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C z e c h o s l o v a k M a t h e m a t i c a l J o u r n a l , 46 (121) 1 9 9 6 , P r a h a 

ON SOME P R O P E R T I E S OF THE CANTOR SET 

D. K. G A N G U L Y and M. M A . J U M D A R , Ca lcu t t a 

(Received December 22, 1994) 

INTRODUCTION 

oo 
Let x be a number given by x = ^ |f, where Q = 0 or 2 for all i. Then the set {x} 

i=i 
is the Cantor set C which is a nondense perfect set; and the set of complementary 

intervals j ( ^ + p . + . . . + £ ^ i + 1 o. + £4 + . . . + £51^ + ^ r ) } , none of which 

contains a point of C, is everywhere dense in [0,1]. Steinhaus [6] proved that given 

any d in [0,1], it is possible to find points x and y of C such tha t y — x — d. Utz [8] 

proved Steinhaus' result geometrically in tho following way: Given m and d satisfying 

\ ^ |///| ^ 3 and 0 ^ d. ̂  1, there exists a pair of points x and y from the Cantor set 

such that y — nix = d. Randolph [5] proved that any point in the unit interval [0,1] 

is midway between two Cantor points. Bose Majumdar [1] gave an alternative proof 

of this theorem. Randolph's results was generalized by Ganguly [3] in the following 

manner: Given positive real numbers p and </, 0 < y < 1, and d, 0 ^ d ^ 1, it is 

possible to find Cantor points X[ and x-2 such that d — Z!£2±i£i 

Clearly, we can see that the points 0 and 1 of C are not midway between two 

distinct Cantor points. In 193G, V. Jarnik [4] showed that all Cantor points which 

represent irrational numbers cannot be expressed as centers of two distinct Cantor 

points. Here, in Section 1, we extend the result of Jarnik. By a non-end point of 

the Cantor set we mean any Cantor point which is not an end-point of any of the 

remaining closed intervals in the construction of the Cantor set. We show tha t no 

non-end point of the Cantor sot is expressible as the center of two distinct Cantor 

points. 
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§1 

Bose Majumdar [2] proved that any point d, in the unit interval can be expressed 

uniquely as d = x + y when* x G C, y G C if and only if d = .S[ l(52lo\, 1 . • . 

S2k-ilS2kl • • -, where each o" is either a block of 0\s and 2\s or may be void, but 

no 0*2A:-l should contain a "two11 and no S-2k should contain a "zero". He also noted 

tha t d = | = (.111 .. .) is the only point in 0 < d < 1 which can be uniquely ex­

pressed both as y -f x = d and y — x = J, where x G C\ y G C. With 0 ^ d ^ 1, 

we define A({ = {(x,y): x G C\ /y G C and ;i: -f ?j = d}. We now present the following 

theorems. 

T h e o r e m 1.1. If d is any number satisfying 0 < d < 1, such that Ad = 1 where 

Ad means the cardinality of A,/, then | is a non-end point of C. Moreover, if x and 

y are in C and x + y = d, then x = y = | . 

P r o o f . Since A,/ = 1, then according to Bose Majumdar [1], d = .oq 1S21S:]1 . . . 

S2k-ilS-2k • • • where each S is a block of O's and 2's or empty; but no o^/v-i contains 

the digit 2 and no S2k contains the digit 0. 

It is easily seen that | = \(.S\ IS2IS3I .. .) = .(\[02(\.^i[ . .. where Q'2^-1 is a block 

of O's only and 02k is a block of 2's only Thus | is a non-end point of C. 

Since Af/ = 1, there exists only one pair (x<y) G C x C such that x + y = d. 

However, f G C and d = f + -y Therefore x = y = '{. • 

Coro l lary. If 0 < d < 1 is such that the set {(T, //): x G C\ y G C, y = T + rf} hcis 

cardinal number 1, then ^-^- is a non-end point of C. Furthermore, if x and y are in 

C such that \y - x\ = J, then x = 1 - y = =~. 

Now we extend the result of Jarnfk. 

T h e o r e m 1.2. If z is a non-end point of C, then .; cannot be expressed as the 

center of two distinct Cantor points. 

P r o o f . We are to prove that if z = £^R, x G C\ y G C\ then x = y = z. Let 

z ho. a non-end point of C such that 0 < z < 1. Then : = ^ fr where z{ = 0 and 
; = i 

Zi = {[] } for i > 1 and there is infinite number of O's and 2\s in the expression for z. 
OO V-

Then ^ - ^ = E £ V L = E ^ 1 where A; = { ",' } for all /. As 2.: - 1 is any 
7 = 1 ' i-~ 1 

point in ( — 1,1), according to Bose Majumdar [2] --V-- can he expressed uniquely as 

i = X] fr, A?- = { "/ } for all i. Now, choose ,/\ = 1. y, = 0 if A,- = - 1 and 
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CO CO o o 

,- = 0 and tji = 1 if Xi = 1. Then 2^ - 1 = £ ^ = £ ^ ~ £ 1 ^ = <J ~ : r ' where 
1 = 1 7 = 1 t = l 

CO 

/; = £ ^ - G C and j = j ] | 6 C . 
7 = 1 i = l 

Therefore 2 :̂ = y + 1 — x = y -f x' where x' = 1 — x G C as (7 is symmetric. But 

2z = z -f ~, hence x' = y = z. 

If | < :j < 1, then 0 < 1 — ~ < §• 1 — - i s also a non-end point of C as the Cantor 

set C is symmetric. 

If u + U = 2(1 — z), u, v e C, then u = v = 1 — z. So if x + y = 2z, then 

(1 - x) + (1 - y) = 2(1 - z), where :T, y G C Hence 1 - ;r = 1 - y = 1 - 2, i.e. 

x = y = z. • 

§2 

Now we recall some basic notation and definitions. 

Def in i t ion 1. If P\, P, P', P2 are four collinear points then the expression 

PPV /PľP{ FFi P'P2 

PP2I P'P2 PP2P'P{ 

which is the ratio of the distance ratios, is called the cross-ratio of the four collinear 
points. We shall denote this cross-ratio by (P\P2,PP'). 

The family of straight lines in the plane passing through a fixed point is said to 
form a pencil of lines. The straight lines are called the rays and the common point 
the centre of the pencil. 

Let pi and p2 be two intersecting lines and let p be a straight line passing through 
the point of intersection of pi and p2. A point P is taken on p. Draw perpendiculars 
PQi, PQ-2 on pi and p2, respectively. The centre of the pencil divides each ray into 
two halfrays. The angles (p,pi) and (p,p2) are measured between the halfray of p on 
which P lies and those halfrays of pi and p 2 on which Qi and Q2 lie, in the directions 
of PQY and PQ2, respectively 

D e f i n i t i o n 2. If px, p2, p, // are four concurrent straight lines then the expression 

sin(p,pi) /s in(p ' ,pi) 
s in(p,p 2 )/ s in(p' ,p 2 ) 

is called the cross-ratio of the four concurrent straight lines and is denoted by 

(pi/>2,lV). 



De f in i t i on 3 . In four concurrent straight lines O, b, c, d are such that (Ob, cd) = 

— I, tlien a, b, c, d are called four harmonic lines. 

T h e o r e m 2 .1 . Let two positive numbers p and q be chosen arbitrarily with 0 < 

£ < 1. For any interior point R of the unit square S = [(0, 0), (1, 0); (1, 1), (0,1)] we 

can always find a rectangle A\B\C\Di lying in S, with its vertices on the Cantor 

product set C2, such that R lies on the diagonal A\C\ dividing it in the ratio p : q 

and the Cross-ratios of the pencil of four concurrent lines RD\, RP, RQ and RB\ is 

the same for all positions of R in S, where P and Q lie on the other diagonal D\B{ 

dividing it in the ratios p : q and q : p, respectively. 

P r o o f . Let us consider the product set C2 = C x C in tlie unit square S, C 

being the Cantor set. Hence, if (x,y) E C2 then x E C\ y E C. • 

Here p and q are two given positive real numbers such that 0 < E < 1. Consider 

any interior point R(x,y) of S. Then by a theorem due to Ganguly [3] we can find 

a rectangle AiBiC\D\ with vertices on C2 lying in S, where the coordinates of AL. 

Hi, C\ and D\ are respectively (c\,c^), (c2,c3), (c2 .r.i), (Oi,c4) where c2- E C (i = V 

2, 3, 4) with the property that the point R(x,y) lies on the diagonal AiCi and 

x = p C p ^ C l , y = p C p ^ r j • Now, draw the diagonal B{D\ and through the point 

R(x,y) draw lines parallel to V and A"-axes, respectively, intersecting B\D\ at P 

and Q where P = (x',y') and Q = (x",y"), say It is obvious that - ^ p = R and 

£ # = *. Therefore, x' = T, </ = ^ 4 ^ - , y" = u, .r" = ^ i ± ^ - . Here one of the 24 
QBi p ' •' p+q ' y y ' p-fr/ 
cross-ratios of four collinear points Hi, Q, P , I)i is 

PDi iBxDx PDi BiQ 
(1) (D1Q,PBi)= ' " 

PQ I BXQ PQ B,D 

Obviously, DXP = -^rqDvB\ and HiQ = ^ H i D , . Also 

PQ2 = (x" -x')2 + (< / " - y')2 

_ (PC\ + qc2 _ pC2 + O C i \ 2 //X-4 -fr-yCn _ /X'3 + OC4 

V L> + O P + q ' ^ p + q p + Q 

= ( y ) ' ( ( , 1 B 1 ) « + ( c l B 1 ) , ) = ( ^ _ i ) « . ( B 1 ^ 
Hence, FQ = ^ • (Z^HT). Then (1) implies 

- £ Ţ . - г - ß 1 D 1 . . B 1 D I ;,2 

(DiQ,PBi) = ,+', p+" = - V — " ' 
P+<7 

which is independent of the position of R(x,y) 
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In the same manner it follows tha t each of tlie 24 cross-ratios is independent of 

the position of R. 

Since tlie cross-ratio is unaltered by projection and section [7] it follows tha t the 

cross-ratios of the four concurrent lines RD\, RP, RQ and RBi are also independent 

of the position of R. 

N o t e . If - = -4-:, then the cross-ratio (DiQ, PB[) = — 1 and we have the 

following theorem. 

T h e o r e m 2.2 . For any interior point R of the unit square S we can always find 

a rectangle A\BiC\D\ lying in S, with its vertices on C2, such that R lies on the 

diagonal A[Ci dividing it in the ratio 1 : \Jl and the lines RD\, RP, RQ and RBi 

always form a harmonic pencil P, Q being on the other diagonal D\B\ dividing it 

in the ratio 1 : \[2 and y/2 : V respectively. 
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