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ON / -DOMINATION NUMBER OF A G R A P H 

SANMING ZHOU. Wuhan 

(Received August 8, 1994) 

1. INTRODUCTION 

The domination number 7(G) of a graph G is the smallest cardinality of a set D of 
vertices such that every vertex outside D has at least one neighbor in D. Extensive 
studies on domination number and domination-related topics have been done in the 
past thirty years. Recently, some new domination models have been proposed. For 
example, [4, 5] studied the k-domination number. For a positive integer k, a subset 
D of V(G) is a k-dominating set of G if each vertex of V(G)\D is adjacent to at least 
k distinct vertices of D. A k-independent set T is a subset of V(G) such that the 
maximum degree of the induced subgraph G[T] of G is less than k. The k-domination 
number of G, denoted by 7/c(G), is the cardinality of the smallest k-dominating set 
of G ([4, 5]). The k-independence number of G ([4, 5]), Pk(G), is the cardinality of 
the largest k-independent set of G. Evidently, 71(G) and /3i (G) are, respectively, the 
ordinary domination number 7(G) and the ordinary independence number /3(G). 

The following result was conjectured by J.F. Fink and M.S. Jacobson ([4, 5]) and 
proved in [3]. 

Theorem 1. For any simple graph G and positive integer k, we have 7^(G) ^ 
/4(G). 

This theorem generalizes the inequality 7 ^ /?. Another upper bound for 7*. is the 
following 

Theorem 2 ([1]). Let n and k be positive integers, and G a graph with minimum 
degree 6(G) > --±Ifc - 1. Then 7fc(G) ^ ^ , where p = \V(G)\. 

More upper bounds for 7^ can be found in [9]. In the same paper a general 
domination concept was introduced. For any integer-valued function / defined on 
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V(G), a subset D of V(G) is called an /-dominating set of G if \NG(x) D D\ ^ f(x) 

for each x G V(G) \ D, where NG(x) is the set of neighbors of x in G. Then 

tlie /-domination number of G, denoted by 7/(G), is defined to be tlie smallest 

cardinality of an /-dominating set of G. Obviously, if / is such that f(x) = k 

for all x G V(G), then 7/(G) is exactly the k-doniination number. If T C V(G) 

satisfies O^c;[T](^) < / ( # ) for all x G F, then we call T an /-independent set of 

G. The maximum cardinality of /-independent sets of G is then defined to be the 

/-independence number, denoted by f3f(G). 

In this paper we initiate the study on 7/ and iij. Basic results for these two 

invariants are discussed in the next section. Some upper bounds for 7/ are given 

in Section 3. In particular, Theorems 1-2 are generalized. In the last section some 

open problems are proposed. Throughout the paper G is a finite, undirected graph 

with no loops and multiedges, and / , V(G) -> Z is an integer-valued function. For 

D C V(G) and x G V(G), let ND(x) = NG(x) n D and dD(x) = |1VD(rr)|. Let p and 

e(G) represent the number of vertices and the number of edges of G, respectively. 

2. B A S I C RESULTS 

A subset S of V(G) is called an /-transversal of G if it intersects all non-/-

independent sets of G. The minimum cardinality of /-transversals of G is then 

defined to be the /-transversal number of G, denoted by o / ( G ) . The following 

Gallai-type equality is in fact a consequence of a more general result of [6]. 

T h e o r e m 3. af(G) + /3f(G) = p. 

P r o o f . It can be shown that S C V(G) is an /-transversal iff V(G) \ S is an 

/-independent set. Then the theorem follows. • 

P r o p o s i t i o n 1. (1) If H is a spanning subgraph of G, then 7/(G) ^ 7 / ( H ) ; 

(2) Iff: V(G) -> Z is another function satisfying /(./•) ^ f'(x) for all x G V{G). 

then 7 / ( G ) ^ 7 / ' ( G ) and /if(G) ^ /3r(G). 

P r o p o s i t i o n 2. (1) If f(x) > d(x) for some x G V(G), flien T must belong to 

any f-dominating set of G; 

(2) If f(x) < 1 for a vertex x. then x can not be in any minimal f-dominating set 

ofG. 

P r o p o s i t i o n 3. Let M — max f(x)< then 

V(G)>U E /W-=-!«))• M , 
xЄV(G) 
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P r o o f . Let D be an / -dominat ing set of G with the smallest cardinality Then 

£ /(*)-£/(*•)= E /(*K£(G). 
x-€V'(G') .c€D x-eV(6 ' ) \D 

So A/ • 7 / ( G ) = M • \D\ 2 E , e D / W ^ E. c e v(G) / ( * ) - e(G). This completes the 

proof. • 

For any function / : V(G) -» Z, let / * : V(G) -> Z be a companion function 

defined by f*(x) = d(x) - f(x) + 1, x G V(G). Then we have 

P r o p o s i t i o n 4 . 

( i H / ( G ) + / * / . ( G K p , 

( 2 ) 7 / . ( G ) + / 9 / ( G ) < p . 

P r o o f . Let T be a maximum /^-independent set of G. Then OV;[T]Or) ^ 

/*(T) - 1 for each x e T. So dV{G)\T(x) ^ d(x) - f*(x) + 1 = f(x) for each x e T. 

Thus V(G) \ T is an / -dominat ing set of G, and (1) is true. Since (/*)* = / , (2) 

follows from (1) immediately. • 

C o r o l l a r y 1. If f(x) ^ ^ ± ! for a j j x e T / ( G ) , then 7 / (G) + (3f(G) <: p. 

P r o o f . The given condition implies that f(x) ^ f*(z) for each x E V(G). 

Hence /J/(G) ^ /3/* (G) by Proposition 1(2). The corollary then follows from Propo­

sition 4(1). 

Corollary 1 generalizes a known result ([8]) that 7(G) + [3(G) ^ p if p ^ 2 and G 

contains no isolated vertices. • 

3. S O M E UPPER BOUNDS FOR 7/ 

As shown in Theorem 1, 7^.(G) ^ Ih-(G) for any positive integer k. Then we may 

naturally ask if 7 / (G) ^ fif(G) for any function / . The answer is affirmative. In 

fact we have the following more general result. 

T h e o r e m 4 . For any function / : V(G) —>• Z, every f-independent set D of G 

such that J2 f(x) ~ S(D) ^s maximum is an f-dominating set of G, where s(D) is 
.reD 

the number of edges of G[D\. 

P r o o f . The proof is similar to that used in [3]. 
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Suppose otherwise; then there must exist v G V(G) \ D such that dD(v) < f(v). 

Let B = ND(v), then 0 ^ \B\ < f(v). Let 

A={xeB:dD(x) = f(x)-i} 

and let S be a maximal independent set of G[A}. Then K 5 C K 5 C D . Let 
C = (D \ S) U {v}. Tlien C must be an /-independent set of G. 

In fact, 

dc(v) ^ \B\ < f(vl 

dc(x) < dD(x) < / (x) , V x E D \ B, 

dc(-r) < dD(x) + 1 ^ (/(x) - 2) + 1 < /(T), Va: G f l \ A 

Noting that 5 is a maximal independent set of C7[A], each x G A \ S is adjacent to 
at least one vertex in 5. Hence 

dc(x) < (<//,(*) - 1) + 1 < /(a;), V;r e A \ 5. 

Thus G is indeed an /-independent set of G. We have 

e(C) = e(D) - 5 3 (/(.r) - l) + \B\ - \S\ = e(D) - 5 3 f(x) + |B|. 
xes xes 

Hence, 

53 f(X) - s(c) = ( 5 ] /(,•) - 53 /(.T) + f(V)) - (s(D) - 53 f(X) + IBI) 
XGC xeD xes xes 

= 53 f(x) - 6(D) + /(*>) - \B\ > 53 /(.,:) - £(£>), 
.TED -rGD 

contradicting the choice of D. This completes the proof. • 

Corollary 2. For any graph G and any function f : V(G) —> Z, we iiave 7/(G) -$ 

/?/(o)-

P r o o f . By Theorem 4 there exists an /-dominating set F) which is also an 
/-independent set. So -yf(G) ^ |D| ^ f3f(G). D 

Let /* be defined as in Section 2, then we have 

Corollary 3. 
( l ) 7 / ( G ) + 7 / . ( G K p ; 
( 2 ) 7 / ( G ) - 7 / . ( G K ( § ) 2 . 
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P r o o f . By Theorem 4 we can choose an /-dominating set of G which is also 
an /-independent set. Thus for any x £ D, 

\NG(x) n (V \ D)\ > dG(x) - (f(x) - 1) = f*(x). 

So V \ D is an /*-dominating set of G. This implies (1). (2) is a direct consequence 

of( l ) . • 

Combining Corollaries 1-2, we have 

Corollary 4. Let f: V(G) -> Z be such that f(x) <C \(d(x) + 1), Vx G V(G), 

then-yf(G) ^ \p. 

Corollary 4 generalizes an early result of Ore which states that 7(G) ^ | p if G 

has no isolated vertices. 

The idea used in [1] can be applied to prove the following result, which generalizes 
Theorem 2. 

Theorem 5. Let n be a positive integer and let f: V(G) -» Z be such that 

fix) < 7TTl(dG(x) + 1), Vx e V(G). Then 7 / (G) < ^ . 

P r o o f . Let Vi, V2, . . . , Vl+i be a partition of V(G) such that E' = E(G) \ 
71+1 

IJ E(G[Vi]) contains as many edges as possible. Then by a theorem of Erdos ([2]) 
i=i 

dfi(x) ^ \^dG(x)], Vx G V(G), where H = (V(G),Ef) and \d\ is the smallest 

integer not less that a. The condition f(x) ^ ^+i(^G(a;) + l) implies dc(x) ^ 

^ i / ( : i : ) - l . This gives 

"»(*> > f ̂ ( ^ ' w ^ 01 = ['<*> - j ^ r l - '<*>• Vl e " ( c > -
Without loss of generality we may suppose |Vi | = max \V{\. By the above discus-

1^7^71+1 
71+1 

sion, (J V is an /-dominating set of G. Thus 
7=2 

^ ( G X p - I V . l O - - ^ - - - - ^ - . 

• 

Corollary 5. Let n0 = max \-0k] (f(x) / J(x) -f- 1 for all x £ V(G)). Then 
xev(O) ' ; {x) 'v ' 

7/(C) < TT^T-
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Note that this corollary generalizes Corollary 4. 

For any f{: V(G) -> Z with 1 < f(x) ^ dG(x), x e V(G), define a function / - 1: 

V(G) -> Z such tha t 

( / - l ) ( . r ) = m a x { l , / ( ; v ) - l } , xeV(G). 

Inductively define the function / — (i + 1) = ( / — /) — 1 for any positive integer /. 

Then it is not difficult to see that 7 / _ m = 7(G). where m = max f(x) — 1. To 
xeV(G) 

investigate the relation between 7/ and 7, we prove the following 

T h e o r e m 6. For any function / : V(G) -> Z satisfying 1 ^ f(x) ^ d(T), .r G 

V(G), we Lave 

'U(G)<\(P + V-I(G))-

P r o o f . Let D± be an ( / - l)-dominating set of G with the cardinality 7/_i (G), 

and 

S = { . r G K ( G ) \ A : / ( • ' • ) = 1}-

Then 
' 1, x € S. 

( / - ! ) ( • ' • ) = , 

' / ( * ) - ! , : r € l ' ( G ' ) \ ( Z ? 1 u S ) . 

Let A, B be, respectively, the set of non-isolated vertices and the set of isolated 

vertices of G[V(G) \ (D\ U S)}. Let T be a minimum dominating set of G[A]. Then 

by Ore's theorem (mentioned earlier), \T\ ^ | | - 4 | . 

It is easy to see that D{ U B U I1 is an / -dominat ing set of G, so 

(1) 7 / ( o ) ^ U-i(G) + | B | + |T | < -)j-x(G) + | B | + l | i . 

On the other hand 191 U 5 U T is also an / -dominat ing set of G. In fact for any 

x e 13, dDl(x) Z ( / - 1)C0 = / ( * ) " I- If <*Di M = /U ' ) - 1 < <M.r) - V then x 

must be adjacent to a vertex of S. Thus dDlUsuT(-f) ^ ./(•**)• If ^D X (v) = /CO- then 

dDluSuT(z) ^ /(T) as well. It is obvious that JDiUSuTCO ^ /C*0 for any .r G A \ T. 

So Di U 5 U T is indeed an / -dominat ing set. Thus 

(2) if(G) ^ V-\(G) + \S\ + \T\ ^ if-AG) + \S\ + i | i . 

Combining (1) and (2) we got 

7 / (G) < 7 / - i ( G ) + i ( | A | + | B | + \S\) = i ( / > + V _ , ( G ) ) . 

D 
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Corollary 6. For any i with 1 ^ i ^ in = max f(x) — 1, 
xeV(G) 

7 / ( G ) ^ P - ^ ( P - 7 / - £ ( G ) ) . 

In paiticuiar, 

7 / ( G ) ^ P - ^ - ( p - 7 ( o ) ) -

For each fc, 1 <. fc <C A(G), let 

.rk = {XCV(G): |A'| = fc}. 

Denote TG(A') = f] NG(x) for each A' £ ^ , . and A,(G) = max | r G (A) | . Then 
xEX X 6 i t 

A,(G) ^ 1. Let A' e J , be such that |rG(A') | = A,(G) and S = V(G) \ (X U 

r G ( A ) ) . Then V(G) \ TG(A") is a fc-dominating set of G. Thus 

7 , ( G K p - A , ( G ) 

or, equivalently, 

(3) |rG(A') | = A , ( G ) ^ p - u , 

where // = 7,(G). Suppose 

(4) | r G ( A ) | = p - n - /•, 0 ^ r < p - n. 

Then 

(5) | 5 | = p - | A ' | - | r G ( A - ) | = n + r - f c . 

Note that for any x G A' and y € TG(A), (S\Na(y)) U {.(,;</} is a dominating set of 
G. Hence 

\S\-\SnNa(y)\ + 2^1(G), 

l.C. 

\Sni\C;(y)\ ^H + r - A : - 7 ( C 7 ) + 2. 

Similarly, we have 

|5nN c ; (T ) | $/A + r - A : - 7 ( c 7 ) + 2. 
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Let hk be the maximum number of edges in a subgraph of G with \S\ = p-Ak (G) - k 

vertices. Then we have 

(6) 2s(G) < 2s(G[S}) + \X\(\X\ - 1) + \X\ \TG(X)\ 

+ ]T (l!VG(y)nS| + |ArG(j,)|+^|.vG(.c)nS| 
y€Nc(X) xex 

< 2/ifc + k(k - 1) + fcAfe + Afc[(n + r - k - -/(G) + 2) + A] 

+ k(n + r - k - 7(G) + 2) (Afe = Ak(G), A = A(G)) 

= 2/ifc + k(k - 1) + fcA* + (At + k)(p - A,. - k - 7(G) + 2) + AfcA 

= 2/ifc + fc(p - 7(G) + 1) - A\ + Afc(p - A: + A(G) - 7(G) + 2) 

^ 2/ifc + k(p - 7(G) + 1) - A2
k + (p - n)(p - A- + A(G) - 7(G) + 2). 

This leads to the following 

Theorem 7. For each k, 1 ^ k ^ A(G), iet Afe aiid /ife be as before. Then 

^ <r)< , \-2(e(G)-hk) + A\-k(p- 7(G) + 1)1 
7 f c ( G K p _ l „_fc + A ( G ) - 7 ( G ) + 2 I" p - f c + A ( G ) - 7 ( G ) + 2 

Since 7(G) ^ 1 and /i.fc ^ \(p - Ak — k)(p - Ak - k — 1), we obtain the following 

two corollaries. 

Corollary 7. For each k with 1 sC fc ̂  A(G), 

•2(e(G) - hk) + A* - hp-\ 
7 f c ( G ) ^ l>-\ p-k + A(G) + l ľ 

Corollary 8. 7 t ( G ) < p - [ ^ ( ^ ^ ( P - ^ ^ + ^ ^ ^ - ^ - M - A , j 

Taking k = 1 in (6) we get 

2e(G) ^ 2fti + (p - 7(G) + 1) - A2 + A(p + A + 1 - 7 ( G ) ) . 

This implies a new upper bound for j(G). 

Corollary 9. Let hi be the maximum number of edges in a subgraph ofG having 
p — A — 1 vertices. Then 
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Example 1. Let G be the graph obtained from the cycle of five edges by adding 
a chord. Then p = 5, e(G) = 6, A(G) = 3, 7(C7) = 2, A2(G) = 2 and h2 = 0. 
Theorem 7 gives 72(G) ^ 3. But it is easy to see 72(G) ^ 3. So 72(G) = 3. This 
shows that the upper bound in Theorem 7 is attainable. 

Example 2. If G is the cycle with four edges, then it is easy to see that both 
sides of (7) equal 2. So the upper bound in Corollary 9 is attainable. 

For any subgraph H of G, the restriction of the function / : V(G) —r Z to V(H) 
is also denoted briefly by /. Thus 7/(H) is well-defined. The technique used in 
the proof of Theorem 7 can be applied to prove the next result, which shows the 
connection of 7/(G) and 7/(H). 

Theorem 8. Let tq be the maximum number of edges in a subgraph of G with 
p — q vertices, 1 ^ q ^ p — 1. Then for any subgraph H of G with q (> 7/(H)) 
vertices and without isolated vertices, 

lf(G)źp-
[2(є(G) - tч) + (q- а)2 - (p - >ү(G))V(H) 

p + 7/(Я) + Д ( G ) - 7 ( G ) + l 

P r o o f . Suppose that X is an /-dominating set of H with 7/(H) = a vertices, 

and that Y = V(H) \ X, S = V(G) \ V(H). Since X U S = V(G) \ Y is an 

/-dominating set of G, we have 

V(G)^p-\Y\, 

or equivalently, \Y\ ^ p — n, where n = 7/(G). Suppose 

|Y| — p — n - r ? 0 ^ r < p — n. 

Then | 5 | = p — a — \Y\ = n 4- r - a. 

For any y G Y, (S \ NG(y)) U X U {g} is a dominating set of G, hence 

| S | - | S n N G ( ? v ) | + |X| + 1 ; * 7(G), 
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i.e. \S n Na(y)\ < n + r - 7(6') + 1. Similarly, \S n A'( /(.r)| < p - a - ->(G) + 1 for 

each x £ X. We havo 

2e(G) < 2e (G[S]) + | A | ( | A | - 1) + |A'| |Y | 

+ J2 (|5n.Vc;(.V)| + |AtG(y)|) + J2 \SnNG(x)\ 
yeY .rex 

^ 2t„ + a{a - 1) + a\Y\ + \Y\ (n + r - 7(6') + 1 + A(G)) 

+ a(p - a - 7(G) + 1) 

= 2 í , + a(;> - 7 ( G ) ) + a | F | + |Y | (p - |Y | - -,(G) + A(G) + 1) 

= 2í , + a(p - 7(G)) - | Y | 2 + \Y\ (p + « + A(G) - 7(G) + l ) 

íí 2tq + a(p - 7 (G) ) - (</ - a ) 2 + (p - H) (/> + « + A(G) - o(G) + l ) . 

This gives 

71 O -
2Qг(G) - t g ) + (g - a ) 2 - (p - 7 ( G ) ) a 

p + a + A(G)-1(G) + l 

This completes the proof. • 

4. R E M A R K S 

A lot of problems concerning the /-domination number and the /-independence 

number can be proposed. Perhaps the most attractive one is whether there exist 

the Nordhaus-Gaddum type inequalities for 7 / . Such inequalities for 7 have been 

shown in [7]. Naturally we can define the upper /-domination number r / ( G ) of 

G to be the maximum cardinality of a minimal /-domina t ing set of G. Also we 

can define the /-domatic number, df(G), to be the maximum order of a par t i t ion 

of V(G) into /-domina t ing sets. Another interesting invariant is t/(G), which is 

defined to be the smallest non-negative integer / such that -)/_7-(G) — 7 ( G ) . Studies 

on these invariants are necessary, as well as interesting. For example, relations among 

7 / , T/, /i/, d/, if and other graphical invariants, e.g. the domination number, the 

independence number, are valuable research topics. The lower bounds and the upper 

bounds for 7 / and \3f deserve further study as well. 

This work is on-going and results will be published later. 

498 



References 

Y. Caro and Y. Roditty: A нote on the k-domination иumber of a graph. Internat. J. 

Math. & M a t h . Sci. 13 (1990). no. 1, 205-206. 
F. Frdös: On some extremal problems in graph theory. Israel J. of Mathemat ics 3 (1965), 
l 1.3-116. 

[3] O. Favaron: On a conjecture of Finк and Jacobson concerning k-dominatioи and 
k-dependence. J. of Combinator ial Theory, Ser B 39 (1985), 101-102. 

[1] J.F. Fink and M.S. Jacobson: n-domination in graphs. Graph Tlieory with App l ications 
to Лlgor i thms and C o m p u t e r Science. Јolin Wгiley & Sons, New Yorк, 1985, pp. 283 300. 
J.F. Fink and M.S. Jacobson: On n-dominat ion, n-dependence and forbidden subgraphs. 
Grapli Theory with App l ications t o A lgorithms a n d C o m p u t e r Science. Јo lm Wiley &: 
Soиs, New Yorк, 1985, pp . 301-311. 

S.T. Iíedetniemi: Hereditary properties of graphs. Ј. of Combinator ia l Theory, Ser B Ц 

(1973), 94-99. 

F. Jaeger and C. Payan: Relations du type N o r d h a u s - G a d d u m pour le noiiibre 
ď a b s o r p t i o n ď u n graphe simple. C R Лcad. Sci., Ser. A 274 (1972), 728-730. 

[8] R. Laskar and H.B. Walikar: On dominat ion related concepts in graph theory. Combina-
torics and Graph Theory (S.B. Rao, ed.). Lecture Notes in Mat l i . 885, Springer-Verlag, 
Berlin, Heidelberg, New Yorк. 1981, pp. 308-320. 

[9] C. Stracke and L. Volkmann: Л new dominat ion conception. Ј. Graph Tlieory 77(1993), 
no. 3, 315 32.3. 

Autfwr^s address: Dept . of Math. , Huazhong Univ. of Sci. & Tech., Wuhaи, IIubei 
130074, P.R. China. 

499 


		webmaster@dml.cz
	2020-07-03T10:53:27+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




