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Czechoslovak Mathemat ica l Journal , 46 (121) 1996, P r a h a 

DECIDABILITY OF WEAK EQUATIONAL THEORIES 

ROBERT SZYMANSKI, Warsaw 

(Received June 10, 1994) 

1. INTRODUCTION 

Transitivity is known to cause serious problems in establishing decidability. In 
checking whether an equation p « q follows from Rudak's weak transitivity condition 
we shall use the set D ^ of all terms, which are defined in each model of E whenever 
both p and q are defined (on a given tuple). The main part of the paper contains no­
tions and theorems describing the structure of D ^ . This set being in general infinite, 
we present its finite graph representation and algorithms yielding basic information 
on its structure via the corresponding graph. This representation of D ^ leads finally 
to an algorithm deciding whether an equation p « q can be deduced from E by the 
weak transtivity condition. 

The paper is divided into two parts. In the first part we solve the decidability 
problem for weak equational theories in the case of unary signatures. In the second 
part, starting with Ch. 8, we generalize the results of the first part to arbitrary 
signature. 

In Ch. 2 we define the basic notions, which will be used throughout the paper. 
Ch. 3 contains Birkhoff's deduction rules for equational logic, the new weak tran­

sitivity condition, the definition of the set D ^ induced by a set of equations E and 
an equation p « q and a completeness theorem for weak equational logic, proved by 
Rudak in [2]. The definition of D ^ is recursive and the set which gives the basis for 
the construction is called the initial set. 

We shall learn more of the set D ^ in Ch. 4. We shall first define a "horizontal" 
structure called level. The levels contain those terms from the set D ^ , which appear 
in the consecutive steps of its construction. Then we introduce a "vertical" structure 
in T>pq, based on braids. The number of all braids is finite and each of them starts 
with a term from the initial set. The main feature of braids is the fact that they 
contain all the information on equations which were used for the construction of the 
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set D ^ . We prove that tlie braids cover Djf and we shall show liow the step-by-srep 

construction of this set can bo reduced to a step-by-step construction of braids. The 

Duplication Theorem turns out to be a very strong tool, enabling to add in one stop 

infinitely many terms to a braid. 

The description of D£; being still very cumbersome (braids can be infinite), we 

introduce in Ch. 5 another representation of this sot, which will be a finite directed 

graph. Its vertices are terms from the initial set (which is finite), while its edges 

represent basic connections (bridges) between braids. Using this graph we shall be 

able to decide whether a term t is in D ^ . 

The application of the tools defined in previous chapters will be presented in Ch. 6. 

The Bridge Theorem contains an algorithm for finding bridges and this algorithm 

only uses the information represented by the finite graph. 

In Ch. 7 we prove that the construction of the graph representing D ^ can be 

performed in a finite number of steps and that the sot of all terms which can be 

recovered from the graph is exactly the set D ^ . Then we present an algorithm 

which decides for a given equation t « s whether it can be deduced from a set E of 

equations by weak transitivity. 

This algorithm solves the decidability problem for unary signatures. In Ch. S wo 

return to arbitrary signatures and we show that all that has been done for the unary 

ones can be easily generalized to other cases. In particular we prove tha t again 

the set of terms recovered from the graph is exactly the whole set D^ g . The main 

deciding algorithm is essentially the same as for the unary case. 

2. P R E L I M I N A R Y NOTIONS 

Algebraic notions not defined here will be used as in Gratzer[l] . A signature is a 

pair (F , o7), where F is a set and 6: F —> uu is an arity function. A is a partial algebra 

of signature (F , 5) iff A = (A , ( / A ) / 6 F ) and for each / G F . / A is a partial <)(/)-arv 

operation in A (the domain of a partial function g will be denoted by domu) . YVe 

shall often denote the family [fA)feF by F A . 

Fix a signature T = (F.o7) and let X be any countable set. Let P = (P, F p ) be 

the (total) algebra of T-terms over X. A relative subalgebra D = ( D , F P ) of P is an 

initial segment of P iff A' C D and whenever 

/ ( r i , . . . . r*(/)) 6 D 

for / G F , then also 

n , - • • ,r&(f) e D. 
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Thus, for instance, the relative subalgebra D( r ) = (D(r), F D ( r ) ) , where D(r) is the 

set consisting of all the variables in X and of all the subterms of the term r G P , is 

an initial segment of P and it is the least initial segment of P containing the term r. 

We say tha t an equation p « q holds weakly in A or, equivalently, is a weak equation 

in A (and we write A \=w p « O), iff for any a i , . . . , an G A, whenever ( o i , . . . , f l „ ) G 

doin r>A n domOA , then j)A(a\. . . . , an) = OA(Oi,. . . , an). For instance, consider an 

algebra B = ( {O ,b} , / B ) with a 7- b and / binary. Assume dom / B = {(a,&), (fo.O)} 

and 

/%,&) = «, fB(b,a) = b. 

Then B K /(*,</) « / ( . r , . / ) and B K< / ( * , * ) « / (g , : r ) , while B K< /(*<</) ~ 

f(ij.x) does not hold. 

3. W E A K TRANSITIVITY 

G. Birkhoff has formulated a complete set of inference rules for the equational 

logic of total algebras. Thus for any set E of equations, E — EqMod(E) iff 

(i) x « x G E for every :r G A' 

(ii) p ~ O G F, if q ~ p G E 

(iii) / / % (/' G £ \ if p ~ q G £ and p',O/ are obtained from p and O, respectively, by 

replacing all occurrences of some variable by a term 

(iv) f(p[,...,P6(f)) « f(q\,---, (16(f)) G £ , if Pi « O/ G £ for i = 1 ,2 , . . . , 5(f) and 

(v) j> « q G F, if there is an r G P such that p & r € E and r & q € E. 

The example at the end of the previous Chapter shows that transitivity is not a 

valid rule for weak equations in partial algebras. However, some kind of transitivity is 

still needed. In [2] the following new rule has been introduced and proved adequate: 

(v') If for some terms p,q G P there are terms n , . . . , rn G Y>fq such that p « 

l"i • l"i ~ l'2. . . • , •/*,!_ 1 « /',;, /'„ ~ q G E for some //, then p % q G E. 

Hero E denotes the closure of E with respect to rules (i) -(iv) and Df, is the set of 

all terms which induce in every model of E a term function defined on a given tuple 

of arguments whenever both term functions induced by p and q are defined on that 

tuple. The precise definition is the following: 

De f in i t i on 3 . 1 . Define D ( ) = D(p) U D(O) and for n G oj, 

DM + i = D r i U [J { / ( n , . . . , r ^ ( / ) ) : there are s\, ss{f) G P such that 

' 'T,. • - , ^ ( / ) , / ( 5 i , . • • ,$6(f)) G D„ and ,s; « r?- G E . for i = 1 ,2 , . . . ,rf(/)} 
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Then 

K = U ->»• 
n£u> 

The following theorem shows that (v') can indeed replace transitivity in Birkhoff-
like rules for weak equational logic: 

Theorem 3.2. (The Completeness Theorem ([2]).) For any set of equations 
E, E = Eqw Modw(E) iff E is closed with respect to rules (i)-(iv) and (vf). 

Here Modw(E) denotes the class of all partial algebras of the appropriate signature, 
in which all the equations in E hold weakly; Eqw(K) is the set of all equations (of 
the appropriate signature) which hold weakly in all partial algebras from the class Iv . 

4 . DUPLICATION THEOHKM 

From now on and until Ch. 8 we shall restrict our considerations to unary sig­
natures only. This will be very convenient, since it will significantly simplify the 
notation. We shall see in Ch. 8 that this simplification does not restrict the general­
ity of the solution, since it can be easily extended to non-unary cases. 

Fix a signature r = (F,(5) such that 6(f) — 1 for each / G F. Let E be a fixed 
finite set of T-equations and let aj3 G P be fixed (unary) terms. 

The definition of the set D ^ , is now somewhat simpler: 

Definition 4.1. Define 

D 0 = D(a) U T>((3) and for n G u, 

D n + i = D n U ( J {/(r): there is 5 G P such that r, f(s) G D n and s « r G E} 

Then 

Df/3 = (J D -
n£u> 

Remark 4.2. We can assume without loss of generality that the set Do contains 
a finite set of variables only, namely those, which occur in terms a, (3 and in terms 
of E. 

At this stage we are interested in deciding in finite time whether a term t is in the 
set Df~. In general this set is infinite; its definition is inductive and rather complex. 
If we constructed this set using its definition, we would have to start with the initial 
set D 0 and then we would construct consecutive sets D;. We shall adopt another 
solution here by defining new structures within Df^: these will make clearer the 
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relations between terms in this set and it will bring to evidence how and when new 

terms are added to its construction. 

The first partit ion of Df^ is naturally implied by its definition: 

Def in i t ion 4 . 3 . A k-level Lk is the set of new terms in D^ i.e., 

L 0 = D 0 and L/.+1 = T>k+i \ D/c-

It is easy to see tha t if L/. = 0 , then Df^ = D/,_i 

E x a m p l e 1 . Assume 

<* = f(t(p(*))), 

(5 = g(h(y)) and 

E={t(p(x))=g(h(y)).p(.v) = h(y)}. 

(We shall use this example until Ch. 8 to illustrate the notions introduced in the first 

part of the paper) . 

For such terms o; and /3 and the set E we may represent the levels of the set D 2 

as follows: 

U: f(t(p(x))) t(p(x)) p(x) x g(h(y)) h(y) y 

L, : f(g(h(y))) t(h(y)) cj(p(:r)) 

U f(t(h(y))) f(g(P(x))) 

The level L 0 coincides with the set D 0 . The next level Li contains the terms 

f(g(h(y))), t(h(y)), g(p(x)). How did they appear in this construction? The equation 

t(p(x)) « g(h(y)) G E is an equation between the main subterm of the term a and a 

term from the set D 0 (in this case it is the term /3), so according to the definition of 

D ^ , we can substi tute the term /3 for this main subterm of a. This yields the term 

f(g(h(y))), which falls into D i . 

In L 2 we find two terms: f(t(h(y))) and f(g(p(x))). Let's have a closer look 

at the first. According to rule (iv), the equation p(x) « h(y) being in E, we can 

deduce tha t t(p(x)) w t(h(y)) is in E. Both terms in the latter equation are in 

D i , since D i = L 0 U L i . The term t(p(x)) is the main subterm of a term in Do, 

while the term t(h(y)) is itself in D i . Therefore, by the inductive definition of 

D ^ , the term f(t(h(y))) will appear in D 2 . Similarly, start ing with the equation 

g(p(x)) « g(h(y)) e E , we get the term f(g(p(x))) G D 2 . 

In our example L 3 is empty and therefore D ^ = D 2 = L 0 U Li U L 2 . 

We shall now define the most important structure within D ^ : 
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Def in i t ion 4 .4 . A braid starting in t G D 0 (denoted by T(t)) is defined as 

follows: Let T 0 ( l ) = {t} 

Tk+i(t) = Tk(t) U | J {p(r): there is an s G P such that p(s) G Tk(t)< 

PeF 

r G Bk and 5 « r G E } . 

Then 

T(*) = (JT*(». 
/cGcu 

The term l is called tlie root of T(t). Clearly the number of braids is constant for 

given a, (3 G P and a set of equations E and it is equal to the number of terms in 

D 0 . Notice tha t each term t G D 0 sets its braid and that all terms in a braid T(t) 

have a common external operation symbol, which is the external operation symbol 

off. 

Our intention being the use of braids for the construction of D ^ , we shall mostly 

use partial braids Tk(t), the structure of which is similar to the structure of the 

whole braid. 

E x a m p l e 2 . For terms a, (3 and the set E as in the previous example, we 

find three braids containing more than one element: T(f(t(p(x)))), T(t(p(x))) and 

T(g(h(y))). Let's analyse the first of these: 

f(t(P(x))) 

f(g(h(y))) 

f(t(h(y))) f(g(p(.r))) 

We start with a partial braid To(f(t(p(x)))), which has one element only—the 

root. The equation t(p(x)) ~ g(h(y)) G E induces a new term f(g(h(y))), which 

belongs thus to T\(f(t(p(x)))). Then, using appropriate equations from E, we get 

the term f(t(h(y))) from f(t(p(x))) and f(g(p(x))) from f(g(h(y))). This yields a 

four-element braid T(f(t(p(x)))). The other two braids contain two elements each. 

L e m m a 4 . 5 . If g G D 0 , then for any t G T(g) there exists a sequence of terms 

Pi, • • • ,Pn £ T(g) for some n G u) such that 

g « pup{ w p 2 , . . . ,pn-i « PmPn « t G E. 

P r o o f . We proceed by induction on the structure of the braid T(g). Let 

t — f(r) for some / G F and some r G P . If t G T0( / / ) , then t is identically equal 
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to g and the lemma holds . If t G Tn+_(_/•), then according to the definition of T(g) 

there is a term r G T>n and a term f(s) G Tn(g) for some s G P with r « 5 G E . By 

rule (iv) we liave f(r) « /(.s) G E and by inductive assumption for f(s) there is a 

sequence 

pu...,pn eT(g) 

such that 

g ~HT,pi « / _ , - - . , P / i - l ~Pn,Pn ~ / ( s ) € E. 

Then pi,... ,p ; l , / ( s ) G T(O) is the required sequence of terms. • 

Observe that a simple modification of the proof above (substituting everywhere 

Tk(g) for T(g)) sliows tha t the lemma also liolds true for any partial braid Tk(g) 

i.e., any term in a partial braid Tk(g) can be linked with the root by a sequence of 

appropriate terms belonging to Tk(g)-

L e m m a 4 .6 . If g G Do, then for any terms p,t G T(g) there exists a sequence of 

terms p{,.. . ,pn G T(g) for some n G UJ such that 

P~Pl, Pi ~ P2, ••-, Pn-1 « Pn, Pn ~ t G E. 

P r o o f. Let s{,. . . , 5/ and n , . • •, r,n G T(g) be sequences of terms wliicli exist 

for p and l, respectively, by the previous lemma, i.e., 

g « .Si, .S! « 52, • • • , s/__ « .s/, .s/ « p G E 

and 

g « /•_, 7'! « /-2, • • •, r m _ i « r m , •/",„ « l G E. 

Then .s/^s/..!, . . . , s i , _/, r i , r _ . . . . , r,n G T(_a) is the required sequence of terms. • 

Observe that here, too, the lemma liolds true for any partial braid Tk(g)- Note 

also that in some cases there may be a sequence satisfying tlie previous lemma, the 

length of which is smaller than l + l + m; the sequence indicated in the proof, however, 

always exists. 

Def in i t ion 4 .7 . Given arbitrary terms p,t G T(g) (or p,t G Tk(g) for some 

A' G UJ), a chain Fg(p, t) is a sequence of terms pi,. . . ,pn G T(g) (or p_,. . . ,pn G 

Tk(g), correspondingly), which exists for p and t by Lemma 4.6. 
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E x a m p l e 3 . In our example the chain Fg (f(t(p(.r))), f(g(p(x)))) in the braid 

T(f(t(p(x)))) consists of the following terms: 

/(*(PO))), f(g(h(y))), fiadix))). 

since the equa tions 

f(t(p(x))) « f(g(h(y))), f(g(h(y))) « f(g(p(x))) 

are in E. 

We can now represent the braids in D2, indicating the equations within the braids: 

L0: fШx))) 

f(g(Һ(y))) 

t(p(x)) p(x) x g(h{y)) h(y) У 

t(h(y)) 9Ш) 

L 2 : f(t(h(y))) f(g(p(x))) 

It can be seen in the example above that braids coven- the wdiole set D ^ . This 

impor tan t proper ty is generalized in the following 

L e m m a 4.8. 

D E 

Uaß 
U T(p) 

PGDo 

P r o o f . The inclusion D follows from the definition of a braid. The other 

inclusion will be proved inductively with respect to the index of the set D n , to which 

a term t G D^o belongs. If t G Do, then t is the root of a braid and therefore 

t G |J T(p). Assume t G D„.+i. According to the definition of Df^, there exist 
pGDo 

terms r,f(s) G D n such that / = f(r) and r w s G E. By inductive assump t ion for 

terms in D n , f(.s) G T(g) for some g G D 0 . If f(s) G Tk(g) for some k G I*J, then by 

the definition of a braid, t = f(r) G Tk+i(g) C T(o) C | J T(p) . D 
/'6D„ 

The definition of D ^ indicates that to construct D„ + i from the previous sets, we 

use equations from the set E such that both terms in an equation belong to D n . We 

know now, tha t these terms belong to some braids and thus what we are actually 

looking for are equations between partial braids. This suggests a new notion, which 

will prove to be as important for our purposes as tha t of a braid. 
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Def in i t i on 4 .9 . A bridge between two partial braids Tk(t) and T/(p) for some 

k, I G CJ is any equation g « 5 G E such tha t g is a main subterm of a term in Tk(t) 

and s is a term in T/(p) . 

By extension, we shall call an equation g « s G E a bridge between T(£) and T(p) 

or between Tk(t) and T(p) or between T(t) and T/(p) when g is a main subterm of 

a term in the first (possibly partial) braid and s is in the second. 

E x a m p l e 4 . In our example the equation t(p(x)) « g(h(y)) G E is a bridge 

between T(f(t(p(x)))) and T(g(h(y))), the equation p(x) « b(H) is a bridge between 

T(t(p(x))) and T(h(y)). Each equation which yields a new term in the inductive 

construction of Df^ is in fact a bridge between appropriate braids. This suggests 

that finding a new term in the construction of a braid amounts to finding a bridge 

between this braid and other braids in D ^ . In fact, as the following theorem shows, 

a bridge is a very powerful tool in the construction of braids. 

T h e o r e m 4 .10 . ( D u p l i c a t i o n T h e o r e m . ) For any terms t,r G D 0 , h,p G P 

and g G F , ifg(h) G Tk(t) for some k G u>. p G T m ( r ) for some m G UJ and h « p G E, 

then g(T(r)) C T(t), where g(T(r)) = {g(s): s G T ( r ) } . 

The theorem states tha t if there is a bridge between two partial braids T/C(l) and 

T m ( r ) , then the whole braid T ( r ) will be copied into T(t); more precisely, all the 

terms in T ( r ) will occur as main subterms in T(t). Wha t is crucial here is tha t one 

bridge is sufficient to copy the whole braid—this property will prove essential for 

establishing decidability of weak equational theories. 

P r o o f . Let t,r G Do, h,p G P and g G F satisfy the assumptions of the 

theorem. Since h « p G E , the term g(p) is in Tk+\(t). For p and any term 

q G T m ( r ) there exists by lemma 4.6 a chain Fr(p,q), i.e., a sequence of terms 

Pi • • • • ,pn £ T(g) and a corresponding sequence of equations 

p w p i , . . . , p n _ ! « p n , pn& q e E . 

Now, due to these equations, we can consecutively "add1' to the braid T(t) the terms 

ry(p i ) , . . . , g(pn-i),g(pn) and finally also g(q). The term a being an arbitrary term in 

T m ( r ) , we see that all the terms in T m ( r ) will appear in T(t) as main subterms. It 

is now sufficient to observe that p G T m ( r ) C T; ( r ) for all i ^ m and T j ( r ) C T m ( r ) 

for all j ^ m. Thus for any term q G T ( r ) the term g(q) is in T(t). • 

The theorem shows tha t one equation h « p with p G T ( r ) will lead to any term in 

this braid, independently of whether the term has already occurred at the m - th step 

of the construction of T ( r ) or it will appear later. To find a common-life analogy for 

this situation, imagine a bridge constructed to join two highways. Once you cross it 
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going from the first of these highways to the second, you can reach any point on the 

second. Moreover, if the second highway is extended in some future, you can still 

reach the new points due to the same connection. 

Returning to our main topic, we shall say that a term q or a braid T ( r ) has been 

copied into a braid T(t) when q or, respectively, all the terms of T ( r ) appear in T( t ) 

as main subterms. 

5. T H E GRAPH OF D;';^ 

Let a, 3 be arbitrary terms and let E be a finite set of equations. We introduce 

' fi­ller e a graph G representing the set D f 

Def in i t ion 5 .1 . Let G = (V,K) be a directed graph without multiple edges 

such that : 

T(s) and T(t) in D * , 

Then G is called the graph of D f 

(a) V = D 0 . 

(b) For any s,t G V, there is an edge in K from s to t iff there is a bridge between 
E 
*&' 

,;, ,./• r . 
'a(3-

It is clear from this definition that the graph of D ^ j is finite, the number of vertices 

being equal to the number of terms in D 0 . The edges in the graph are induced by 

bridges and they connect the roots of braids linked by a bridge. An edge from a term 

s to a term t (corresponding to a bridge between T(.s) and T(t)) will be denoted by 

K(s,t) and it will be labelled by the external operation symbol in the braid T(.s) 

(recall tha t all terms in a braid have the same external operation symbol). 

The graph G will turn out to be a finite representation of the corresponding set 

D ^ - and thus also of all its braids. We shall use the graph to read the set of all the 

terms which belong to a given braid and we shall check for each term t whether it 

is in D f o . We shall see the exact rules for reading terms from the graph after an 

example. The main idea consists in the possibility of identifying a braid with the set 

of all terms which can be read from the graph starting from the root of the braid. 

Observe that due to the properties of the set D ^ (see [2]) it is closed with respect 

to subterms; moreover, by Birkhoff's rule (i) all equations of the form t ~ t for an 

arbitrary term t are in E. Tims if f(p) G D 0 , then also /; G D 0 and p « p G E. The 

term p is then on one hand the main subterm of the term f(/;) and on the other, it 

is itself in D 0 . Hence, according to the definition of the graph G, there should be an 

edge K{f(p),p). 

Now, instead of constructing the set D, we shall construct the graph G. Whenever 

we find a new bridge (which has not been represented in the graph yet), we add an 
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edge between the corresponding vertices i.e., between the braids connected by the 

bridge. The first step of the construction consists in drawing all th edges which are 

induced by Borkhoff's rule (i). independently of the set E (this will be clearly seen 

in the example below). The construction of the graph will be completed, when no 

new bridge is found. Then the set of terms included in the graph will be the set D, 

which will be formally proved later. 

E x a m p 1 e 5 . Let us see first, how would the graph G look like after the first 

step in its construction, i.e., after introducing only those edges K(f(p),p) which 

correspond to f(p) G Do- Recall that 

o = f(t(p(x))), 

U = 9(h(y)), 
E={t(p(x))ag(h(y)),p(x)Kh(y)}. 

fШx))) f t(p(x)) 
O -t i*-0 

9(Ңy)) 

Here all the edges lead from a term to its main subterm. We shall now draw the 

complete graph with all the edges—except for those term—main subterm edges that 

have been already introduced above (the presence of the edge from f(t(p(x))) to 

t(p(x)) will be explained later). 

f(t(p(x))) . t(p(x)) h(y) 
r> i- •_. r\ L »__ r\ 

p(x) o 
ÍJ(ҢУ)) 
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Here the only missing edges are: 

K(t(p(x)), p(x)), K(p(x),x), K(g(h(y)), h(y)), K(h(«),y). 

We shall re turn to them later. Let us analyze first the appearance of the edges 

indicated in the graph above. 

The edge from f(t(p(x))) to y(h(y)) is induced by the bridge t(p(x)) « g(h(y)). As 

explained above, this edge bears the label / . The bridge p(x) « h(y) yields an edge 

from t(p(x)) to h(y) and this edge is labelled by t. Tlie equation h(y) « p(x), which 

by symmetry is in E , is a bridge between T(g(h(y))) and T(p(x)), which induces an 

edge from g(h(y)) to p(x); this edge is labelled by g. wliicli is the external operation 

symbol in T(g(h(y))). 

Note tha t we have found another equation in E, which lead to the inclusion of 

the term f(g(p(x))) in D ^ ; this was g(h(y)) « g(p(x)). This equation is a bridge 

between T(a) and T(/3), but we already have an edge between a and (3. There is 

no need to introduce a second edge between these two vertices since, as we shall see 

soon, the term f(g(p(x))) can be recovered from the graph due to the existing edges. 

We expect of G to represent the set D ^ completely: all information about this 

set should be readable from the graph itself. In particular, we shall be often lead 

to decide whether a given term is in Df^. We shall now introduce rules for reading 

terms from the graph and we shall prove later that the set of terms read from the 

graph is equal to Df^. 

Rules for reading terms from the graph G 

1. Reading can start at any vertice of G. 

2. We can stop reading at any vertice of G. 

3. Reading is performed along edges only, according to their directions. 

4. Reading s tar ts with an empty sequence of symbols; passing from one vertice to 

another, we add to the sequence of symbols the label of the corresponding edge. 

5. When we stop reading at a vertice t, we add to the sequence of symbols the 

whole term t. 

E x a m p l e 6 . Let us return to the edges missing in the second graph of the 

previous example: 

K(t(p(x)), p(x)), K(p(x),x), K(g(h(y)), h(y)), K(h(y),y). 

It can be observed that these edges introduce no new terms: note that any term which 

can be read from the first graph in the example is in the graph already—as one of 

its vertices. Thus for sake of clarity we shall omit such edges in the representation 

of graphs. 
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We shall now use the second graph in the previous example to find all the terms 
belonging to D ^ . Clearly we shah include all the terms at the vertices (since we can 
start reading at any vertice and then stop right there). These are U nns from the set 
D0 . Next, starting at the vertice f(t(p(x))) and going to g(h(y)) we first write the 
symbol / , which labels the corresponding edge. If we stop here, we add the whole 
term at the final vertice to the sequence and we get f(g(h(y))). If we proceed to the 
vertice p(x), we add the symbol g to / and then the whole term p(x), since there 
are no edges starting in this vertice. Thus we get the term f(g(p(x))). It can be 
observed now that there is no need to indicate the bridge g(h(y)) ~ g(p(x)) on the 
graph, since the term induced by this equation can be already obtained due to the 
first bridge t(p(x)) w g(h(y)) between T ( Q ) and T(/3). Finally, we can easily read 
the terms 

f(t(h(y))),g(P(x)),t(h(y)). 

What new edges would we get if we include in E a new equation: 

p(x) * f(t(h(y)))? 

It is a bridge between T(g(h(y))) and T(a) and between T(t(p(x))) and T(cY), since 
the term p(x) is a main subterm in both braids T(g(h(y))) and T(t(p(x))) and 
f(t(h(y))) is in T(a) . Our graph will now be as follows: 

<* = f(t(p(x))), 

P = 9(Hy)), 

E = {t(p(x)) « g(h(y)),p(x) « h(y),p(x) « f(t(h(y)))}. 

f(t(p(x))) t(p(x)) h(y) 
0-« 4 7 1--0  

Now we can easily find all the terms in Df^. Let us begin with the braid T(g(h(y))) 
and start at its root. Passing consecutively through edges labelled by G, / , a, / , t, 
/ , g, / , t (note that different edges may have the same label) we get the term 
g(f(g(f(t(f(g(f(t(h(y)...). Taking another path: o, / , G, / , a, / , a, / , a, / we get 
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g(f(g(f(g(f(g(f(g(f(t(pU). . . ) , while the path <,. .;. I. f. t. f. t. f. t. f. t. f yields 

g(f(t(f(t(f(t(f(t(f(t(f(g(h(,j)...). 

Clearly the braid T(g(li(ij))) is infinite. Tliis example shows that if there is a cycle 

in the graph which can be reached starting from a term t. then the braid T(t) is 

infinite. Thus we have three infinite braids in the set D / ^ : T ( Q - ) , T(/3), T{p(x)). 

The simplicity of the example leaves no doubt as to tlie fact tha t all terms read 

from the graph are indeed in Df^. We shall now provide a formal proof. 

Let L(l) be the set of all terms read from a graph G according to the rules, if we 

start from the vertice t. 

T h e o r e m 5.2. For any term t in D 0 , 

T ( * ) = L ( * ) . 

P r o o f . We shall prove the inclusion of L(l) in T( / ) by induction on the length 

k of the patli required to read a term 5 from the graph G (starting in t). If k = 1, 

then the term 5 is the root of the braid and thus .s = t £ T(t). Let k = I + 1 and 

assume tha t any term which can be read in not more than / steps is in T(t). Let 

f\, f'2, • • •, fufi+i be the labels of the path which yields the term s and let q be the 

term corresponding to the path f 2 , . . . , / / , f+i (i.e.. we start at the second vertice 

of the previous path; let this vertex be r ) . By inductive assumption, q G T ( r ) . 

Moreover, there is an edge j \ leading from t to r: this edge represents a bridge, 

hence there is a bridge between T(t) and T ( r ) . By the Duplication Theorem 4.10 we 

have tha t fi(T(r)) C T( i ) and, in particular, s = j\(q) G T(t). 

The other inclusion will be proved by induction of the index of the partial braid, 

to which a term s G T(t) belongs. If 5 G T 0 ( f ) . then s = t. i.e., s is the root of 

the braid and thus it is clearly in L(t). Assume T A ( / ) C L(i) for some k and let 

s = p(Ji) G Tk+i{t) for some // G Df^. Then, according to the definition of a braid, 

there is a term r G P such that 

p(r) G T , ( l ) , bGD,, / • « / , G E. 

Now, by Lemma 4.8 we deduce that if /?. G DA-, then there is a term g G D 0 such 

that //, G Tk(g) and hence, by the inductive assumption, h G L(o). Moreover. \\\v 

equation r « h G E is a bridge between T( l) and T(g). which implies the exist(Tice 

of an edge from t to g in the graph and this edge is labelled by p. Consider the path 

in G obtained by adding to the path which starts in g and yields the term li a now 

first edge, namely, the edge p loading from t to g. Clearly this new path starts in t 

and yields the term s = p(li). Thus s G L( i) . • 
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We have seen the general construction rules for the graph G and its connections 

witli the set D E ^ . We shall now see how to use the graph G to construct the set 

D ( ' ; , , 

In the construction of G we start with a discrete graph i.e., with a graph with no 

edges. After having found a bridge, we mark the corresponding edge on the graph 

until no new edges are obtained. Thus our procedure reduces to finding bridges. If 

/// is the number of terms in D 0 , then there are at most m2 bridges to be found, 

since a graph on m vertices can have no more than m2 edges. 

What we get in the construction is in fact a sequence of graphs (each consecutive 

graph has one edge more than the previous). We shall define this sequence more 

precisely now. 

Let G 0 be the initial graph i.e., the graph with no edges and the set of vertices 

of which is D 0 . If we have a graph G , and we find a new bridge, we get the graph 

G , + i by adding to G , the edge corresponding to this bridge. As we have noted 

above, this sequence is finite and it has at most in2 + 1 elements. 

Let L,( t) be the set of all terms, which can be read from the graph G , starting 

from the vert ice t. 

D e f i n i t i o n 5.3. Let 

L(G,)= |J L,(t). 

Thus L ( G , ) is the set of all terms which can be read from the graph G , . 

T h e o r e m 5.4. For any k G {0,1, . . . , in2}, if the graph G , exists, then 

ЦG,)ÇDf ß-

P r o o f . We shall use Theorem 5.2 here. The set L ( G , ) is a union of the sets 

L , ( / ) over all t G D 0 , while D/; ' , is a union of braids T( i ) over all t G D 0 , too. Thus 

it is sufficient to prove that for any t G D 0 . L,(f) C T ( l ) . This has been proved in 

the proof of Theorem 5.2. • 
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6. F I N D I N G B R I D G E S 

As we have stated before, we shall construct the set D ^ using a sequence of graphs 

G/e, obtained by a consecutive insertion of new edges corresponding to bridges. In 

the sequel we shall usually omit the subscript k when speaking of these graphs, since 

all the results presented in this section hold true for any k. 

So, the construction of G consists in finding bridges. Any two vertices in the graph 

may be linked by an edge and, in particular, the graph may contain loops, e.g. when 

there is an equation in E relating a term with its main subterm. 

f(tШ)) < 

The terms which can be read from this particular part of the graph are of the form 

f(...(f(t(p(x))))..., 

We shall first prove that given the graph G, we can decide for any term t whether 

it is in D ^ j or not and we can do it in finite time. Moreover, we shall estimate 

the computational complexity of the procedures used and of the final algorithm. 

By computational complexity we mean here the order of the number of operations 

performed by the procedure or the algorithm in the worst case, depending on 'he 

number of initial data, which are the following: 

t e r m s a and ft: these terms induce the initial set D 0 ; let n be the number of 

terms in Do- By the definition of D^L, this is just the number of occurrences of 

operation symbols in terms n and 0. 

t h e s e t E: let m be the number of equations in E and let / be the maximal number 

of occurrences of operation symbols in a term appearing in an equation in E. 

Algorithms scan the whole set, since any equation in it can induce an edge in the 

graph. 

Observe t h a t n is also the number of vertices of the graph, while n2 is an upper 

bound on the total number of edges. 

Def in i t ion 6.1. Let p be a vertice in the graph G. A vertice t in G is a 

neighbour of p iff there is a (directed) edge from p to t. The set of all nieghbours of 

a vertice p will be denoted by M S ( p ) . 
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L e m m a 6.2 . Given the graph G of Df^, it is effectively decidable for any t e P 

whether t £ Df^. 

P r o o f . A term t being in D ^ is equivalent to t being readable from the graph 

G. Let | i | = k denote tha t a term t contains exactly k occurrences of operation 

symbols. 

To read a term t from the graph of D ^ we must find a pa th in the graph such 

that the labels of the consecutive edges in the path are equal to the corresponding 

occurrences of operation symbols of f, starting from the left (since reading a term 

from the graph we add consecutive labels on the right). Thus we are led to look for 

a path induced by the consecutive operation symbols of t. 

Clearly, if the path is to s tar t at a term p, then the first (external) operation symbol 

of /; must be the same as the first operation symbol of t. Then some neighbour of p 

must have an external operation symbol equal to the second operation symbol in t, 

and so on. There are at most n edges starting in p and the total length of the path 

has to be k. 

The simplest yet effective algorithm deciding whether there is such a path may 

have the following form (we assume that the occurrences of operation symbols in 

t are numbered by consecutive natural numbers, the most external symbol having 

index 1): 

First we scan the whole graph, marking those vertices, which have the same exter­

nal operation symbol as t. Each vertice can be either marked or unmarked—at each 

step of the algorithm. We start the algorithm with a set of marked vertices and at 

consecutive steps we determine new sets of such vertices. 

Sot i := 2 (i represents a variable, indicating consecutive operation symbols in t, 

start ing from the left; its initial value is 2) 

1. Search for all those vertices in the graph the external operation symbol of which 

is the same as the i -th operation symbol of t. 

2. Search for all those vertices among those found in step 1 which are neighbours 

of marked vertices. If such vertices exist, they form the new set of marked 

vertices. 

3. Set i := i + 1. 

4. Repeat steps 1,2 and 3 while i ^ k. Finally, check whether there is an edge 

from a marked vertice to the variable occurring in t. If there is at least one such 

edge, then the term t can be read from the graph and therefore it is in D^L 

If no vertices are found in step 1 or 2 or if no edges are found in step 4, then 

the term t cannot be read from the graph G and the algorithm stops. After k — 1 

iterations of the procedure, the value of the variable i will be k and the effect of step 

1 will then be to check whether there are vertices the external operation symbol of 
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which is the same as the last (innermost) operation symbol in t. The performance of 

all the previous iterations yields a, path consisting of exactly those operation symbols 

as the consecutive operation symbols in t\ the last step yields the variable of t and 

thus the algorithm is completed. • 

L e m m a 6 .3 . The complexity of reading a term t from the graph G is Q(kir). 

where \t\ = k. 

P r o o f . Wre shall compute the complexity of reading a term t from the graph G 

by estimating the cost of each step of the algorithm of lemma 6.2. 

Before the first step we scan all the vertices of the graph, thus we must perform 

0(/ / ) operations. In step 1 we must scan n vertices of the graph, thus the cost of 

this step is of the order // i.e.. (-)(//). The cost of the second step is 0 ( / r ) , since we 

must check at most n2 edges. Thus the total cost of steps 1.2 and 3 in one iteration 

is of the order of n2 -j- //. We repeat the procedure /v - 1 times, hence the cost of the 

whole algorithm is 

(-)((/,• - 1)(/?2 + ? 0 ) « 0 ( k / r ) . 

Thus the complexity of the algorithm is 0(A://2), where A- is the number of occurrences 

of operation symbols and variables in t. • 

L e m m a 6.4 . For any braids T(p),T(t) C D ^ it is effectively decidable on the 

graph G whether they have a common term, i.e., whether T(p) f lT(f) ^ 0. 

P r o o f . The lemma clearly holds true if the terms p and t are equal. If p ^ t. 

then both braids have a common term only if they have the same external operation 

symbols. Assume then that p — f(r) and t = f(s) for some operation symbol / E F 

and some terms r,s £ P . The following cases can occur: 

1. The vertices f(r) and f(.s-) have a common neighbour in the graph G. 

2. The vertices f(r) and / (*) have neighbours with a common external symbol, 

say, q and then for r = q(pi) and s = q(p^) (tor some terms pi>p->) we have 

again three possible cases to consider. 

3. None of the above occurs and then the braids have no common term. 

The consideration of these cases leads to a natural algorithm. It is based on a 

recursive scheme, which lias no infinite loop. If the first or third case occurs, the 

algorithm stops. The problem is to estimate how many times can the second case 

occur. Looking for a common term for two braids T(O) and T(t) we can apply 

a modification of an algorithm for depth search in a graph. Thus we shall hist 

introduce the original algorithm for depth search. 

We shall use letters v, u to denote graph vertices, \ ' will denote the set of all vertices 

of a graph, visit(v) represents an instruction, which the algorithm can perform at 
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each vert ice of the graph, like e.g. comparing a value assigned to a vertice with some 

given value, NEW[U] represents an array with entries from the set { t r u e , f a l s e } , 

where an entry indicates whether a vertice has been visited by the algorithm or not. 

At the beginning of the algorithm the whole array is initialized with all entries true , 

indicating that no vertice has been visited. 

The algorithm: 

1. begin 

2. for v e V do NEWr[r] := true; (initialization) 

3. for v G V do 

4. if NEW[D] then WG(r ) ; 

5. end; 

where the procedure WG(?») has the following body: 

procedure WG('c) 

1. begin 

o isit(U); NEW[U] := false; 

3. for u E {set of nieghbours of v} do 

4. if N E W [ M ] then WG(«) 

5. end; (the vertice v has been scanned) 

This algorithm visits each vertice of the graph and each of them is visited exactly 

once. Looking for a vertice common to two braids T(p) and T( l ) we shall follow the 

same algorithm, but we shall slightly modify some of its features: 

1. Instead of vertices, we scan pairs of vertices with the same external operation 

symbol. This can be viewed as initializing the original algorithm simultaneously 

at two vertices, for which we are to find a common term. If the search for a 

common term has not been completed for a given pair of vertices, then we can 

go to a new pair of vertices which have the same external operation symbol. 

Observe that in the worst case we have to check ii2 neighbouring pairs 

2. We do not scan all possible pairs with the same external operation symbol as 

in line 3 of our program above, but we start searching from one fixed pair of 

vertices: the one for which we want to find a common term. 

3. the operation visit consists in checking whether we can stop the search at the 

pair currently scanned. For this purpose we have to cheek whether there exist 

edges going out of these vortices to a common vertice. i.e. whether the two 

vertices have a common neighbour. If this is so. then there is a term which can 

be read both from the vertice p and the vertice t. 

4. As in the original algorithm, whenever we scan a pair of vertices for the first 

time, we record the fact in order to avoid visiting the same pair more than once 

(this could imply an infinite loop). Observe that we consider pairs of vertices 
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and not single vertices: it could well happen t hat one of the vertices or even 
both have been previously visited, but in different pairs. 

The algorithm stops when during the search procedure we find a common neigh­
bour for a pair of vertices and then the two braids have a common term. They do 
not have such a term, if we find a common neighbour for no pair of vertices before 
the algorithm stops. 

After these informal considerations we can present a more formal form of the 
algorithm. Let us first introduce some handy notation: 

V—the set of all vertices of the graph G, 

V—the set of all pairs of vertices which have the same external operation symbol 

and are not of the form (v.v), i.e. 

V={(vi,v2): (vi,v2) £ V x Vr, t»i 9-= v2,vi = /(pi),v-j = f(p2) for some operation 
symbol / £ F and some terms Pi,p2 £ P } . 

To abbreviate our notation we shall denote a pair (u\. u2) by u. 

Z(u) = {(vi,v2): v\ is a neighbour of Hi in the graph G, v2 is a neighbour of u2 in 

G and (Ui,U2) £ V} 

The algorithm starts at a pair v: 

1. begin 

2. for w £ V do NEW[U] := t rue; (initialization) 

3. WG(D); 

4. end; 

where the procedure WG(H) has the following body: 

procedure WG(H) 

1. begin 

2. visit(H); NEW[H] := false; 

3. for w £ Z(u) do 

4. if NEW[u)] then WG(H0; 
5. end; (the pair w has been scanned) 

The construction of the algorithm and its analogy to the original one imply that 
each pair will be visited exactly once—this is sufficient to guarantee that all pairs of 
edges going out from these vertices will be checked (if only the vertices have the same 
external operation symbols—and only such pairs of vertices are of our concern) and 
that a common term will be found, if it exists. Thus, if the braids T(p), T(t) £ Df^ 
have a common term, then the algorithm will find it and the answer will be positive; 
otherwise the algorithm stops after performing the search and the answer is negative. 

• 
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L e m m a 6.5. The complexity of the search for a term common to two braids in 

G i s 0 ( ? i 4 ) . 

P r o o f . To es t ima te the complexity of the problem we shall estimate the com­

plexity of the algorithm introduced in Lemma 6A. Observe first that the complexity 

of the original algorithm for dep th search in a graph is O(n + ra), where n is the 

number of vertices of the graph and m is the number of its edges. 

Let us now es t ima te the complexity of our algorithm. The performance of the 

visit opera t ion applied to a pair of vertices requires O(n 2 ) checks, since if there are 

n edges going out from each of the vertices, then there are n 2 pairs of edges which 

have to be checked. Such a check has to be performed at each visited pair of vertices, 

so the cost of checking the conditions of the algorithm is 

? i 2 0(n 2 ) ^ O ( n 4 ) . 

The complexity of our algorithm is not greater than the complexity of the original 

depth-search algorithm, i.e. the order of the sum of the number of vertices and the 

number of edges. In our algorithm the vertices are replaced by pairs of vertices 

with the same external operation symbols and there are at most n 2 such objects. 

The edges are now replaced by pairs of edges going out from vertices with the same 

external operation symbol anu there are at most n4 such pairs. Therefore the cost 

of the whole algorithm is 

0 ( n 4 + n 2 ) + 0 ( n 4 ) *e(n4). 

D 

Observe that the proof (with na tural modifications) remains valid if we consider 

par t ial braids, i.e. Tk(p) instead of T(p) and /or T/( l) instead of T(t). 

We shall now design algorithms for finding bridges between two arbi trary braids. 

For a fixed pair of braids we shall consider one by one each of Birkhoff rules to check 

whether one of them could lead to a bridge. We shall apply this procedure to all 

possible equations in E. 

Let us enumera te all possible cases, which may lead to p « t G E. 

1. p=t. 

2. p&t e E. 

3. t^peE. 

4. p' « t' G E and the terms p and t are obtained from p' and t' by replacing all 

occurrences of some variable by a fixed term. 

5. s « r G E and p — f(s),t — f(r) for some / G F . 
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Symmetry being easy to verify, we can write E instead of E in 3. Also in 4. we can 

replace E by F, since substitution and extensionality permute and wre can always 

apply rule 5. after all the others. 

Observe tha t the equation p « t could have been generated by substitution (rule 4.) 

only if there is an equation in F, the terms of which have the same external operation 

symbols as the terms p and L correspondingly, or if E contains an equation of the 

form h ~ x—a projection—such that the term h has the same external operation 

symbol as either p or t. 

T h e o r e m 6.6. (Br idge T h e o r e m . ) For any Tk(p).T(t) C Df^ it is effectively 

decidable whether there exists a bridge between Tk(p) and T(t) in E for any fixed 

k E to. 

P r o o f . To find a bridge between Tk(p) and T( l) we shall search E for equations 

between braids with roots in MS(p ) , i.e., braids of main subterms, and terms from 

the braid T(t). Thus our algorithm has to check all pairs of braids in which the root 

of the first braid lies in MS(//) . Choose any term // in this set. Now we have to 

answer the following question: is there an equation in E such that one of its terms 

belongs to the braid T(g) and the second is in the braid T(t). We shall consider 

cases enumerated above. The algorithm will be introduced in the proof and. as we 

shall see, it will not depend on the fact whether tin* braid with root t is partial or 

not. The algorithm will be the same in both cases, but for convenience we shall use 

the notation T(g). 

1. The question whether there exists a bridge between Tk(p) and T(f) in case 1. 

is answered in finite time by Lemma 6.3. 

2. Case 2. consists in checking whether there exist terms in the braids T(g) and 

T(f) which occur in an equation in E. 

3. Symmetry has been considered in the previous case already Note that this case 

has to be checked together with cases 2., 4. and 5., i.e. whenever we check 

whether an equation has been generated by s ^ /• E E , we must also check 

whether it is generated by /• « s. 

Thus we are left with two last cases. For convenience we shall distinguish two 

situations, depending on whether the terms g and t have the same external operation 

symbol or not. 

I . The terms g and t have different external operation symbols. 

In this case only 4. can occur. Assume first that there is no equation of the form 

h ~ x in E, i.e. there is no projection. If s « /• E E and .s and r have the same 

external operation symbols as g and l, respectively, then 6' ~ /• is a good candidate 

to induce a bridge. If a bridge has been induced by this equation, then in G there 
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must be a sequence of edges start ing in g such that the labels of these edges are tlie 

same as the operation symbols occuring in the term s . Let 

/ l I f'l, • • •, }n 

be the sequence of operation symbols occurring in s and—at the same time—tlie 

sequence of labels of a path in G starting in g. Thus in particular an edge labelled 

by / \ goes out from the vertice g. Let 

pup2 Pm 

be the sequence of symbols occurring in r taken, as above, in the proper order, 

starting with the external operation symbol. It is also the sequence of labels of 

edges forming a path starting at the vertice t. If the bridge has been induced by tlie 

equation s w r G F, then both sequences must have been introduced into the graph 

by now. We shall now follow the paths corresponding to these two sequences of labels, 

one of them start ing at g, the other starting at t, in order to check whether we can 

road from the graph two terms, the sequences of operation symbols of which—from 

the most external symbol up to some place in the sequence—are the same as the 

sequences of operation symbols in s and r, respectively If so, then we check whether 

wo can read a common term starting from the vertices reached after completing the 

paths labelled by / i , /2 , • • • - //,. and pi,/>2, • • • ,P m . A positive answer means that a 

bridge occurred due to a substitution of a term for some variable in the equation 

* « /• G E. 

We shall use Lemma G.2 to check whether we can read from G terms which have 

tlie same sequence of symbols as terms s and r. Thus we shall follow the paths 

labelled by / i , /2 , • • •, fn and p[, ;>2, • • • ,P m , start ing in g and f, correspondingly. We 

stop after exhausting both sequences. If we did complete both paths, then—'if s and 

/• have different variables—there exists a bridge between TA (p) and T( l ) , since for 

different variables it is not important wliat terms can be read from this point. If, 

however, .s and r have the same variable, then we must check whether/a common' 

term can be read from the vertices reached at this point. The existence of such a 

term means that it has been substituted for a variable in the equation, so a bridge 

exists. To find such a common term we can apply the algorithm of Lemma 6.4. We 

start the search for a common term at the vertices which have been reached after 

completing the paths labelled by / i , /2 , • • •, fn and p i , />2, . . . , p m -

If there is no projection in E . then we are done with case I. Otherwise, a bridge 

can be induced by the equation s ~ r where r or s is a variable only if the external 

operation symbol of the term in the projection is the same as the external operation 

symbol in g or t. If this is so, then the pocedure for checking whether a bridge has 
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been induced by the projection is analogous to the one described above witli tlie 

only difference that the variable (one of the terms in the projection) has an empty 

sequence of operation symbols, i.e. it induces an empty path; hence we follow only 

the pa th induced by the second term and after completing it, we search again for a 

common term (which could have been substituted for the variable). 

I I . g and t have the same external operation symbol. 

In this case a bridge can arise due to 4) or 5) and therefore we should first clunk 

whether case 4) has occurred, applying the previous algorithm (in I) without any 

changes: it could have happened that the equation is the result of substi tuting terms 

for some variables in an equation with the same external operation symbols on boMi 

sides. If no bridge was found while checking case 4). it remains to ^heck whether a 

bridge could have been generated because of case ~> >. Assume first, that the vertices 

g and t have no single loops, i.e., there is no bridge between T(G) and T(O) nor 

between T(f) and T( l ) . With this assumption we have to look for equations between 

braids of main subterms of the braids T(a ) and T ( / ) . i.e.. between braids with roots 

in MS(</) and M S ( t ) . Thus we omit all occurrences of the external operation symbol 

in a possible equation and we check whether there is in E an equation without these 

symbols. If so, then also aftei adding the same , p<-rat ion symbol to both sides we 

get an equation in E. This is in fact a backwards verification of BirkhofTs rule (iv). 

This check yields a recursive procedure, since looking for bridges between braids of 

main subterms requires considering all cases l ) -5) enumerated above. All possible 

pairs of braids of main subterms have to be checked, e g fixing a term p G MS(/y) 

we have to check whether then1 is a bridge between T(p) and any vertice in the set 

M S ( / ) ; this should be repeated for each term in MS(ty). 

During this search it can happen that two vertices have the same external opera­

tion symbol, i.e. a situation analoguous to that of Lemma 6.4. Therefore the same 

algorithm can be applied—the modified depth-search algorithm in a graph—with a 

new visiting operation. 

As in the algorithm of Lemma 6.4, we scan all pairs of vertices with the same 

external operation symbols, starting with the vertices g and t. As we have seen 

before, each of the cases l ) -4) can occur for a given pair of vertices. Moreover, there 

exists a bridge between the braid of g and the braid of t iff one of the cases 1 ) 4 ) 

occurs for a pair of main subterms in the braids T(/y) mid T( l ) . Only when none 

of l ) -4 ) occurs neither for the braids T(O) and T( / ) nor for any pair of braids of 

main subterms of these braids can we turn to another pair of vertices with the same 

external operation symbol. Thus the whole algorithm in case I I will be identical 

to the algorithm of Lemma 6.4; however, the operation visit must check the cases 

l ) -4 ) not only for the pair of vertices visited, but also for all pairs of braids of main 

subterms of this pair. 

652 



In the worst case we shall have to scan n2 pairs of vertices with the same external 

operation symbol, which induce n4 pairs of braids of main subterms. Observe how­

ever, tha t there is no need to repeat the operation visit for all n 4 pairs. Indeed, if 

a pair of vertices p i , P2 is a pair of main subterms for two different pairs of braids 

(with equal external operation symbols), say Oi, O2 and £1, to, then if we state tha t 

none of the cases l ) -4 ) occurs for p i , p2 while visiting the pair Gi, G2, then we need 

not check the pair p i , P2 again while visiting t[ and l2- Thus the operation visit must 

bo performed just once for each pair of vortices in G. This shortcut can be solved in 

the algorithm by an additional table with ?r entries, where each visit to a pair of 

vortices would be marked. One special case, when two braids with the same external 

operation symbol have single loops is considered below. Such a situation reduces to 

checking whether case 4) occurs, taking into account a larger number of equations 

in E. Thus we have a recursive algorithm again. 

At each iteration we omit the external operation symbol of terms in vertices, i.e., 

in the possible equation we are looking for. Let us now consider what happens if 

there is a single loop in one of the braids, i.e., if there is a bridge from, say, T(g) 

to T((/). In this case the same vertice is simultaneously a braid of its main subterms 

raid the whole algorithm remains unchanged. There is no danger of looping, since in 

the second vertice scanned we omit one symbol at each step and we always advance. 

The situation will be slightly different when both braids have a single loop. In this 

case wo have to check by the algorithm of case I those equations in E in which one 

term only has the same external opeation symbol as the terms in our braids. This 

checking should be performed for the braid T(g) and all the braids of main subterms 

of the term t and viceversa, i.e., for all braids of main subterms of the term g and 

the braid T ( l ) , scanning all the possible equations in E. Due to this checking we will 

find e.g. the equation 

f(Hf(p(x)))) * f(f(h(y))) 

if the following equation was in E 

f(l>(x))~h(y). 

The external operation symbol here is / . If we omit all the occurrences of / here, i.e., 

if we went to check the braids of main subterms, then we would be checking whether 

the equation p(x) « h(y) is in E. This equation, however, is not implied by the 

equation f(p(x)) « h(y) and we may not be able to find a bridge between the braids 

considered. Only after this verification we can proceed with subsequent recursive 

calls of our algorithm for the braids of main subterms (in the example above this 

means omitting all the occurrences of / in both vertices). This is the only special 

case, which should be considered separately when two braids have the same external 
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operation symbol . It remains to prove that the algorithm yields an answer in finite 

time: that we shah never be induced to call the algorithm endlessly The danger of 

such a looping can only occur in case I I . Is it possible that after each calling of the 

procedure we find new barids of subterms with the same external operation symbols? 

The answer is: no. The argument is the same as in the proof of Lemma 6.4. D 

T h e o r e m 6.7. The complexity of finding a brhlge in the graph G is 0(2// ( ) -f-

7A:/n4 +Amln2). 

P r o o f . We shall compute4 the complexity of the problem by estimating the 

consecutive steps of the algorithm introduced in Theorem 6.6. 

1. The complexity of this step is 0 ( n 4 ) , the same as in Lemma 6.5. 

2. By Lemma 6.4 the complexity of checking this case is 0 (4 / / /m 2 ) . The reading of 

one term has complexity (~)(//z2), since the longest term occurring in equations 

in E has length / and each equation requires 4 a t tempts to read a term from 

the graph: the equation itself has two terms and at each verification we also 

check the symmetric equation. The number of equations in E is m, so the 

cost 0(4l/?/2) of checking one equation has to multiplied by in. Thus the total 

complexity of this step is (~)(4m/'/i2). 

3. It is clear tha t checking symmetry doubles the cost of computations. In cases 

1. and 2. symmetry has been taken care of, while in the remaining cases we 

have to multiply the global cost by 2, thus taking into account symmetry . 

4. The cost of the algorithm presented in I consists of the cost of reading two 

terms from the graph multiplied by the number of equations in the set E. which 

potentially may induce a bridge and of the cost of finding a common term 

for a given pair of braids. The cost will he the same for equations which arc 

projections and for those which are not. The global cost of checking case 4) is 

therefore 

0(2A://m2) + 0 ( n 4 ) « (-X//1) 

where k is the length of the longer term being read and m is the number of 

equations in the set F, 0(2k / i 2 ) is the cost of reading two terms of length A-

from the graph G and 0( / / 4 ) is the cost of checking whether two braids have a 

common term. These values are taken from the proofs of lemmas 6.3 and 6.5. 

5. The cost of one visit operation is the sum of the costs 1-4 and thus is equal to 

0 ( 4 k / / r ) + 0( / i 4 ) + Q(n4) « 0 (2 / / 4 + 4/,7/r). 

In the worst case we shall have to visit all pairs of vertices, so all the visits will 

cost 

/r(~)(2//4 + 4A7/i2) « 0(2// ( i + 4A7//4). 
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Tlie cost of the algorithm itself (without the costs of the visit operation) is 

0 ( / / 4 ) , as in Lemma 6.4. Tlius the total cost of checking case 5) is 

0(27ic + 4klH4) + 0(yi4) « 0 ( 2 u c + 5fc/n4). 

Tlie described above cases when one or two braids have single loops are im-

poprtant for the algorithm, but they do not influence its cost. In each case tlie 

order of computational complexity is the same, i.e., 

0(2H6 + 5A;/n4). 

We can now estimate the total cost of deciding whether there exists an equation 

inducing a new edge in the graph. It is 

0(2H6 + oklii4) + 0(2 / . 4 ) + 0(4/7/iH/2) « 0(2/?,6 + 7A;l//,4 + 4ra/?i2), 

which proves tlie theorem. • 

7. M A I N T H E O R E M S 

T h e o r e m 7 .1 . For any a, ij E P and for any finite set of equations E the sequence 

GA of graphs is finite and all its elements can be effectively constructed. 

P r o o f . Recall tha t the graph GA-+I is obtained from Gk by adding a new 

edge due to a newly found bridge . By Theorem 6.6 we can find a bridge in finite 

time. There are at most n'2 edges in a graph corresponding to a unary signature. 

The construction of the graph consists in choosing one pair of vertices and checking 

whether it can be linked by an edge. We must, however, perform more than ri2 

verifications, since after finding a new bridge e.g. between T{p) and T( l ) , the set of 

terms belonging to T{p) becomes larger. Also the sets of terms in all other braids 

from which we can reach the vertice /;, become larger. Thus, in order not (o loose any 

edge we have to check—after finding a new bridge—the possibility of adding edges 

to and from all the vertices mentioned above. There is. however, a finite number of 

them and we shall be able to find all these edges in finite time. • 

T h e o r e m 7.2. The complexity of constructing all the graphs GA of the sequence 

is 0 (c / / 1 0 ) , for some constant c. 

P r o of. Tlie complexity of finding a bridge in the graph G has been estimated 

in Theorem 6.6. Thus we need at most //4 verifications to find all edges in the graph. 

65.r 



This estimation is very coarse, nut it shows, that even m such an "uneconomic" 
case the total cost of constructing the graph G is polynomial with respect to the 
dimension of input data. At least n2 verifications have to be performed, for this is 
the possible number of all edges, and no more than n'1 such verifications are needed, 
as can be easily seen. 

Hence the complexity of constructing the graph G is 

7^40(2n6 + 7kin4 + Amln2) « 0(2?i10 + 7k///8 + k i n 6 ) . 

This cost can be estimated as 0(c7/10) for some const ant c. • 

Let the last element in the sequence Gk of graphs be G. 

Theorem 7.3. For any a, (3 E P and for any finite set of equations E, 

L(G) = D f ß-

P r o o f . The inclusion C holds due to Theorem 5.4. since the graph G is Gk for 

some k ^ m2 + 1. 

On the other hand, the inverse inclusion follows from Theorem 5.2, since the set 

D^g is the union of all braids with roots in Do, while L(G) is the union of the sets 

L(l), again for all £ E D 0 . • 

An equation r « s will be called an equation between braids T(p) and T(cj) for 
some p, q E P iff r is an arbitrary term in the braid T(p) and s is an arbitrary term 
in T(a). 

Remark 7.4. The verification of the rule (v') will be based on the following 

property of braids: for any two terms p and a in a braid there exists for some n a 

sequence of terms p\, p%,..., pn such that 

P ~ PI, Pi « P2, • • • , Pn-1 « Pn, Pn « Q E E . 

This property has been proved in Lemma 4.6. Due to this property we can operate 
in a more general setting: instead of looking for an equation between terms, we shall 
be looking for an equation between braids. This is an essetnial simplification, since 
there can be infinitely many terms in Df^, but there is always a finite number of 
braids only (and it is the cardinality of the set Do). 
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We shall now describe the basic ideas underlying an algorithm for deciding whether 

a given equation has been genera ted by the rule of weak transitivity. 

Let ii G T(t) and Oi G T(g) and assume t\ ^ Oi G E; hence there is in E an 

equa tion between the braids T(t) and T(g). if a G T(t) and (3 G T(g), then the 

following hold true: 

1. for ti,0' G T(t) there exists for some n a sequence of terms r i , . . . , r n G D^ 

such that 

a « n , n « r 2 , •. •, r n _ i w r n , r n « li G E. 

2. for Oi, /3 G T(o) there exists for some m a sequence of terms s i , . . . , sm G D 

such that 

5 i « s i i si « 5 2 , . . . , s m _ i « 5 m , s m « /3 G E. 

Hence for the sequence 

n , . . . , r n , t i , Oi, .ST, • • •, s m 

we have 

a&ri, . . . , r n « ti, ti ^ gi, gi « s i , . . . , sm ^ /3 G E, 

E 

which imply 

a « /? Є E. 

This means that for a G T( l) and /? G T(O), the existence of an equation between 

the braids T(t) and T(g) is sufficient to establish that a w /3 G E. Moreover, this can 

also be deduced if there are some in termedia te braids between T(t) and T(O), i.e., 

if for some I>i,...,pn G Do there are equations between T(t) and T ( p i ) , between 

T ( p i ) and T ( p 2 ) and so on, and between T(pn) and T ( a ) . 

We can now describe the algorithm, which sums up our previous efforts and yields 

ihe main result of the paper. 

T h e o r e m 7.5. For any aj3 G P and for any finite set of equations E it is 

effectively decidable whether E )=w a « ft holds. 

P r o o f . We mus t consider the rules (i)-(iv) and (v r); this last rule can be 

checked after all others have been. The verification whether the equation a « f3 

has been genera ted by one of the rules (i)-(iv) is algorithmically easy. Procedrres 

checking these cases have been wri t ten in Pascal and they are used in a program 

cons truc ting the set D ^ from its definition (see the Appendix). The complexity of 

these algorithms is linear—of the order S(n). The verification whether the equa tion 

a w P has been genera ted by rule (vx) will use the following algorithm: 

1. Cons truc t the graph G . 

657 



2. If 3 G T ( a ) , then a « 3 G E and the algorithm stops. 

3. We find all braids T (/>,-) C D ^ such that there is in E an equation between 

the braids T ( a ) and T(/;,•), i.e., such that for some terms t G T ( a ) , cj G T(/>. ). 

the equation t « cj is in E. 

4. Among the braids T(pt•) we select those braids T(ry;). for whicli wo have not 

checked whether 3 G T(q;). 

5. for each i we check whether 3 G T(</?-). Tlie existence of such a braid implies 

that a « 3 G E and the algorithm stops. 

G. If there is no braid containing 3, we repeat i ho algorithm from 3. onwards, 

treating each consecutive T(g?) as T ( a ) . 

The algorithm stops when wo find the term 3 in one of the braids and then we 

have a ~ j3 or when we find no unchecked braid and then a % 3 & E. We need not 

check twice one and the same braid: this would imply turning around in loops. 

In step 2. the algorithm stops after establishing that 3 G T ( a ) . since according 

to Remark 7.4 this information is sufficient to deduce that a ^ 3- If the algorithm 

did not stop at step 2., then in step 3. we find all the braids T(/;,) such that there 

is an equation between T ( o ) and T(pi) in E. To end this we shall apply n times the 

algorithm of Theorem G.G, since each vertice can be the root of an adequate braid. 

In step 5. we check whether the term 3 is in one of these braids. If the answer is 

positive, then repeating the argument of Remark 7.4 wo establish that a zz 3 G E. 

If, however, we discover the term 3 in one of the braids T(/),) after several iterations 

of the algorithm, then there exists a sequence of "intermediate"' braids (see Remark 

7.4), which still yields the conclusion that a « 3 t E. 

We shall make explicit now why each step of the algorithm is finite: 

s t e p 1: Theorem 7.1 states that the graph G can be constructed in finite time. 

s t e p 2: Here we need to read a term from a braid and the algorithm in lemma G.2 

shows tha t this can be done in finite time. 

s t e p 3 : We can apply the algorithm of Theorem G.G to find the braids T(/;,-), since1 

we are in fact concerned with finding an equation between some terms in two 

braids. Thus Theorem 6.6 guarantees that this can bo done in finite time. 

s t e p 4: Here we must verify the status: "checked'* or '"not checked" for a finite 

number of braids. 

s t e p 5: This step reduces to an iterated finite repetition of step 2.. so again it can 

be done in finite time. 

As can be seen, each step of the algorithm can be performed in finite time. The 

graph G has a finite number of vertices, so we have a finite number of braids to 

check. It can be easily verified that the algorithm (without step 1) will be performed 

not more than n times. • 
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T h e o r e m 7.6. The complexity of the deciding algorithm for weak equatioual 

theories is 0 (d / / 1 0 ) , for some constant d. 

P r o o f. Let us again estimate the complexity of each step of the algorithm: 

s t e p 1: By Theorem 7.2, the cost of this step is Q(cni0). 

s t e p 2: By lemma G.3, the cost of this step is 0(A;/r). 

s t e p 3 : By Theorem 7.6, the cost of this step is Q(2n6 + 7 A;///4 + 4mln2). 

s t e p 4: The cost is ©(/?,). 

s t e p 5: The cost is G(jkn2) -the cost of stop 2. applied to j braids for some finite j . 

Thus the cost of all steps except step 1. is 

Q(2n6 + 7k///4 + Amln2) + G(kn2) + 0( / i ) <: G(bn6) 

for some constant b. As we have seen, the algorithm (without step 1.) will run at 

most // times, since each vertice of the graph G is checked at most once. Thus the 

total cost of the algorithm is 

//(-)(/)//6) + 0 ( r / / 1 0 ) «0 (< / / i 1 0 ) 

for some constant d. • 

8. A R B I T R A R Y SIGNATURES 

We shall now return to the general case, considering arbitrary signatures . To avoid 

repetitions we omit proofs, since modifications of the previous proofs to include non-

unary signatures are natural and can be easily done by the reader . 

If / — }(p\ Ps(f)) i>s a term, then the term p-t will be called its i-th, coordinate. 

The idea of the solution is essentially the same as for the unary case, we shall 

use the same structures and the same tools—adequately translated into a general 

language. Intuitively speaking, the main difference consists in the fact that whenever 

we do something with the mam subterm of a unary term, we should repeat the action 

for each main subterm of a non-unary term. i.e.. for each coordinate of the term. 

We shall again construct the set D ^ \ using bridges and the graph G and again the 

terms in the set D 0 will be used as vertices in the graph. 

The notions of level, chain, braid remain unchanged. A bridye between two braids 

will bo an equation linking one of the main subternis of a term in the first braid and 

any term in the second. To make things more visible, we sliall colour bridges. A 

bridge involving the first coordinate of a term will be coloured with colour bi, the 

second coordinate—with colour bo etc. 
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In the unary case we only needed one bridge between two braids. Now we need 

only one bridge Of each colour. Whenever we find a b,-bridge between braids T(p) 

and T(t), we know, that the braid T(p) will duplicate all the terms in T(t) on 

the corresponding coordinate; a second bridge of the same colour brings no new 

information. Thus in the general case the number of bridges between T(p) and T(t) 

shall be equal to the arity of the external operation symbol in the term p. Whenever 

we find a new bridge, we add to the graph a new edge of the corresponding colour 

between roots of the braids involved. 

Again, the graph G contains all the information about the set Df^ . Terms will be 

read from the graph and we shall use the graph to clunk whether a term is in D ^ . 

The rules for reading terms from the graph remain the same, but now they should 

be interpreted as concerning each coordinate separately and t h a t all the coordinates 

should be checked. It can be easily seen that this procedure will be recursively 

applied to each main subterm in each visited vertice of the graph. Thus reading a 

term yields a tree and not just a path, as was the case for a unary signature. 

The number of all bridges in the graph G is still constant and is equal to n • ///, 

where n is the number of all terms in D 0 and m is the total number of all occurrences 

of main subterms in terms belonging to Do. 

The braids are somewhat more complex, hence we shall classify the terms in braids: 

Def in i t ion 8.1. We define the rank of a term as follows: 

rank 0: A term p has rank 0 iff p E Do-

rank k + 1: A term p has rank A; -j-1 iff it arises from a term t of rank k by extending 

by one step a tree used to get the term t. 

E x a m p l e 7 . Observe the following fragment of a graph G^ for some k. some 

terms a, j3 and some set of equations E: 

HS(*ЫУ)) 
4-

p(x<У) 
— . - o 

t(X) o. 
w t 
o g(x,x) o h(r) 

a(л\y,z) 

represents colour bi 

represents colour b2 

Let us enumerate some terms of different ranks: 

660 



0 Terms of rank 0 are explicited in the graph . 

1 Terms of rank 1: 

f(p(x,y),r(y)); f(s(x),g(x,x)); f(p(x,y),g(x,x) 

2 Terms of rank 2, e.g.: 

f(p(x,h(x)),r(y)); f(s(x),g(a(x,y,z),x)); f(s(x),g(x,p(y))) 

As before, we shall use G to denote the graph obtained after finding all the bridges 

and drawing all the corresponding edges. The set of all terms which can be read from 

the graph G will be denoted by G T . 

We shall now prove a theorem which shows that we can indeed use the graph G 

to get all the terms in an arbitrary signature. 

T h e o r e m 8.2. 

G T = D * , . 

P r o o f . To prove 3 w e shall use induction on the structure of the set Df - . 

Let ^ G Do. Then clearly t G G T , since t is a vertice in the graph. Assume now 

t = f(ri,..., rs{f)) G D/c+ i . Then by the definition of the set Df^ there exist terms 

s i , • • •, s6(f) £ P such tha t 

f(si,...,sS{f)),ri,...,rs{f) G D f c 

and Si ~ i\ G E for i = 1, 2 , . . . , S(f). By the inductive assumption we have 

f(si,...,ss{f)),ru...,rs{f) G G T . 

Now, the equations S{; ~ r* G E represent bridges in the graph. Let us have a closer 

look at them. The terms n , . . . ,rS{f) are main subterms of the term t, while the 

terms s\,.. ., ss{f) are some terms in the set D^ and therefore they are in some braids: 

let Si G T(s'i) for i = 1 ,2 , . . . ,S(f). Hence the equations Si ~ rz- represent bridges 

between the braid T(t) and the braids T(s[). These bridges are represented by edges 

in the graph; going from the vertice t to each of the vertices s[ and following the rules 

for reading terms from the graph, we first read the symbol / , since each edge leaving 

the vertice t is labelled by this symbol. Next, from the vertices s[,... ,s's{f^ we read 

the terms s i , . . . , sS{f), which are in the braids T ( s : ) , . . . , T(s5,f)) correspondingly. 

Thus we get the term t, which proves that t G G T . 
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Tlie second inclusion will be proved by induction on the rank of a term t G G T . 

If the rank of t is 0, then t G D 0 . Let now t = fli\.. ^A(j)) G G T be of rank 

A; 4- 1. Consider the paths which led to the term t in the graph. They start at SOUK-

vertice p G D 0 , while the terms r{ , r5(j) belong to some braids T( r /
1 ) , . .. , T(r'6{,,,) 

correspondingly. Reading the term t we get a tree of such paths. If in this tree we 

omit all the edges leaving the vertice p, we get subtrees yielding the main subterms of 

the term t i.e., the terms r\ rS(f)- These terms have1 rank A- and thus by inductive1 

assumption belong to D ^ . The omitted edges represent briges between the braid 

T(p) and each of the braids T(r[) , T ( r ^ ( / ) ) , so by the Duplication Theorem, the 

l)raid T(p) duplicates all these braids on the corresponding coordinates. Clearly the 

external operation symbol in p has to be f. so t — f(/T rS(f)) G D ^ d . which 

completes the proof of the Theorem. D 

Now, is it possible to find a bridge between two hi aids in this general case, using 

the graph G ? The answer is positive: the algorithm tor finding bridges in theorem 

6.6—and Theorem 7.6--carry over without changes. Only the rules for reading terms 

from the graph are different, but they are natural generalizations of those for the 

unary case. Thus we can affirm that the problem of finding bridges and hence also 

the construction of the graph G is solvable in finite time. 

We can therefore formulate1 the following general theorem: 

T h e o r e m 8.3 . For any o.J G P and for any tinite set of equations E it is 

effectively decidable whether E \=w a « ft holds. 

The whole proof together with the deciding algorithm is the same as for the unary 

case (see Theorem 7.5). 

9. C O M P L E X I T Y FOR ARBITRARY SICNATLRES 

Observe first, tha t the computational complexity is most heavily influenced by 

the computational complexity of the algorithm for reading a term from the graph G 

(Lemma 6.3) and of the algorithm for checking whether two braids have a common 

term (Lemma 6.5). In the main theorem (the bridge theorem) we use in 1.2 and I 

algorithms previously defined and estimated, while the algorithm used in I I is in its 

essence the same as the1 algorithm of Lemma 6.4 i.e.. the algorithm searching for a 

term common to two braids. Thus, in order to estimate the complexity of all the 

algorithms presented above1 we can just estimate the complexity of these two basic 

algorithms. 

Let j be the maximal arity of terms in D 0 , let A' he. as before, the length of the4 

term read. Recall that n is the number of all terms in D 0 . 
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L e m m a 9 .1 . For any signature, the cost of reading a term t from the graph G is 

(r)(kn2) (i.e. the same as for a unary signature). 

P r o o f . The algorithm, as we have stated above, is basically the same as for a 

unary signature, suitably extended to all main subterms of the term t. The algorithm 

for the unary case was recursive with recursion depth equal to the number of opera-

tion symbols in t (i.e., k). Now we still have k operation symbols to be checked, but 

the chocking for the main subterms is performed in the same step of the procedure. 

Thus the whole algorithm will have to perform k checkings again. Recursion is less 

deep here, though in turn each step of the procedure is more complex. We are still 

searching for k operation symbols with the corresponding edges, however. • 

L e m m a 9.2 . For any signature, the cost of finding a common term for two braids 

isV(fn{]). 

P r o o f . The algorithm solving this question is a natural extension of the al­

gorithm for the unary case. Recall that for the latter we used an algorithm for 

searching the graph in depth, applied to all pairs of vertices witli the same external 

operation symbol. The operation visit consisted in searching a common neighbour 

for a given pair. The problem is quite similar now. For each visited pair of terms we 

must check whether they have a common neighbour for each edge colour admissible 

for this operation symbol. Both terms of the visited pair have the same external op­

eration symbol, so they also have the same arity and, consequently, the same colours 

of outgoing edges. To each pair of main subterms without common neighbour the 

recursion step is applied—namely, a search for a common neighbour is performed for 

each pair of terms (with the same external operation symbol) which are at one-edge 

distance from the given pair of terms. Finding a term common to two braids moans 

that one and the same term can be read from the graph starting from two different 

vortices. In the worst case, this requires an application of the graph depth-search 

procedure to each visited pair of terms. 

Let's estimate the cost of this algorithm. There are n2 pairs of vertices .uid there 

are jn2 edges (j and n are as above). Thus there arc* j1nx pairs of edges. An 

application of our graph depth-search procedure to one edge colour and to one pair 

of vortices represents a cost of 0 ( / r + /z'1), just as for a unary signature. For each 

scanned pair we need to perforin j such processes—one for each colour. The number 

of pairs of vertices being n'2, the cost of the whole algorithm is 

7 / / 2 e ( / / 2 F / / l ) ~ o ( j / / ° ) . 

The cost of the visit operation is Q(jn4) for each pair of vertices i.e., j times the 

cost in the unary case. This operation is performed at most u~ Mines (for the same 
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reason as in the unary case), so the cost of all visit operations is 0( j 2 n 6 ) . Therefore, 
the total cost of the algorithm is 

&(j2ne) + @(jn6)^e(j2 ,,'•). 

Knowing the cost of the algorithms, we can easily estimate the cost of constructing 
the whole graph G as well as the cost of the final deciding algorithm for the theory 
of weak equations. The cost of the algorithm of lemma 6.5 should now be replaced 
by the value obtained in the last lemma i.e., Q(j2nb). It can be seen, then, that the 
cost of any of the other algorithms will increase by two orders of magnitude. Hence 
the total cost of the algorithm deciding whether E \=w p « q is of the order Q(cn12) 

for some constant c. 
All the algorithms above are only roughly described and feature one of the many 

possible ways of getting answers to questions we formulate. Also all the estimations 
of these algorithms are rather rough and in many cases excessive. It is important, 
however, that such algorithms exist and that their complexity is rather low and al­
ways polynomial. The reader will certainly be able to find other algorithms, perhaps 
more efficient, more subtle and much less expensive. 

APPENDIX 

For a better understanding of the problem I have written a program in Pascal, 
which yields the set D?g for arbitrary terms and an arbitrary finite set of equations 
introduced by the user. The signature is arbitrary The construction of the set D^j 
follows its definition i.e., it is built level by level. The program is based on procedures 
for deciding for any pair p, t G P of terms whether the equation p « t is in E, where, 
as before, E is the closure of the initial set of equations E with respect to Birkhoff 
rules (i)-(iv). 

A copy of the program is available to anyone interested in the problem. 
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