 and hence y = ey. Then we 

0 btain w] = £uJA and H dw — H dw. We get finally 

(8.37) ӯ = єy. W = ip(w)щ Hv'(w) = єH. 
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Next, analogously to (8.35), we obtain 

( (Co1)2 + (CD2)2 = r(axy
2 - a2y + a3) did'2 + (Oig2 + a2y + a3) dx2 

(8.38) 

+ 2(61f/2+63)dídtT; 

= ř(lf'(w))2(á1y
2 - a2y + «3) dw2 

+ (&if + a2y + á3)((.ťt)
2 dx2 

+ 2x'xx'wdxdw + (x{ • dw2 

+ 2(b1y
2 + b3)<p'(w)(x[r dxdw + x'w dw2). 

Now, we can compare the coefficients of the expressions (8.35) and (8.38). Comparing 
the coefficients of ydxdw, we obtain a2x'xx'w = 0. Because we assume a2 ^ 0, and 
we have x'x = D^XA (ip'(w))~l / 0, this implies x'w = 0. Hence 

(8.39) x = g(x), dx = g'(x) dx. 

Comparing the coefficients of dx2 we obtain 

(8.40) A2=X2(g'(x))2, i.e., A = e'Ag'(x), 

and comparing the coefficients of dx dw we obtain 

(8.41) AC = AC<p'(w)g'(x), i.e., C = e'Cip'(w). 

Because Hip'(w) = eH, we get sH'x = Hxip'(w) = H'-g'(x)ip'(w), i.e., 

(8.42) eh = hg'(x)ip'(w). 

Finally according to (5.14) we have 

(8.43) Af/h = eAf/h, i.e., Af = eiAf<j'{x)<p'(w). 

Using (8.40) we infer hence 

(8.44) f = e0f<p'(w), S0 = SE'S. 

We conclude that the functions A, C, /, H can be obtained from the functions A, C, 
/, H (expressed in the same variables iu, ;i\ y\) by a transformation involving only 
two arbitrary functions of 1 variable and some signs. Hence Theorem 8.5 follows. 

D 
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T H E ELLIPTIC CASE I I 

We shall study also this nongeneric case because it gives some more examples. 

Here we have, in an open domain, 

(8.45) L = O2 = 0, bi = b3 = 0. 

First, we need information about the algebraic structure: 

P r o p o s i t i o n 8.6. In the elliptic case II, the following algebraic formulas must 

hold: 

(8.4G) ip2 = <pb = 0, 

.47) (po = -£y/<Piíp3, a0 = e>/O iO3, 

(8.48) K = £ vVT^l", M = £y/V3~03~i 

(8.49) b2 = ££(y/(P30>i - \ jVi a 3 , h = ££(y/ip3a1 + vViO3) 

where £, £ — ± 1 are some signs. 

On the other hand, if a,\, a3, <pi, <D3 are arbitrary positive functions, and other 

basic functions are defined by (8.45)-(8.49), then all algebraic equations of Theorem 

4.8 hold. 

P r o o f . Using (8.45) and having still in mind that O1O3 = On2 > 0, we get 

cD5 = 0 from (4.36) and (D2 = 0 from (4.31)2- Also we have (D1CD3 = (Do2 > 0 and 

<p0a0 < 0; hence (8.47) follows. Further, (8.48) is a consequence of (4.31)i, (4.31)5 

and of the inequality KM > 0. Finally, (8.49) follows from (4.28)2 and (4.33). 

The second part of the proof is a direct check. • 

Now we pass over to the P D E systems (8.11) and (8.15). Considering the first 

two equations of each system and substituting here all formulas (8.45)-(8.49), we see 

that the given four equations are reduced to the following two equations: 

(8.50) 
y/aзipзa'lw - y/aцpia3w = 0, 

y/aзipзфi.r - y/aцpцpł

3x - 2aiy/ipцp3H = 0. 

Let us put 

(8.51) p = >/O7, q = V/O3", r = yftpl, s = xfipi. 

Then we can rewrite (8.50) in the form 

(8.52) sp'w - rq'w = 0, qr'x - ps'z - p2H = 0. 
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Moreover, we have the algebraic relations 

l * r o N k + &2 k ~ l>2 
(8.53) .s = — , r = — 

2p 2q 
as consequence of (8.49). Then (8.52) takes on the form 

(8-54) h(qp'w - pq'J + b2(qp'w + pq'w) = (h h + 0, 

(8.55) ~2p2q%x + h(pAq'x - q*p'x) + b2(p"q'x + <?p'x) = 2p4q2H. 

If p, q are now fixed arbitrary functions of two variables such that (p/q)'w / 0. 

('PQYW / 0' w e c a n express b2 through /i from (8.54) and then substitute into (8.55). 

We obtain a P D E of the form 

(8.56) BH'/X + DH'X = EH, B £ 0, 

where B,D,E are fixed functions. 

Hence our metrics depend on two arbitrary (analytic) functions of 2 variables and 

two additional arbitrary functions of 1 variable. By the same method that was used 

in the generic case, we can show that the local isometry classes in the elliptic case 

II are parametrized by two arbitrary functions of 2 variables modulo two arbitrary 

functions of 1 variable. 

In the particular cases, we can get new explicit families of solutions. 

a) If p/q = f(x) and b2 = 0. then (8.54) is identically satisfied and (8.55) takes on 

the form DH'X = EH, which can be solved by an explicit formula. 

b) lip = p(x), q = (/(.r), and b2 = b2(iu,x) are arbitrary but fixed, we get (8.55) in 

the form BH'X = CH + Z), which can be solved by an explicit formula, again. 

We shall conclude with an additional example which does not involve integration. 

Let us consider the "sillgular1, case of Proposition 8.4, namely the case a2 = ^p2 = 0. 

Then the first two P D E of (8.23) can be written in the form 

(8.57) 4axH - h[hi(a{ /a-s)]'x = 0, 4bxH - h[hi(ai/a^)]'w = 0. 

Let ZZ = H(iu,x) and U = ln(a\/a^) be fixed arbitrary functions. Then we obtain 

(8.58) a, = hU'./4H, 6 : = hU'w/\H (// = H'x) 

and hence 

(8.59) A? = 'j^(y>+,-«), . 40=^(5 , -+ , - ' • ) . Af = \l^1'(y* + e~r). 

By the similar computation as in the proof of Theorem 8.5 we can see that the local 

isometry classes are parametrized by the arbitrary function U(iu.x) only. Thus we 

can put H = x, h = 1 in (8.59). 
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R e m a r k 8.7. According to [Sz 2], Theorem 4.5, a foliated SSS of arbitrary 

dimension can be complete only if it is (generically) a 3-dimensional elliptic space 

(i.e., 3-dimensional hyperbolic space in the Szabo's terminology), or a k-dimensional 

parabolic space in the sense of Z. Szabo. The last spaces can be characterized as 

foliated SSS with constant scalar curvature along each (k — 2)-dimensional Euclidean 

leaf (see [BKV]). These spaces have been constructed explicitly and studied already 

in [KTV 2], including simple criteria for the completeness. As concerns the complete 

3-dimensional elliptic spaces, a geometrical construction was described in [Sz 3], 

which may produce elliptic semi-symmetric hypersurfaces in U4. Yet, to the author 's 

knowledge, the only known explicit example so far was that by H. Takagi, [T]. A 

new family of examples was found recently by E. Boeckx (to appear in Tsukuba 

Math. J.) . 

9. SEMI-SYMMETRIC SPACES WITH THE PRESCRIBED SCALAR CURVATURE 

From the formulas (2.2), (4.2) and Remark 2.2 we see that the scalar curvature of 

a 3-dimensional foliated SSS is locally of the form 

A yz + Ly + M 

where K,L,M are functions of two variables w,x only. We shall now state the 

converse. 

T h e o r e m 9 .1 . Let k{ = ki(w,x), i = 1,2,3, be analytic functions in a domain 

W C R2(w,.i:) such that X X ^ ) 2 > °- Let ('"'o.^o) € W be a tixed point and yQ <E U 

a tixed number such that 

(9.2) ki (w0,xo)yo2 + k2(iu0, x0)y0 + k-s(w0,x0) ^ 0. 

Then there is a neighborhood U C W x IR C R3(w,x,y) of the point (uj0, :t;0, ?y0) 

and a semi-symmetric metric g defined on U whose scalar curvature is given by the 

formula 

(9.3) Sc(g) = l 

kүy2 + k-2y + Å::. 

In particular, if the quadratic polynomial k\ y2 + k2y + k3 has two imaginary roots 

for (w,x) = (wo,x0), then there exists a neighborhood W C W of (w0,x0) and an 

elliptic metric g defined in the infinite strip W x R c U:i such that its scalar curvature 
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is given by (9.3). The local isometry classes of all such that metrics are parametrized 

by one arbitrary function H of 2 variables modulo 2 arbitrary functions of I variable. 

R e m a r k . The last assertion is not always true if the prescribed scalar curvature 

is not "of elliptic type". For example, if Sc(g) is prescribed as a nonzero constant, 

then the corresponding (local) isometry classes of semi-symmetric metrics depend on 

two arbi trary functions of 1 variable modulo some constants (see Remark 7.9 and 

[KTV 1]). 

P r o o f . We shall only prove the second part of our theorem (the elliptic case). 

In the nonelliptic situations (and, in particular, if kiA3 = 0), the proof can be done 

case by case, using the same main argument. 

Thus we can assume, e.g., ki > 0, k3 > 0 at (WQ,XQ). Using a substi tution 

y = y -f k2/2ki, we can reduce our problem to the case A:2 = 0 in some neighborhood 

W C W of (wo,xo) (which corresponds to the assumption L = 0). We shall look 

for the solutions in the elliptic- family I; thus we shall assume tha t the formulas 

(8.18)-(8.21) hold. Now, we have to satisfy the following conditions: 

a) The first two partial differential equations of the system (8.23). 

b) The proportion formula MjK — k3/ki. 

c) The partial differential equation 

(9.4) [{Aa)'ul+ffx]y=0 + K=-K/2k1. 

Here the equation (9.4) follows from (4.3) and (9.1), (9.3), because a = K/2k[. 

We shall write down our system of three P D E a) and c) in a more explicit form: 

(9.5) 2a0(a2„, - 2«j H) + 2Ma'lx + ^a'2, " 2A'a3i. = 0, 

(9.6) 2ao(^'2 , + 2b,H) - 2Ma\w - <p5a2„, + 2Ka'3w = 0, 

(9-7) | - { - 1 - h L - 2b'3x + (b3/a3)a',,. - a2H]} 

We shall now assume that the neighborhood W is of the form 

W' = (w0 - S, wo + S) x (x0 ~ E, .r0 + e) C W. 

Thus, in W we have ki > 0, k3 > 0, k2 = 0. 

We fix an arbitrary analytic function H = H(w,x) in W and put M = (k 3 /k i ) Iv . 

Then we see easily from (8.18) (8.21) and (4.13) that all basic functions involved in 

(9.5)-(9.7) can be expressed as fixed functions of Oi, O2, a3 and w, x. On the other 

472 



hand, the functions O7; remain independent. Then (9.5) and (9.6) can be written in 

the form 

(9.8) a'2w = gi(a'ix,ai,w,x), 

(9.9) -Ma'lw + Ka'3w = g2(a'ix,ai,w,x), 

M = M(ai,w,x), K = K(aj,w,x), 

and (9.7) takes on the form 

(9-10) a^ww = (}3(a,lwx,c"ixx,a\w,(iix,ai,w,x), 

where g\,g2,g3 are fixed analytic functions. 

Differentiating (9.8) and (9.9) with respect to w, we obtain finally a system of 2nd 

order P D E of the form 

(9-H) a"jww = fj (a'Lv > a'Lx. a'iw> a'ix> ai, w i x ) (j = 1,2,3) 

where fj are fixed analytic functions. 

Now, it is always possible to choose analytic functions <pi(x), ipi(x) (i = 1,2,3) on 

(Jo - e,x0 + s) such that the functions fj^'^x), p"(x), i^i(x), p'{(x), pi(x), w0, x) 

are defined on the whole of (x0 — s, x0 + e), and 

(9-12) <Pi > 0 , ( D 3 > 0 , pips- ~(p>2)2 > 0 ; 

(9.13) ^2(x) = gi(p'i(x),pl(x),w0.x), 

(9.14) -M0il>i(x) + Koil)3(x) =g2(p[(x),pi(x),w0,x), 

where M0, K0 denote the functions M, K from (9.9) in which a,i is replaced by <pi(x) 

for i = 1, 2, 3 and w is replaced by w0. 

According to the Cauchy-Kowalewski Theorem, there exists a unique solution 

(Oi,O2,O3) of (9.11) in a neighborhood W" C W' of the set {w0} x (T0 — e,x0 + s) 

such that 

(9.15) ad(w0,x) =ipi(x),a'iw(w0,x) =^i(x),i = 1,2,3. 

Due to (9.13), (9.14), the equations (9.8), (9.9) are satisfied for w = w0, and because 

the derivatives of these equations with respect to w are also satisfied (as a par t of 

(9.11)), the equations (9.8), (9.9) are satisfied identically Moreover, because (9.12) 

holds, then O0 ?- 0 and a.\, O3 > 0 holds on the set {H'o} x (x0 - s, x0 + e), and hence 
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on a neighborhood W C W" of this set. Then axy
2 + a-2\j + O3 > 0 holds on the strip 

W XI?. 

Thus a semi-symmetric metric g of the elliptic type is well-defined on W x I? by 

the s tandard formulas (2.1), where A is given by (4.12), C by (4.19), / is equal to 

Iv~(g2 + ks/ki)/A and II is the function which was fixed in advance . 

The rest of the proof now follows from Theorem 8.5. • 
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