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1. INTRODUCTION

The domination number v(G) of a graph G is the smallest cardinality of a set D of
vertices such that every vertex outside D has at least one neighbor in D. Extensive
studies on domination number and domination-related topics have been done in the
past thirty years. Recently, some new domination models have been proposed. For
example, [4, 5] studied the k-domination number. For a positive integer k, a subset
D of V(G) is a k-dominating set of G if each vertex of V' (G)\ D is adjacent to at least
k distinct vertices of D. A k-independent set T is a subset of V(G) such that the
maximum degree of the induced subgraph G[T] of G is less than k. The k-domination
number of G, denoted by i (G), is the cardinality of the smallest k-dominating set
of G ([4, 5]). The k-independence number of G ([4, 5]), Bk (G), is the cardinality of
the largest k-independent set of G. Evidently, v1(G) and 3, (G) are, respectively, the
ordinary domination number v(G) and the ordinary independence number 3(G).

The following result was conjectured by J.F. Fink and M.S. Jacobson ([4, 5]) and
proved in [3].

Theorem 1. For any simple graph G and positive integer k, we have v (G) <
Be(G).
This theorem generalizes the inequality v < 3. Another upper bound for 74 is the

following

Theorem 2 ([1]). Let n and k be positive integers, and G a graph with minimum
degree 6(G) > l;*l'—lk — 1. Then w(G) < 25, where p = |V(G)|.

More upper bounds for v, can be found in [9]. In the same paper a general
domination concept was introduced. For any integer-valued function f defined on
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V(G), a subset D of V(G) is called an f-dominating sct of G if [Ng(x) N D| > f(x)
for each © € V(G) \ D, where Ng(z) is the set of neighbors of x in G. Then
the f-domination number of &, denoted by v;(G). is defined to be the smallest
cardinality of an f-dominating set of G. Obviously. if f is such that f(x) = &
for all x € V(G), then v4(G) is exactly the A-domination number. If T C V/(G)
satisfies dgr)(x) < f(x) for all @ € T, then we call T an f-independent set of
G. The maximum cardinality of f-independent sets of G is then defined to be the
f-independence number, denoted by B¢(G).

In this paper we initiate the study on v and ;. Basic results for these two
invariants are discussed in the next section. Some upper bounds for 55 are given
in Section 3. In particular, Theorems 1-2 are generalized. In the last section some
open problems are proposed. Throughout the paper G is a finite, undirected graph
with no loops and multiedges. and f, V(G) — Z is an integer-valued function. For
D CV(G) and x € V(G), let Np(a) = Ng(x) N D and dp(x) = |[Np(x)|. Let p and
¢(G) represent the number of vertices and the number of edges of G, respectively.

2. BASIC RESULTS

A subset S of V(G) is called an f-transversal of ' if it intersects all non-f-
independent sets of G. The minimum cardinality of f-transversals of G is then
defined to be the f-transversal number of G, denoted by ay(G). The following
Gallai-type equality is in fact a consequence of a more general result of [6].

Theorem 3. as(G) + 3;(G) = p.

Proof. It can be shown that S C V(G) is an f-transversal iff V(G) \ S is an
f-independent set. Then the theorem follows. O

Proposition 1. (1) If H is a spanning subgraph of G, then v¢(G) < 45 (H):
(2) If f': V(G) = Z is another function satisfying f(r) < f'(x) for all v € V(G).
then v7(G) < ¢ (G) and p,(G) < B (G).

Proposition 2. (1) If f(r) > d(z) for some x € V'(G), then x must belong to
any f-dominating set of G

(2) If f(x) < 1 for a vertex «. then @ can not be in any minimal f-dominating set
of G.

Proposition 3. Let M = nigt()((')f(;zr). then

(@) 2 %( Yo fla) - s((J)).

eV (G)
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Proof. Let D be an f-dominating set of G with the smallest cardinality. Then

Yo f@ =Y f= Y f@) <G

2V (G) €D 2eV(GI\D

So M -~;(G)=M-|D| 23 .cp fla) 2 2 cvq f(x) —e(G). This completes the
proof. O

For any function f: V(G) — Z, let f*: V(G) — Z be a companion function
defined by f*(x) = d(x) — f(x) + 1, 2 € V(G). Then we have

Proposition 4.
(1) 77 (G) + B35 (G)
(2) 77+ (G) + B5(G)

<

!
P

<P
< p.

Proof. Let T be a maximum f*-independent set of G. Then dgr(v) <
f*(x) =1 for each x € T. So dy(gpr(x) 2 d(x) — f*(x) + 1= f(z) for each 2 € T'.
Thus V(G) \ T is an f-dominating set of G, and (1) is true. Since (f*)* = f, (2)
follows from (1) immediately. ]

Corollary 1. If f(x) < ﬂ'_}—“ for all x € V(G), then v4(G) + B¢ (G) < p.

Proof. The given condition implies that f(x) < f*(x) for each @ € V(G).
Hence 35(G) < B4+ (G) by Proposition 1(2). The corollary then follows from Propo-
sition 4(1).

Corollary 1 generalizes a known result ([8]) that v(G) + #(G) < pifp =22 and G
contains no isolated vertices. O

3. SOME UPPER BOUNDS FOR Yf

As shown in Theorem 1, v, (G) < 3 (G) for any positive integer k. Then we may
naturally ask if v,(G) < B;(G) for any function f. The answer is affirmative. In
fact we have the following more general result.

Theorem 4. For any function f: V(G) — Z, every f-independent set D of G

such that Y f(x) — e(D) is maximum is an f-dominating sct of G, where (D) is
rebD
the number of edges of G[D].

Proof. The proof is similar to that used in [3].
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Suppose otherwise; then there must exist v € V(G) \ D such that dp(v) < f(v).
Let B = Np(v), then 0 < |B| < f(v). Let

A={x € B:dp(z) = f(x) - 1}

and let S be a maximal independent set of G[4]. Then ® C S C AC B C D. Let
= (D \ S)uU{v}. Then C must be an f-independent set of G.
In fact,

de(v) < |B| < f(v)
do(z) <dp(x) < f (1,), Ve € D\ B,
de(x) <dp(x) +1< (f(z)—2)+1< f(x), VaeB\A.

Noting that S is a maximal independent set of G[A]. cach @ € A\ S is adjacent to
at least one vertex in S. Hence

de(x) < ((11)(;17) - 1) +1< f(z), YreA\S.
Thus C is indeed an f-independent set of G. We have

e(C)=¢(D)= > (flr) =1) +|B| =S| =<(D) = >_ f(z) +|B|.

T€eS TES
Hence,
> @) —e(0) = (2 )= f@)+ f) = (D) = 3 f(x) + |BI)
zeC €D z€S z€S
- v)—e(D)+ f(v) = Bl > D f(x) — (D),
;rED r€D
contradicting the choice of D. This completes the proof. a

Corollary 2. For any graph G and any function f: V(G) — Z, we have v;(G) <
Bs(G).

Proof. By Theorem 4 there exists an f-dominating set D which is also an
f-independent set. So v;(G) < |D| < B7(G). O

Let f* be defined as in Section 2, then we have

Coroilary 3.
(1) 77 (G) + - (G) < w5
(2) 77 (G) -, (G) < (5)"
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Proof. By Theorem 4 we can choose an f-dominating set of G which is also
an f-independent set. Thus for any =z € D,

INg(z) N (V\ D)| > da(z) = (f(2) — 1) = f*(a).

So V'\ D is an f*-dominating set of G. This implies (1). (2) is a direct consequence
of (1). O

Combining Corollaries 1-2, we have

Corollary 4. Let f: V(G) — Z be such that f(x) < %(d(z) + 1), Vz € V(G),
then v5(G) < %p

Corollary 4 generalizes an early result of Ore which states that v(G) < %p if G
has no isolated vertices.

The idea used in [1] can be applied to prove the following result, which generalizes
Theorem 2.

Theorem 5. Let n be a positive integer and let f' V(G) — Z be such that

f(x) € Fq(da(x) + 1), Vo € V(G). Then v4(G) < 2.

Proof. Let Vi, V5, ..., V41 be a partition of V(G) such that E' = E(G) \
n+1
U E(G[V;]) contains as many edges as possible. Then by a theorem of Erdés ([2])

(IH(;lr) > ’Vn+1 )], Vz € V(G), where H = (V(G),E') and [a] is the smallest

integer not less that a. The condition f(z) < t(da(x) + 1) implies dg(x) >
%f(;v) — 1. This gives

du<.v>>[”il(”:lf(u—l)] [1@) - =] = 1), vaev(E).

Without loss of generality we may suppose |V;| = max |V| By the above discus-
1<i<n
n+1
sion, U V; is an f-dominating set of G. Thus
=2

2 np
G)<p—|Vi|<p- Sl
14(G) <p— Vil <1 n+l nt1

a

Corollary 5. Let ng = max fff.(x) 1(f(;zr) #d(x) + 1 for all x € V(G)). Then

ceV (G (=)
- (C) < nop ! (@)
F\G) X no+1"
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Note that this corollary generalizes Corollary 4.
For any f;: V(G) — Z with 1 < f(2) < dg(x), © € V(G), define a function f —1:
V(G) = Z such that

(f = D(r) =max{l, f(x) — 1}, € V(GQ).

Inductively define the function f — (i + 1) = (f — /) — 1 for any positive integer /.

Then it is not difficult to sec that y;_,, = ¥(G). where m = max f(r) = 1. To
€V (G)

investigate the relation between vy and v, we prove the following

Theorem 6. For any function f: V(G) — Z satistving 1 < f(x) < d(v). @ €
V(G), we have

(G) € = (p+v-1(G)).

I\DIr—A

Proof. Let Dy be an (f — 1)-dominating set of (¢ with the cardinality v, (G).

and
S={reV(@)\Di: f(r) = 1}.
Then
(f—1><.r>:{1’ ree
flx) =1, x e V(GY\ (D, US).

Let A, B be, respectively. the set of non-isolated vertices and the set of isolated
vertices of G[V(G) \ (D, U S)]. Let T be a minimum dominating set of G[4]. Then
by Ore’s theorem (mentioned carlier), |T] < 5|Al.

It is easy to see that D) U BUT is an f-dominating set of G, so
(1) 1(G) < 41 (G) + 1Bl + IT] <y 1(G) + B+ L
On the other hand D; U S U T is also an f-dominating set of G. In fact for any
r € B, dp,(x) 2 (f = 1)) = f(x) = 1. It dp, () = flr) =1 < dg(r) =1, then o
must be adjacent to a vertex of S. Thus dp,usur(r) = f(v). It dp, (¢) = f(v). then
dp,usur(x) = f(x) as well. Tt is obvious that dp,usor(r) 2 f(x) for any v € A\T.
So Dy USUT is indeed an f-dominating set. Thus

4
(2) Y(G) <y (G H|S|+T] < j>|(<")+|5|+|7!.

Combining (1) and (2) we get

—

~(p+5-1(G)).

1o —

Y(G) < 55 (G) + (A + [B]+[S]) =

l\.z
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Corollary 6. For any i with 1 <i<m = lgl%a()é) f(x) —1.
I . T

1
(G <p = 5 (p = vr-il @)

In particular,

1
1 (G) € p = 55 (0 =2(@)).

For cach k, 1 <k < A(G), let
2 ={X CV(G): |X]| =k}

Denote T'ep (X) = ) Ne(z) for each X € 2, and Ay (G) = Jax IT¢:(X)]. Then
zeX k i
Ap(G) > 1. Let X € 2} be such that [Ig(X)| = Ap(G) and S = V(G) \ (XY U

L¢(X)). Then V(G) \ T'g(X) is a k-dominating set of G. Thus

Ww(G) <p— Ak(G)
or, equivalently,
(3) ITa(X)| = Ap(G) <p—mn,

where = v, (G). Suppose

(4) Ta(X)|=p—n—-r, 0<r<p-n
Then
(5) IS| =p = |X| = Ta(X)| =n+r—k

Note that for any @ € X and y € T (.X), (S\ Ne(y)) U {+,y} is a dominating sct of
G. Hence

[S] = SN Ne(y)| + 2 = 4(G),

ISANGW)| < n+r—k—+(G)+2.

Similarly, we have

[SANG)] <n+r—k—~(G)+2.
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Let hy. be the maximum number of edges in a subgraph of G with |S| = p— Ak (G) -k
vertices. Then we have

(6) 2¢(G) < 2e(GIS]) + [X[(1X] = 1) + | X[ [T (X))
+ > (Naly) nS|+INa@)+ Y [Na(x) S|

YyENG(X) r€X
<2he +k(k = 1)+ kA + Ax[(n+7 =k —~v(G) +2) + A

+k(n+r—k—-~(G)+2) (Ak = Ak(G), A = A(G))
=2h +k(k—-1)+ kA +(Ak+k)(p— A — k= 7(G) +2) + ArA
=2h, +k(p—v(G) +1) = A + Ax(p — k + A(G) —v(G) + 2)
<2 +k(p—v(G)+1) =A%+ (p—n)(p - k + AG) —¥(G) +2).

This leads to the following

Theorem 7. For each k, 1 < k < A(G), let Ay and hy be as before. Then

re(G) = h) + A2 = k(p — 1(G) + 1)
w(@) <p-| Pk +AG) —A(G) +2 |

Since v(G) > 1 and hy < %(1} — Ar —k)(p— Ax — k= 1), we obtain the following
two corollaries.

Corollary 7. For each k with 1 < k < A(G),

L [2(6(6’) — hi) + AF — 1;,,1'

(@) <
(@) < p—k+A(G) +1

, 26(G)+2(p—k) Ap +h(p+7(G) —k—2) —p(p—1)—A
Corollary 8. 7,(G) < p— [ L p_‘k+Ap((?)ﬂ((’.)+2 2L ‘].

Taking £ =1 in (6) we get
26(G) < 2h + (p—¥(G)+ 1) = A2+ A(p+ A+ 1 —v(G)).
This implies a new upper bound for v(G).
Corollary 9. Let Iy be the maximum number of edges in a subgraph of G having

p— A — 1 vertices. Then

2(e(G) — )

AG) +1 [+

(7) 16 <p-|



Example 1. Let G be the graph obtained from the cycle of five edges by adding
a chord. Then p = 5, ¢(G) = 6, A(G) = 3, v(G) = 2, Ay(G) = 2 and h, = 0.
Theorem 7 gives v2(G) < 3. But it is easy to see v2(G) > 3. So ¥2(G) = 3. This
shows that the upper bound in Theorem 7 is attainable.

Example 2. If G is the cycle with four edges, then it is easy to see that both
sides of (7) equal 2. So the upper bound in Corollary 9 is attainable.

For any subgraph H of G, the restriction of the function f: V(G) — Z to V(H)
is also denoted briefly by f. Thus vf(H) is well-defined. The technique used in
the proof of Theorem 7 can be applied to prove the next result, which shows the
connection of v;(G) and v;(H).

Theorem 8. Let t, be the maximum number of edges in a subgraph of G with
p — q vertices, 1 < q¢ < p— 1. Then for any subgraph H of G with q (> vs(H))
vertices and without isolated vertices,

%dG)—%)+(q—aV—%P—VKUMVG”W

W@ <= | T R G @)

Proof. Suppose that X is an f-dominating set of H with (H) = a vertices,
and that Y = V(H)\ X, S = V(G) \ V(H). Since XUS = V(G)\Y is an
f-dominating set of G, we have

1 (G) <p-1Y],
or equivalently, |Y| < p — n, where n = v;(G). Suppose
Yi=p—n—-r, 0<r<p-—n.

Then |S|=p—a-|Y|=n+r-a
For any y € Y, (S\ Ng(y)) U X U {y} is a dominating set of G, hence

IS| = SO Ne(y) +1X

+1>~(Q),
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ie. [SANg(y)| < n+r—~(G)+ 1. Similarly, |SN NG (0)] <p—a—(G) +1 for
each v € X. We have

2:(G) < 26(GIS]) + [ X[(|X] - 1) + |X| Y]
+ 3 (ISnNal+INa@)) + Y IS0 Na(o)]
yeYy reX
<2ty +ala=1)+alY |+ |Y|(n+r—+(G)+ 1+ A(G))

+alp—a-9(G)+1)
= 2%, +a(p = 2(G)) +alY |+ Y] (p— V] — = )+A(G> 1)
=2, +alp—(G) = Y+ |YV|(p+a+ AG) —~(G) +1)
<2t +alp —~(G)) — (g — a)? (1)—11)(1}+(1+A(G) ¥(G) +1).

This gives

2((G) = ty) + (g — a)? (1)— Y(G))a
p+a+ AG) —1(G) + '

nLp—

This completes the proof. a

4. REMARKS

A lot of problems concerning the f-domination number and the f-independence
number can be proposed. Perhaps the most attractive one is whether there exist
the Nordhaus-Gaddum type incqualities for v,. Such inequalities for 4 have heen
shown in [7]. Naturally we can define the upper f-domination number I'j(G) of
G to be the maximum cardinality of a minimal f-dominating set of G. Also we
can define the f-domatic number, dy(G), to be the maximun order of a partition
of V(G) into f-dominating scts. Another interesting invariant is i7(G). which is
defined to be the smallest non-negative integer i such that 4,_;(G) = v(G). Studies
on these invariants are necessary. as well as interesting. For example, relations among
vy Ty, By.dy, iy and other graphical invariants, ¢.g. the domination number. the
independence number, are valuable research topics. The lower bounds and the upper
bounds for v, and 3, deserve further study as well.

This work is on-going and results will be published later.
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