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1. NMOTIVATION

The classical Kolmogorov's model of probability assumes that every pair of events
ix simultancously observable. This principle is violated in several applications includ-
ing quantum mechanices, artificial intelligence, psychology, sociology ete. In these ar-
cas noncompatible events are encountered. These are events which can be observed
separately. but not simultaneously, so they are not contained in a Boolean subalge-
bra (= classical subsystem) of the event structure describing the system in question.
Various attempts have been made to generalize the probability theory to a more
seneral structure admitting noncompatibility. Among them, classes of subsets (more
generally. conerete logics) were studied for many years (see e.g. [15, 18]). Although
sone results were successfully generalized (see e.g. [4. 10, 19]). the theory proceeded
slowly and with serious difficulties. Here we introduce a more special-—but still rea-
sonably general —structure. a kernel logic. As it is deseribed in terms of Boolean
algebras using measure-theoretic notions, we believe that there is a greater chance
to genceralize classical results for Boolean algebras to kernel logics.

Ivernel logies seem to be interesting also from the algebraic point of view as a new
construction technique for concrete logics. Its usefulness was proved by solutions of
several quite nontrivial problems. Besides this. it seems desirable to describe kernels

of measures on Boolean algebras.
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2. BASIC DEFINITIONS AND EXAMPLES

Let us recall the basic definitions (for more details, we refer to [6, 15]). By a logic
we mean an orthomodular poset. A subset of a logic is called a sublogic if it is closed
under orthocomplements and under orthogonal suprema. Let ¢, Z be logics. We
call a mapping h: ¥ — &

o a iomomorphism if it preserves the orthocomplements and orthogonal suprema.

o an isomorphism if it is one-to-one and both h. h~! are homomorphisms.

o a monomorphism if h: # — h(J) is an isomorphism.

In this paper, we shall mostly deal with the logics which are representable as
collections of subsets of a set. Let X be a nonempty set. A collection .Z C 2 is
called a class of subsets if X € Z and if A,B € .. A C B, implies B\ 4 € .£.
A class of subsets becomes a logic if we take the inclusion for the ordering and
the complementation (in .X') for the orthocomplementation (we use the notation
A+ = X'\ 4). Notice that a class of subsets is closed under disjoint unions, but not
under all unions. A logic .Z is called a concrete logic if it is isomorphic to a class
A of subsets of a set. We call ¢ a representation of .Z. Of course, all Boolean
algebras are concrete logics. A typical example o a non-Boolean concrete logic is
the following

Example 2.1. Let n,p € N and let X be a set of cardinality n - p. Then
the collection ¥ of all subsets of X whose cardinality is divisible by p is a class of
subsets of X.

Let G be a commutative group. A G-valued measure on a logic . is a mapping
m: .Z — G such that m(A Vv B) = m(A) + m(B) whenever A < B+. A two-valued
measure 1s a Z-valued measure with values 0, 1.

Proposition 2.2. Let m be a G-valued measure ou a Boolean algebra 9. Then
the kernel of m, Kerm = m™"'(0), is a weak generalized orthomodular poset (see
[7]). If, moreover, m(1) = 0, then Kerm is a concrete logic.

Definition 2.3. A kernel logic is a logic which is isomorphic to Kerm for some
group-valued measure m on a Boolean algebra.

Remark 2.4. Throughout this paper we treat only the case m(1) = 0, leaving
the investigation of weak generalized orthomodular posets (obtained for m(1) # 0)
to another paper.

Example 2.5. The concrete logics from Ex. 2.1 are kernel logics. It suffices to
take a measure m: 2X — Z, (Z, is the p-element cyclic group) such that m({z}) =1
for all z € X.
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Coucrete logics may be alternatively defined as orthomodular posets possessing
order-determining sets of two-valued measures (i. c.. for each a.b, a £ b, there is a
two-valued measure m such that m(a) = L # m(b), see [20]). A concrete logic &
may have various representations (see Ex. 4.1). It is reasonable to consider only such
representations by a class 7 of subsets of a set X that, for each &,y € X, there is an
A A sadistving r € ALy € 4. The elements of X may be identified with two-valued
imeasures on .2, (These measures correspond to concentrated measures on £, 1. e.
‘o two-valued measures mesuch that 2r,, € X VA e #: (m(H) =16 2, € A).) If
A s the set of all two-valued measures on %, we speak of a maximal representation.

An clement a of alogic .2 is called an wtom if {b€ .£:0<b<a}=0.

Alinte snbser . 7 of alogic .2 is called compatible if it is contained in a Boolean
algebra which is a sublogic of .« (for more general and detailed exposition. see [15]).
The center of 2 s the set (oo ¢ 70 {a b} is compatible for all b € .27}, The elements
of the center are called central.

"t the definition of a kernel logic. one may think of expressing it in the form

O Kerm;. using a colleetion {m; }izp of group-valued measures instead of a single
o
measure. The following proposition shows that such a generalization does not bring

anvthing new.

Lemma 2.6. Let B be a Boolean algebra and let £ C 8 bhe such that for each
A e . A\.Z there is a commutative group G and a G y-valued measure m 4 on 4
satistving £ C Kerm . A € Kermy. Then 2 is a kernel logic.

Proof. We construct the product G = J] G4 and define a measure m:
AeB\&¥
A= G by m(C) = (ma(C))aene Then Kerm= [} Kermy =.27. O
AeB\ &

3. CONSTRUCTIONS WITH KERNEL LOGICS

In order to find new examples of kernel logics, we discuss their relations to the basic
constructions for orthomodular lattices —products, Boolean powers and horizontal
sums. We prove that every logic is a homomorphic image of a kernel logic. For the
description of products and horizontal sums of logics we refer to [6, 15], for Boolean
powers in general to [3], in the context of logics to [2, 13].

Proposition 3.1. Every product of a family of kernel logics is a kernel logic.

Proof. Fori € I, let % = Kerm;, where m; is a group-valued measure on a

Boolean algebra #;. We define 8 = [[ #; and £ = [[ & C &, and we denote
i€l i€l
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by m;: 8 — %B; the canonical projection. We shall apply Lemma 2.6 to prove
that . is a kernel logic. If A € &\ £ then there is an index i € I such that
. (A) € B\ % = B; \ Kerm;. The measure m; o r; satisfies the assumption of
Lemma 2.6. ]

Proposition 3.2. Let .Z be a kernel logic, &/ a Boolean algebra. Then the
bounded Boolean power £ [</|" (as well as the Boolean power (& provided </ is
complete) is a kernel logic.

Proof. We may assume that &/ is an algebra of subsets of a set Y. Let .# be the
kernel of a measure on a Boolean algebra #. The bounded Boolean power 8B[«/]* is

a subset of [[ %y, where B, = # (y € Y). As Z[]" = Blo* N [] &, where
yeYy yey
Ly =2 L, L, C By (y€Y), by the same technique as in the proof of Prop. 3.1 we

may prove that Z[</]* is a kernel of a measure on AB[/]*. O

Before treating horizontal sums, let us recall the construction of a free product
(see [3] or [17], where it is called a “Boolean product™). Let {%;}ics; be a collec-
tion of Boolean algebras. A free product of {%;}ic; is a Boolean algebra % with
monomorphisms h;: %B; — 9B such that

1. if Fis a finite subset of ] and A; € B;, A; #0 (i € F), then A h;(4;) # 0:

i€F
2. U hi(#;) generates A.
i€l

The free product of a family of Boolean algebras always exists and is unique up
to an isomorphism; we denote it by Fi;c; %;. It can be constructed from the set
representations as follows. For each i € I, let %; be aun algebra of subsets of a set
X;. Let X be the Cartesian product [] X; and let p;: X — X; be the canonical

iel
projection. We define monomorphisms h;: &; — 2% by hi(4;) = pi‘l(Ai). (Thus,
hi(A;) = [1Y;, where Y; = 4; and Y; = X for j # i.) The algebra & of subsets of
JeI
X, generated by |J h;(B;), is the free product F;e; 4;. Notice that the free product
i€l

is associative, i. e., if J C I, then Fiey %B; is isomorphic to the free product of F;¢y %;
and ﬂ:iGI\J ﬂ,

For each ¢ € I, let m; be a real-valued measure on ¥4; with m;(13,) = 1. By a
product of measures we mean the (unique) measure n (denoted also by [] m;) on

i€l
Fic1 %; defined by the following rule: If F'is a finite subset of / and A; € #; (i € F).
then m( A h:(4;)) = [ mi(4:).
i€F ieF
We first prove a special case.

Lemma 3.3. The horizontal sum of two kernel logics is a kernel logic.
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Proof. Let . be the horizontal sumn of kernel logics .¢5, i = 1,2. Let . =

INerm;. where my; 18 a Gi-valued measure on 4; and 4; is an algebra of subsets

of a set X;. We define X' = [] Xii 4 = Fimi2 4 C 2Y and we denote by
€12
1, the respective homomorphisms. We identify .2 with | 7:(.%;). According to
i=1,2

Lemma 2.6, for cach 4 € 4\ .2 we have to find a group-valued measure 1 on 4
such that .27 C Kerm and m(4) # 0. We shall distinguish two cases.

1. Let us suppose that A € A\ U hi(A:). As A € hy (%)), we may find u; € X7,

i=1.2

ya. 2o € Xy such that (uy,y2) € A, (uy.22) € 4. Analogously. as A € hy(4,), there
arc uy € Xoo g,z € Xp osuch that (yy.ue) € A, (51,u2) € A. For each point
wr1.r2) € X we denote by s, .,) the two-valued measure on & concentrated in
(ry.r2). We define measures

= S0 s) T Sy — Staya) — S(yrae)-
V=50, uy) T S(zyiz2) T S(uyz2) T S(z1ue)-
These measures vanish at |J hi(4;), but at least one of them is nonzero on A.

=12
Indeed. the case p(A4) = v(A) = 0 leads to a contradiction:

'*'(ul,ug)("l) + 5(y1,yg)(‘4) -2= ,UV(A) = 1/(A) = S(lL],lL’_))(‘_l) + 5(:1,22)(‘4)'

2. Suppose now that 4 € |J hi(A4:)\.Z. Without any loss of generality we
1=1,2

may restrict our attention to the case A € hy (A \.Z)). Thus. A = 4; x X, where

A e A\ . We fix a yo € Xy and define a “line” P = {(r,a3) € X:ay = ¢y},

The Gy-valued measure m on 4 defined by m(C) = my(pi(C N P)), where py:

X' = .| is the canonical projection, vanishes on .2, and m(4) =m,(A;) #0. O

Theorem 3.4. Every horizontal sum of kernel logics is a kernel logic.

Proof. Let .Z be the horizontal sum of kernel logics .%;. i € I. For cachi € I,
there is an algebra &; of subsets of a set X; and a group-valued measure m; on
A such that 5 = Kerm;. Let X = [[ Xi. B = Fier B C 2% and iet h; be the

i€l
respective monomorphisms.  We identify ¢ with (J h;(.%) € 4. We shall prove
i€l
that .Z" is a kernel logic.

Let j,k € I, j # k, and denote by pj,: X = X x X the canonical projection.
The class 2 = pix(h;j (L) U he (L)) of subsets of X; x .Y is isomorphic to the
horizontal sum of & and Z. For each i € I\ {j,k}. we fix a y; € X;. Consider a
“plane”

(P) P={(vi)ier € X:x; =y; forallie I\ {j k}}.



If A € &, then p; k(AN P) € & for all planes P of the form (P). The reverse

implication is also true: If A ¢ &, there is a plane P of the form (P) (for suitably

chosen j,k,y;) such that p;x(A N P) € £ According to Lemma 3.3, &, =

Ker i for some group-valued measure p. The measure m on 4 defined by m(C) =

w(pj.x(C N P)) vanishes at |J hi;(%;) and m(A4) # 0. According to Lemma 2.6, .& is
i€l

a kernel logic. O

Janowitz [5] introduced the class of constructible lattices—it is the smallest class
of logics containing all Boolean algebras and closed under products and horizontal
sums. Prop. 3.1 and Th. 3.4 have the following consequence.

Corollary 3.5. Every constructible logic is a kernel logic.

The following theorem states that every orthomodular poset is a homomorphic
image of a kernel logic. Moreover, we can require the homomorphism to “preserve
compatibility”.

Theorem 3.6. Let .Z be an orthomodular poset. There is a kernel logic ¢ and

onto

a homomorphism h: ¥ — % such that

1. the center of £ is the image of the center of X,
2. each finite compatible subset of £ is an image of a compatible subset of J¢ .

Proof. A concrete logic ¥ with the above properties is constructed in [1, 15,
Th. 2.2.5). It is obtained as the Boolean power of a horizontal sum of Boolean
algebras, so it is a kernel logic (Prop. 3.2 and Th. 3.4). O

We must admit that, until now, we have failed to find a concrete logic which is
not a kernel logic. It seems that the answer to the question: “Is every concrete logic
a kernel logic?” is either negative or rather nontrivial.

4. KERNELS OF MEASURES WITH VALUES IN SPECIAL GROUPS

We may require to express a kernel logic as Kerm, where m attains values in a
certain special group G. Despite some positive results, we shall show that this is
not possible in general—for every group G there is a kernel logic which is not the
kernel of a G-valued measure. Moreover, the choice of the set representation is also
important, as we demonstrate by the following example.

Example 4.1. 1. Consider the OML M O3 (= the horizontal sum of 3 Boolean
algebras 22, see [6]). It can be represented as the class J#] of subsets of a four-element
set X, such that J#; = {A C X;: card A is even}. This is the special case of Ex. 2.1
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for n = p = 2. According to Ex. 2.5, ¥ = Kkerm, for a measure m; : 2X1 5 7,
However. as a measure vanishing on #] has to be coustant on all singletons. £}
cannot be obtaine1 as a kernel of a measure on 2% with values in « group different
from Z,.

2. As MO; adwiits 8 two-valued m.easures, its maximal representation £, has
a domain X, with card X, = 8. One may identify the elements of X, with the
vertices of a cube so that 5 contains @, X, and each 4-element set of vertices
corresponding to a face of the cube. Then J#; = Kerm, for a Z-valued measure
on 2%= described by Fig. 1 (it was obtained by a simplified technique of Th. 3.4 and
Prop. 4.3). However, %5 is not a kernel of a Z,-valued measure on 2%z

15 -18

13 ~10

-24 27

B e |
Fig. 1

3. Another set representation of MOs is the following: X3 = {1,...,6}, %
contains 0, {1,2,3}, {2, 3,4}, {3,4,5} and the complements of these sets. The algebra
of subsets of X3 generated by .#3 is 2%3. If ms is a measure on 2%3 such that
N5 C IKerms, then

m3({1,3,5}) = ms({1,2,3}) + m3({3,4,5}) —m3({2,3,4}) = 0,
so {1,3,5} € Kermgs \ %3 and .#3 is not the kernel of any group-valued measure on
2%

4. Checking all possible representations of M O3, one may verify that there is no
Z3-valued measure whose kernel is isomorphic to M O3.

The following theorem states that no group G is so “universal” as to admit the
description of all kernel logics as kernels of G-valued measures.

Theorem 4.2. For each commutative group G, there is a kernel logic . which
is not isomorphic to the kernel of any G-valued measure.
Proof. Let ¥ = [[ &, where % = MO, = {0,a,b,a*,b*,1} (i € I) and

i€l
card] > card G. According to Prop. 3.1 and Th. 3.4, .Z is a kernel logic. Let X be
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a set of two-valued measures on ., J# a class of subscts of .\ representing ¢ and
1. — ¥ the canonical isomorphism.

For cach e € MO,. denote by ef the clement of ¢ whose i-th coordinate is ¢ and
all other coordinates are zeros. For cach i € 1. a'. ' e nonorthogonal atoms of ¥
and there is only one two-valued measure, s;, on .2 such that .s',-((:’) = s5;(b') = 1
this measure necessarily belongs to X. Analogously. X' contains the measures ¢, such
that #;(a) = t;((b%)") =1 (i € I). Notice that cach atom of .2 is represented by
two-clement subset of X. c.g. r(a’) = {si t:}.

Suppose that there is an algebra 4 of subsets of X" and a measure m: A4 — G such
that .#° C Kerm. Then 4 contains the Boolean subalgebra generated by %7 and.
in particular, all finite subsets of {s;,t;: 7 € I'}. Due to cardinality reasons. we have
m({si}) =m({s;}) for somei.j €I, i# j. This implies m({s;.t;}) = m({s;.t;}) =
m(r(al)) = 0,50 {si.t;} € Kevm. If {s;.t;} € # then. as 17 s a central element of
L Asit = {sit;nr(l) € 4 o and {s;} becomes an atom in 4" which is central

contradiction. So .~ g INer . O

There are still some important cases in which measures with values in certain
groups are sufficient for the description of a class of kernel logics. For instance. for
finite logics we can strengthen Cor. 3.5:

Proposition 4.3. Every finite constructible logic is the kernel of an integer-valued

nieasure.

Proof. The technique of the proofs of Prop. 3.1 and Th. 3.4 results in a sct

of Z-valued measures mj..... m, such that .¢ = (| Kerm;. There is au M € N
1 n
such that the values of m;. i < n, do not exceed the interval (=AML AL). Then
m=>y. Mim; is a Z-valued measure with % = Kerm. O
i<n

5. AN APPLICATION- LOGICS WITH THE JAUCH-PIRON PROPERTY

In the study of classes of subsets, we often have to investigate a class £ of subsets
of a set X such that £ contains a given collection . # < 2V . It is usually difficult to
determine the class of subsets generated by .7 (or. at least, to find a “small™ class
of subsets containing . /). Somectimes it took many vears before the structure of a
specific class of subsets was clarified, and nontrivial combinatorial reasoning has been
utilized (see e.g. [10, 12, 19]). A collection of such problems appeared in the study of
concrete logics which have some properties similar to those of Boolean algebras (sce
[9, 11]). We show here that the answers can be efficiently obtained and described
by means of kernel logics. In this approach, one finds an appropriate measure (or a
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collection of measures, see Prop. 2.6) the kernel of which contains ./Z. It becomes
quite casy to check which sets belong to the corresponding class of subsets. As an
example of this technique, we present here a construction of a non-Boolean kernel
logic with the Jauch-Piron property.

A logic .2 has the Jauch-Piron property [16] if, for cach non-negative finite
real-valued measure s, each 4. B € Kers have an upper bound C € Kers (i. c.. if
Kers with C is a directed set). Obviously, all Boolean algebras satisfy the Jauch-
Piron property. The question has arisen whether there are non-Boolean concrete
logics with the Jauch-Piron property. This problem was formulated e.g. in [11. 14]
and remained open for several vears. An affirmative answer was given in [8]. Here
we find a family of such examples among kernel logics. We shall make use of the

following lemma which is mentioned, without proof. in {8].

Lemma 5.1. Let % be a class of subsets satisfving the following property:
() For cach A, B € ¥ there are uncountable families (Cy)ier, (Di)ier of
elements of & such that (Cy)ier Is disjoint and Cy U Dy = ANB (teT).
Then # has the Jauch-Piron property.

Proof. Let m be a measure on 4 such that m(A+) = m(B*+) = 0. As T is
unconntable. m(C,) = 0 for some v € T. As D,J; \ B+ c AtuC, € Kerm. we
obtain m(DE) =0 for DL > A+ uB*L. a

Example 5.2. There are kernel logics which are not Boolean algebras and
satisfy the Jauch-Piron property.

Let T8 be the union of two disjoint uncountable sets U, V. We denote by ¢
the Boolean algebra of all finite and cofinite subsets of W. Measure pu: ¢ — 7 is

uniquely determined by the following rules:

1 forall welU,

~

—
—_
~

-1 forallv el

-
Py
— —— -
——
~

Take an infinite set I and one other clement, say 1 ¢ I. We construct the free
product .4 = Fieq, A, where [} = {1} U] and .8; = ¢ (i € I}). We denote by h;:
A = A the corresponding monomorphisms. We define measures m;: 4; — Z so
that m; = pfor all i € I). Let gy Ay — Z be the two-valued measure attaining 1
exactly on all cofinite sets. We define a measure m: .4 — Z by the formula

m = I I m; — o0y -H/n,-.

i€l =



We claim that & = Kerm has the required properties. (The subtraction of .,
ensured that m(1.) = 0. In fact.m can be censtructed as a produet vy« [T ne;o where
vy = my — 9;. However. we could not apply immediately  he stand’(\r(lzi(l)nstrurriou
because v(lg,) =0 # 1.)

To see that Z is not Boolean. take w € U, v/ 0" € Vo o' # 0”0 Then hy({u}iu
e’ ) hi({u) U ({e” ) € .20 while their intersection hy ({u}) € £

It remains to prove that the condition (M) of Lemma 5.1 is satisfied. Let 4. B € ¥
and let T be a set of the first uncountable cardinality. If AN B € .2, we mo
choose Cy = 0, Dy = AnNB. It ANB &€ %. AN [ contains a subset of the
form E = () hi({e;}). where £ is a finite subset of [, and ¢; € 1. Notice that
m(E) = fcll.eg)ut n=m(ANB)e Z\{0}. Wefix a j ¢ I\ F and choose mutually
disjoint sets Uy C U, V; € V" with card Uy = card 1} = [n| (¢t € T). It suffices to take
Cy = Enh;(U,uVy), Dy = (ANDB)\(ENh;(Yy)), where Y, = Upif m(ANB)-m(E) > 0

and Y; = V4 otherwise. Lemma 5.1 completes the proot.

"

Remark 5.3. We have constructed a collection of new examples. The original
example of Miiller [8] is a proper sublogic of each of these.
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