
Czechoslovak Mathematical Journal

Jorge J. Betancor; Isabel Marrero
Convolution operators on Kucera-type spaces for the Hankel transformation

Czechoslovak Mathematical Journal, Vol. 47 (1997), No. 1, 47–72

Persistent URL: http://dml.cz/dmlcz/127338

Terms of use:
© Institute of Mathematics AS CR, 1997

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents
strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz

http://dml.cz/dmlcz/127338
http://dml.cz


Czechoslovak Mathemat ical Journal, 47 (122) 1997, P raha 

CONVOLUTION OPERATORS ON KUCERA-TYPE SPACES 

FOR THE HANKEL TRANSFORMATION 

J . J . BETANCOR and I. MARRERO, La Laguna 

(Received June 2, 1994) 

1. INTRODUCTION AND PRELIMINARIES 

The Hankel integral transformation, defined by 

/•OO 

(f)y.<p)(x) = / (xt)^2J,L(xt)^(t)dt (fi > -\), 
Jo 

where, as usual, J^ denotes the Bessel function of the first kind and order ji, was 
studied on distribution spaces by A. H. Zemanian [14], [15]. Given /i G IR, this 
author [15, Chapter 5] introduced the space J^fl of all those smooth, complex-valued 
functions <p = <p(x), x G / = ]0, oo[, such that 

7 m k(v) = sup \xm(x-lD)kx-^^2p(x)\ < co 
xei 

for every m, k G N. When endowed with the topology generated by the family of 
seminomas {7m fc}m,fceN , J^i becomes a Frechet space where S)fl is an automorphism 
provided that \i ^ — \ [15, Theorem 5.4-1]. The generalized Hankel transformation 
ijj, is then defined on Jr^', the dual space of JFfl, as the transpose of S)fl. 

Also, A.H. Zemanian [14] defined the space £#/t,ft (// G IR, a > 0), consisting of all 
those smooth, complex-valued fuctions <p = <p(x), x G I, such that <p(x) = 0 if x ^ a, 
for which the quantities 

7 l » = sup |(.r-1£>)fc.T-''-1/V(*)| (k G N) 
xei 

are finite. Equipped with the topology associated to the system of seminorms 
{7^}/ceN, each ^M , a is a Frechet space. The inductive limit <̂ M of the family 
{^,a}a>o is a dense subspace of J^fl. 
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The theory of the Hankel convolution on Jr^, 38^, and their duals has been devel
oped by the authors in a series of papers [2], [3], [4], [10]. 

In a previous work [5], we introduced a chain {J^v}Pez of Hilbert spaces where 
the Hankel transformation is an automorphism. For every p G N, J4?v is the space 
of all those p G L2(I) such that the distributions T^jp (0 ̂  j ^ p) are regular and 
satisfy 

IMLP = { E / \^%M^)\2^} <oo, 

where TM)n is the identity operator and T^j denotes the operator N^+j-i ... N/A 

(j e N, j ^ 1), with N^ = x^^Dx-^l2. The space Jf* and its dual J^~v 

(p G r>J) are Hilbert, the norm || • ||M)P being induced by the inner product 

V POO 

WMw= E / x2%jip(x)T^(x)dx MZJt%). 
i+j=oJo 

Moreover, p r o j l i m ^ f = JC and i n d l i m ^ - p = JfT' [5, Proposition 2.151. The 

study of the multipliers and Hankel convolution operators on the spaces J^v (p G Z) 
was initiated by the authors in [6]. In this paper we complete our investigation about 
multipliers (Sections 2, 5) and Hankel convolution operators (Section 4) of the spaces 
Jifr (p ̂  2). As a consequence, the space 6 of multipliers, respectively O1 * of Han
kel convolution operators, of both J^ and Jff£ are expressed as projective-inductive 
limits of Hilbert spaces. We also examine the joint continuity of the product, re
spectively the Hankel convolution, from & x J^ ' , respectively & ^ x ^r^', into Jf '̂ 
(Section 6). In Section 3 we deal with some auxiliary machinery, mainly the behavior 
of the Hankel translation operator on J^v (p G 1). Our work is motivated by the 
study developed in [7], [8], [9] and [11] for the Fourier transformation. 

Throughout this paper \x will represent a real number not less than — | . Also, the 
letter C will always stand for a positive constant (not necessarily the same in each 
occurrence). 

2. HANKEL MULTIPLICATION DISTRIBUTIONS 

Let p, q G N. In [6], the authors introduced tin1 space Ov^q of multipliers from 
<ffv into J$?q, that is, of all those functions 0:1 —>C such that Op G J^q for each 
p G Jtffv and the mapping p \—•» Op is continuous. Of course, 0PA acts as a space of 
multipliers from J^~q into <ff~v by transposition. 

The main properties of Op^q were also investigated in [6]. In particular, this space 
was shown to be Banach under the norm 

||c?|U = supfllM,-,, : <P G ^ f . I M U < 1} (0e 0Ptq). 
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For our purposes it will be convenient to formulate the following alternate description 
of Ov^q. 

Proposition 2.1. Let p,q e N, 6: I —•> C. Then 0 e 6v,q if, and only if, 
0(p e Jfq for each <p e Jf^ and 

(2-1) I I M U < CWvWw (V € ^ ) -

P r o o f . The condition is plainly necessary. To show that it also suffices, let 
p> e 3%**. There exists a sequence {v^beM in ^ t which converges to (p in the 
topology of J?? [5, Proposition 2.12]. A subsequence {<£jfc}fceN of {<PjbeN converges 
a.e. to (p. Therefore, {0(pjk}keN converges a.e. to 0(p. On the other hand, since 
{^jbeN i s Cauchy in Jf?*, so is {0<pj}je^ in J^q, by (2.1), and hence it converges 
to some xl> e Jfq in J^q. In particular, {6(pjk}keN converges to ip in Jf*. Then 
ip is the limit a.e. of some subsequence of {0(pjk}ke^ . By uniqueness, 0(p = tp a.e. 
Furthermore, 

||0cDIU* = Mm H^jlLg < C lim W<PjWw = CII^H^p. 
J—>-oo :?—•oo 

This completes the proof. • 

Let p,q e M. It is known that x^xl2Ov^q C Jr*', at least when q > u. + 1 
[6, Proposition 7 and 5, Proposition 2.15]. We want to describe x»+ll26v,q as a 
subspace of 3%*^. 

Lemma 2.2. Let p,q e H and T e JfJ. Then T € x»+ll20v%q if, and only if, 
x-v--lt2(p(x)T(x) e 3^q for each <p e JfT^, with 

(2.2) W^-l/2^(x)T(x)W^q ^ C | M U (<D e JtTp). 

P r o o f . The necessity is clear. By Proposition 2.1, for the sufficiency it is 
enough to show that T is a function. 

Choose ft e C°°(I) such that 0 ^ /3L(x) ^ 1 (x e I), 0x(x) = 1 (0 < x ^ 1), and 
0x(x) = 0 (x > 2), and define (3n(x) = 0i(x/n) (n e N, n ^ 2, x e I). Also, set 
9n(x) = 0n(x)T(x) (n eN,n^ 1, x e I) and g(x) = gn(x) (n - I < x ^ n, n e N, 
n ^ l ) . 

If n e N, n ^ 1, and <D € ^ £ , with cp(x) = 0 (x ^ n), then 

y»n /*oo 

/ gn+1(^M^) dx = / gn+i(x)(p(x) dx = (gn+l, ip) = (/3n+1T, <p) 
JO -10 

= (T,0n+^) = (T,(p) = (T,0n(p) 
/*oo /»n 

= (0nT,(p) = (gn,<p) = / gn(x)(p(x)dx = / ^n(x)<D(x) dx. 
JO Jo 
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Consequently On+i(x) = gn(x) a.e. in]0,n], whence g(x) = gn(x) a.e. in]0,n] (n G N, 
n ^ 1), and (g,<p) = (T, (/?) whenever (D G «^M. The space ;i^M being dense in ^ , to 
complete the proof it suffices to show that g defines a distribution in Jff'. 

Let if G Jr^, and choose r G N, r > \x + 1. Then (1 + x2)r<p(x)(3n(x) G ̂  for all 
n G N, n ^ 1. By (2.2) and [5, Lemma 2.6], we may write 

/»oo 

l(g,^>l ^ / \g(x)^>(x)\dx 
Jo 

/»IV />oo 

= lim / \gN(x)if(x)\dx ^ lim / \gN(x)<p(x)\dx N->°°Jo Iv->ooJ0 

f roo 2,u+l >, 1/2 r T°° >, 1/2 

* U (TT^d*} ^ { j o l--"-1/2(i^-2)>(^WI2d4 
^ C lim l l x - " - 1 ! ^ + a:2)V(a:)</.v(x)||M,, 

IV—>oo 

^ C lim ||(l + x2)V(.(:)/?N(i)||M>p 
IV—»oo 

= C||(i + x2)V(^)|U,p. 

Since (1 + x2)r(f(x) G «#^ and Jffv continuously contains Jr^ [5, Proposition 2.15], 
Lemma 2.2 is proved. • 

Motivated by [11], given p, q G N we introduce the space 

Jt9)(J?v,J?;!) = {F G ^ | 3L F G ^ ( J f ^ , ^ ) 

with x-^-1/ '2^(x)F(.r) = (LF<p)(x) (ip G Jf^)} 

of the so-called multiplication distributions from JFP into ^ f . Here, and in what 
follows, &(<#?£,<&£) denotes the space of all continuous linear mappings from J¥v 

into J>ff«. 
h1 

Proposition 2.3. For each p,q G N, the identity .//^(J^v,J^q) = x»+ll20v,q 

holds. 

P r o o f . It suffices to apply Lemma 2.2. • 

50 



3. T H E HANKEL TRANSLATION OPERATOR ON J^V (p G 1) 

For each y G I, a Hankel translation operator Ty has been defined on Jff^ [2, 10]. 
Before investigating the behavior of that operator on the spaces Jfv (pG f̂ J) we 
must prove the following auxiliary result. 

Lemma 3 .1 . For every p G N and y G I, the function g^,y(x) = y /x+1/2(xu)~ /x x 
J^(xy) (x G I) lies in @p,p. 

P r o o f . Fix p G N and y G I. If (x-lDx)
l6(x) G L°°(I) (0 ^ i ^ p), then 

9 G @p,p [6, Proposition 4]. Now, for 0 ^ i ^ p we have 

(s"1^) Vy(x) = (-lYy^^^xyr^J^xy) (x G I). 

Since the function z~^-1 J^i(z) is bounded on I, this completes the proof. D 

At this point, given p € N and y G I, we are in a position to define the Hankel 
translation operator Ty on Ji?v by the formula 

(Tyip)(x) = $)^(g^y$)^)(x) (if G Jfv, x G I), 

where g^jV is the function defined in Lemma 3.1. 
Note that the operator Ty (y G I) reduces to the usual Hankel translation operator 

when restricted to J^ [2, Equation (3.1)]. 

Proposition 3.2. Let p G N. The operator Ty (y G I) is well-defined and contin
uous from Jfv into itself Moreover, if p ^ 1 then the identity 

(3-1) (Tyif)(x) = (Txif)(y) (x,yel) 

holds for every if G Jt?v. 

P r o o f . Fix p G N and y G I. That Ty is a continuous endomorphism of J^v 

follows from Lemma 3.1 and from the fact that # /4 is an automorphism of Jf?v [5, 
Theorem 2.2]. 

Equation (3.1) holds when if G J^n and Jif^ is dense in J^v [5, Proposition 2.12]. 
Since convergence in Jr^p, p ^ 1, is stronger than pointwise convergence [5, Lemma 
2.14], necessarily (3.1) also holds when if G J¥v and p ^ 1. D 

For y G I and g^ G N, the translation operator Ty is defined on J^"*7 by transpo
sition. Then, by Proposition 3.2, Ty is a continuous linear mapping from J^~q into 
itself. 

The functional 6^ introduced in Proposition 3.3 below will be very useful later. 
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Proposition 3.3. Let p G N, p > fj, + 3/2. The limit lim x~/i~1/2<.p(_) exists for 
x—•O-l-

ai1 (/? G J^f. Tiie linear functional 

(3.2) < W > = lim c ^ - ^ - i / 2 ^ ) ( ^ ^ 

where c^ = 2 /T(// + 1), is continuous. Furthermore, 

(3-3) <<*„, T,(D) = <D(H) (H G I, (D G JP*). 

P r o o f . Fix p G N, p > /z + 3/2, and let <D G Jfff. It is known that 

/•CO 

aT""1/-^.-) = / yM+1/a(M(»)(:ry)-^(:ry)di/ 
JO 

for x G I (see the proof of [5, Lemma 2.14]). 
The integrand above lies in Ll(I). Certainly, the function z~^JjX(z) (z G I) is 

bounded. Moreover, 

Wl/2(^)(y)\ = jfP^\(l + yy-l(^^)(y)\ ^\yj(*^)(y)\ (y e I), 
v y' j _ 0 

with yj(Sdfi^p)(y) G L1^) (0 ^ j ^ P - 1); see the proof of [5, Lemma 2.14]. 
Now, by dominated convergence, 

/•OO 

lim x-»-VMx) = c-1 / !/M + 1 / 2(JW)(y) dy. 

The linear functional 6^ defined by (3.2) satisfies 
/•CO P ~ l /'CO 

K W > I < / |y"+1/2(%v)(y)|d?/<_^/ |y j^^)(y)|dy<CIMU 
JO „._n JO 

for every <D G c^f (proof of [5, Lemma 2A4]), hence it is continuous. 
Finally, let us prove (3.3). For fixed <D G J^P and .r G I, there holds 

(3.4) SMM2/) - cMx-'i-1/2(T**>)(3/))(<) = (1 - cA,(rf)-"JM(:r<))(i3^)(<) (t 6 / ) . 

As ($)^(p)(t) (t G I) is bounded [5, Theorem 2.2 and Lemma 2.14], and since 
lim (1 - c^(xt)-^J^(xt)) = 0, it follows from (3.4) that 

(3.5) lur^S)^(y) - c^x-^ll2(rx^y))(t) = 0. 
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The difference 1 - c^(xt) ^J^(xt) being bounded for all t G I, (3.4) also implies 

(3.6) \S)MV) - c»x-»-l'2(Txv)(y))(t)\ ^ C\(Sj^)(t)\, 

with (f)iL<p)(t) G Ll(I) and C > 0 not depending on t G I 
On the other hand, we have 

^ - c , . * - " - 1 ! 2 ^ ) ^ ) 
/•CO 

(3.7) = / i5M(^(y)-c^-^-1 /2(r^)(y))W(y<)1 / 2^(y0d* (ye I), 
Jo 

because <p(y) - cMx~^~1/2(rx(D)(H) G L 1 ^ ) . 
Formulas (3.5) and (3.7), along with the dominated convergence theorem (which 

applies by virtue of (3.6)), yield 

<p(y) = \im c^x-»-l?2(Tx<p)(y) (<p e Jtf*,y e I). 
x—•()+ ^ 

In view of Proposition 3.2, this establishes (3.3). • 

4. HANKEL CONVOLUTION OPERATORS ON JP* (p G 1) 

Let p,q € N. In [6], the spaces of convolution operators 

<?»,, = {T € .<: y - " - 1 / 2 ( ^ T ) ( y ) € ^ p , ,} 

were defined and endowed with the norm 

\T\S
v,q = ||j/-"-1/2(55,,r)(l/)||p,, (T G **, , ) . 

By topologizing the space x^1/2@p,q so as to make it isometric to &Piq, we have 
the following. 

Proposition 4.1. The generalized Hankel transformation is an isomorphism from 
<?lq ontox*+ll20p%q. 

Taking into account Lemma 2.2, another description of the spaces C^ may be 
given. To this end, we recall that the Hankel convolution of T G Jr^' and <p G J^t is 
the function (T$<p)(x) = (T,rx<p) (x G I) [10, Definition 3.1]. For all T G 34?^ and 
<p G Jif^, the exchange formula 

« ; t r M ( » ) = jr"-1 / 2(:M(i/)($; .r)(!/) (y e /) 
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holds [10, Proposition 3.5]. 

Proposition 4.2. For each p,q e N, 0^pq is the space of all those T G Jif^ such 

that TJ<D G Jfq for all ip G Jffl and 

| | F M U ^ | M | ^ (ipeJPn). 

P r o o f . Let T G J^[. By Lemma 2.2 and [5, Theorem 2.2], y~/x~1/2(-OjxT)(y) G 
0Ptq if, and only if, y-^-1/2(^T)(y)(Si^){y) = % ( F M ( y ) " ^ for each ip G J ^ 
and 

HTML* = ||^(TMIU,9 < C I I M L P = C|MU (<p G ^ ) . 
D 

Fix p,qeN. Since ^ is dense in J?* [5, Proposition 2.12], for each T G G\q the 
continuous mapping 

t t : (^ , | | - |U,P ) -^ (^M|- | | ^ ) 
<p\—>T$(p 

admits a unique extension up to Jff? preserving the norm, which we keep denoting 
by the same symbol ft. Hence, 0^q may be regarded as a subspace of .if (J^v,Jfq). 
The norm of &(Jf?v,Jf?«) restricted to 0\q will be represented by || • ||*>g. 

The following exchange formula will be of great utility later. 

Proposition 4 .3. Let p,q G N. For each T G 0\q and (p G Jfv, the identity 

(4.1) fl,(TM(y) = y-"-1/2(^T)(ym^)(y) (y G I) 

holds. Furthermore, the norms \\ • \\p^q and | • \pq coincide on G\,q. 

P r o o f . If T G e\^q then y~ / z~1 /2(^-T)(y) G Op,q. Consequently, both the 
left- and the right-hand sides of (4.1) define continuous linear mappings from Jfv 

into Jtf*. Since (4.1) holds if p G ̂  with ^ dense in J?v [5, Proposition 2.12], 
necessarily it also holds for all <p G ^ f . 

Now, the fact that S)^ is an isometry of JFq [5, Theorem 2.2], along with (4.1), 
implies 

HTII^ = suP{||TMU = v e .*?, IMU < i} 

= sup{||^(TMIU,«- VG ^MMMU < 1} 
= s u p U l y - ^ / ^ T X l / V ^ I U : V G ^ p , | M U ^ 1} 
= H?rM-1/2(^T)(2/)iU = l-t,, (r G <„) . 

D 
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Let p,q e N. The Hankel convolution of T G @\ q and u G Jf?^ q is the functional 
Tj}H G J?~v, given by 

(rK^ = («,TM (^e^f). 

Note that, for a fixed T G < ^ , the mapping u i—•> Ttfu from J^."* into ^ " p is 
the transpose of the mapping p i—> T)J(D from Jff? into J^q. 

Note also that if T G C\A and ip G ̂  then [5, Propositions 2.4 and 2.15] provide 
us with two (coincident) definitions of the functional TtfV' G J^~v- In fact, on the 
one hand, since ip G J^j, C Jfv, the function Ui(x) = (T,Txip) (x G I) satisfies 
Ui G c^ 9 C J^~v- On the other hand, as i/> G ̂ " 9 ' w e m a y consider the functional 
U2 € J?~v defined by (u2,^) = ( ^ T ^ ) (<D G J ^ ) . Now, J ^ - P C ^ , and 
(^i,<p) = (v2,<p) whenever <£ G ^ [10, Proposition 3.5]. Since Jf^ is dense in J^v 

[5, Proposition 2.12], Ui and U2 define the same functional in J^~v. 

Corollary 4.4. Let p,qeN. Given T G 0\^q and u G Jf~q, the identity 

^(Tiu)(y) = y-»~l?2(^T)(y)(^u)(y) 

holds. 

P r o o f . By Proposition 4.3, for all ip G Jt°v we have 

(9)\L(nu),^^) = (T$u,p) = (u,T$p) = <55>,.e/4(TM> 

= ((55»(y), y-/i-1/2(55^T)(y)(^V?)(y)) 

= (y-'4-1/2(i5^r)(y)(ii»(y),(i)/1^)(y)) . 

D 

Next we aim to characterize 6^ (p,q G N, q > a + 3/2) as the space of all 
those continuous linear operators from Jff? into J^q (respectively, J^~q into Jf~v) 
commuting with Hankel translations (Proposition 4.6). 

We adopt from [11] the notation 

m(s/, SS) = {T G -£?(.< ^ ) | TyT = TTy (y G I)}. 

Here .c/ and £8 denote suitable linear topological spaces where the Hankel translation 
is defined, and «Jz?(&/, 3S) represents the space of continuous linear mappings from 
£/ into BS. Recall that the spaces J?$(J?V, Jfq) (p, q e N) were defined at the end 
of Section 2 above. 
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Lemma 4.5. Assume p,q e N, with q > p + 3/2. To every F G J(9(M>^, Jff*) 
there corresponds a unique TF G m(J$?P,J$?J) such that TF<p = ($)'^F)$<p (<p G 
JPy). The mapping T: F —•» TF is an isomorphism from J(2)(<ffv,3^*) onto 

P r o o f . Given F G J(9(Jf?,<&*), we define TF: Jf* —> Jf« by TF</? = 
S^^(LFS)^<p), where L F satisfies x"AX~1/2(D(x)F(a:) = (LF<p)(x) (<p G ^ - ) ; then, 
TF G Jf(JffjjP,J^). Fix u G I and <D G ̂ , and let g^y be the function considered 
in Lemma 3.L There holds 

9^y(x)(LF<p)(x) = x-^-1/2g^y(x)<p(x)F(x) = LF(g^y<p)(x). 

Hence, we may write: 

Ty(TF<p) = S)^(g^^yS)^(TF<p)) = S)fi(g^iyLF(S)^<p)) 

= ^^(LF(g^yS)^<p)) = S)^(LF(S)^Ty<p)) = TF(TV<P). 

Since TyTF and TFTy both lie in J£(Jtf?, J^C^), and since Jr^ is dense in Jtfv [5, 
Proposition 2A2], we conclude that TF G m(J?P,J('f?). 

Conversely, assume that T G m(J^^,Jfq) and define the linear functional 

(H,<p) = (S^,T<p) (<pe.X^), 

where S^ is as in Proposition 3.3. Then H G Jff^, because S^T is a bounded linear 
functional on J4?* and the inclusion of Jt^ into Jffjf is continuous. 

Fix <p G Jr^. Using Proposition 3.3 we obtain 

(4.2) (T<p)(y) = (S»,TvT<p) = (S^,TTy<p) = (H,Ty<p) = ( % ) ( t / ) (y G I), 

or, in other words, T(S)^<p) = H$(¥)^<p). Let F = S)[tH e J^; then 

(4.3) ^(T^<p)(y) = J5;i((^F)|t(J5^))(y) = y^'My)^)-

Since % T % - - L G &(je*,JP*), we find that F G J(9(Jfrr,Jf%). 
Now the proof may be completed as follows. That the mapping T is well defined is 

a consequence of the first paragraph above, along with (4.2) and (4.3). The preceding 
paragraph shows that T is onto. Finally, the remaining assertions of Lemma 4.5 are 
obvious. • 

Proposition 4.6. Let p,q G N, q > p. + 3/2. A linear map L: <¥?? —•» Jf* 
(respectively, L: jf?-* —> Jf~p) lies in m(jlpv, JtTt?) (respectively, m(J^-q, J^~p)) 
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if, and only if, there exists a unique T G ff\^q such that Lu = T%u for all u G Jfv 

(respectively, u G J^~q)-

P r o o f . Assume L G m(J^v,Jfq). By Lemma 4.5 and Propositions 2.3 and 
4.1, there exists T G 0\^q such that L<D = Ttf<D if (p £ Jf^. Since J ^ is dense in ^ p 

[5, Proposition 2.12], by continuity L(p — T$(p whenever <D G J^v. 
If T G ^ and L(p = T|j</> for all (p e Jfv, then L(D = T(t<D for all <p G ̂ . From 

Lemma 4.5 and Propositions 2.3 and 4.1, we conclude that L G m(J4fv,J$?\q). 
Now suppose L G m(J^~q, J^~v). Then is adjoint L* lies in m(J^v, J^q\, in fact, 

for all y G I, <D G J^f and u G cyr̂ _<7, we have 

(u,TyL*(p) = (TyU,L*(p) = (LTyU,(p) = (TyLu,(p) = (Lu,Ty(p) 

= (U,L*Ty(p). 

As just proved, there exists T G ^ satisfying L V = -T)t<P (<P £ ^ T ) - The identities 

(Lu, </?) = (u, L V ) = (u, PM = (T%u, <p) (u G tf-\ tp G ^ ) 

show that Lu = Tjju (u G ^ _ < 7 ) . 
Conversely, if T G 0\q and LH = Ttfii for all u G J ^ - 9 then L G .if ( J^" g , ^ ~ p ) -

Since ry(T%(p) = T%(Ty<p) for all y G I and (p G J^ p , we get 

(LTyu,(p) = (Tjtryu,<D) = (ryu,T(t<D) = (u,Ty(T%(p)) 

= (u, TtKry^)) = (T%u, Ty(p) = (ryLH, <D) (y e I,<pe Jfv). 

That is, L G m(JV-q,Jl?-p). 
To prove uniqueness, assume that T G 0^q and Ttfu = 0, for all u G ^ f 

(respectively, u G J^^q)- Then, by Proposition 4.3 (respectively, Corollary 4.4), 
0 = X-LC-1/2(S)^T)(X) G ^p>g, whence T = 0. This completes the proof. • 

As I M U , P ^ IMU.g whenever p, q G N,p ^ g, and ip G « i^ , the identity mappings 

are continuous. This fact allows us to consider the limits 

0\ = ind lim ff^q (q G N) and 0\^% = proj lim 0\. 
V~*°° ' ' q—yoo 

Here ^ ^ is the space of convolution operators of J4^L and Jff\\ [6, Proposition 19]. 
In the following Proposition 4.7 we characterize ^ j (g G f̂ J) as the space of convo

lution operators from Jr^ into Jfq and from J^~q into Jtf' 



Proposition 4.7. Let gGN and T G Jif^. The following are equivalent. 

( i ) T € t 7 » . 
(ii) The mapping (p \—> TftcD is continuous from 3f[L into J¥q. 
(iii) The mapping u \—> Tftu is continuous from <X?~q into 3^^ when JfJ is 

endowed with either its weak* or its strong topology 

P r o o f . Statements (ii) and (iii) are equivalent by transposition. We shall 
establish the equivalence between (i) and (ii). 

Assume T <E 0\, and let p e N be such that T e &^q. Then Lip = Ttf^ is 
continuous from Jf?? into <fflq. Since the embedding . ^ <->> Jff? is continuous [5, 
Proposition 2.15], L is continuous from J^ into Jf[q. 

Conversely, let T e Jtf£ be such that L<p = TJ(D is continuous from J^ into ^ i '
7 . 

By [6, Lemma 1], there exists p G N satisfying HTJMUg ^ C|MU,p (^ ^ ^ ) - But 
this means that T G @\ q C ^ , and completes the proof. • 

Our next objective is to characterize 0\ (q G N, q > n + 3/2) as the space of 
continuous linear operators from Jf^ into 3^q (respectively, J¥~q into JT '̂) that 
commute with Hankel translations. 

Proposition 4.8. Let q G N, q > p + 3/2. A linear map L: ^ —> J^q lies 
in m(Ji?fl,J4?q) (respectively, m(Jf~q, Jr^'J, where Jf[ is endowed with either its 
weak* or its strong topology) if, and only if, there exists a unique T G 0\ such that 
Lu = Tj}u for allue ^ (respectively, u G <7?~q). 

P r o o f . By Propositions 4.6 and 4.7, it is apparent that the mapping L<p = T$p) 
(if G J ^ J , with T G ^ , is continuous from Jf^L into Jfq and commutes with 
translations. 

Conversely, if L G m(J^,J^q) then the mapping ip \—> (8^, Lip) (cD G J#^) defines 
a linear functional T G JT '̂ satisfying 

(L<p)(x) = (6^TxLip) = (6^LTxip) = (T,T,^) = (Tj(D)(x) 

for every tp G J ^ and x e I (Proposition 3.3). From Proposition 4.7 we conclude 
that T e@\. 

To prove uniqueness it suffices to argue as in the proof of Proposition 4.6. 
The respective part follows easily by transposition. • 

At this point we aim to describe @\ (q G N) as an inductive limit of Hilbert spaces 
(Proposition 4.10). For every A: G N we define the operator (1 — S^)~k from 3^^ into 
itself by the formula (1 - S^)~kip = % ( ( 1 + x2)~k($)LLip)(x)) (ip G ^ ) , and from 
J4f£ into itself by transposition. These mappings are injective. 
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Given k,g G N, put 

(i - S^JT-I = {(i - s^-'u ejr;-.ue jrp}, 
(i - srfjr* = {T G jr ; : (1 - S„)"*T G .#?}, 

and endow those spaces with the topologies that make the operator (1 — S^)~k an 
isometry. It is apparent that for each k, q G N, the Hilbert spaces (1 — S^)~k<ffi~q 

and (1 — S^)kJ^q constitute a dual system with respect to the bilinear form 

(i - s»rkj?-« x (i - srfjp' —> c 
(u,v) —• (u, v) = ((1 - S^)ku, (1 - S»)-kv). 

Lemma 4.9. For every gGN, the following holds. 

(i) ^ is dense in (1 - S^YkJf-q (k G N). 
(ii) ^ C (1 - 5 M ) ^ 9 C (1 - S^)2Jfq c . . . , with continuous embedding. 
(hi) ^ - « D {\-Sy)-x3^-q D (\-S^Y2J^~q D . . . , with continuous embedding. 
(iv) indlim(l - S^)kJ?q is the strong dual of proj lim(l - S^)"*-^" 9 . 

k-**00 /c->oo 

P r o o f . Since (1 — S^)~k defines an isometric isomorphism between J¥~q and 
(1 - S^)~kJ^~q, and since ^ = (1 - S^Jf^ is dense in J r ^ [5, Proposition 
2.12], part (i) follows. 

Next we observe that, for all k e N, (\ - S^YkJfq C JP* as well as (1 -

S^)~kJ^Yq c ^Yq t6' Corollary 1 and 5, Theorem 2.2], and that 

(1 - S,)~n~™T = ^ ( ( 1 + x2Yn&Ml + x2)~^(^LT)(x)) 

= (1 - S^)~n(\ - 5M)"mT (n,m G N, T G Jf%). 

Fix k G N, and let T G (1 - S^)kJ?q, so that T G ^ and (1 - S^)~kT = 
</> G J^? . Then, as just observed, (1 - S^)~k-lT = (1 - S / 4)~V £ «^?, whence 
T G (1 - S^)k+lJ?q. Moreover, 

||(i - S^rVlU = ||%((i + X2Y1ZM-))\\M 

= ||(i + x'Y^M^lU ^ ||(i + ^ r ^ U M U -

This proves (ii). 
= n _ R..\-k-ii, - x v ,u ,x , 

T = (1 - S,)~k(\ - S.Y'u G (1 - S,)~kJť~q, 

Similarly, if T = (1 - S^)~k-lu G Jt?' where u G Jf~q, then 

ith 

s^-^IL-, = ||j,;t((i + x*)-'^u(x)%t,-q 

= ||(1 + x^^Mx)^-, < 11(1 + x2)-\J 
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Thus, (iii) is proved. 

The limit projlim(l — S^)~kJif~q is reduced, because of (i). Hence, its dual with 
k—>oo 

the Mackey topology may be identified with indlim(l - S^)kJfq [12, IV-4.4]. Since 
k—>oo ^ 

projlim(l — Sfj)~kJ^~q is semireflexive [12, IV-5.8], the strong dual topology and 
к—¥oo 

)K 

(iv). D 

the Mackey topology coincide on indlim(l - S^)kJfq [12, IV-5.5]. This establishes 
k—>oo 

Proposition 4.10. For all q G N, the identity C\ = indlim(l - S^)kJ^q holds. 
k—ïoo 

P r o o f . Let p,q G N, let T G ff^q, and choose k G N such that x^+ 1 / 2 ( l + 
x2)~k G <#??. Then, (D = % ( ^ + 1 / 2 ( l + x2)~k) G JFJ [5, Theorem 2.2] and / = 
T)t(D G Jtfq. From Proposition 4.3 we obtain (S)^f)(x) = (1 + x2)~k (9)'^T)(x) G Jfq\ 
consequently / = % ( ( 1 + x2)~k(^T)(x)) = (1 - 5 / f)-^T G ^ [5, Theorem 2.2], 
and hence T G (1 - 5 M ) f c ^ . 

Since the mappings 

&lq —> J T ; —• ( i - s M ) f c ^ , 

T H ^ Ttf<p h—». (1 - srfyrM = T 

are continuous, so are the embeddings 

< , ^ (1 - S»)kJť; ^ indlim(l - S / t )*^«, 
^'^ ř k-+oo 

and from the arbitrariness of p £ M we infer the continuity of 

^ ' - - • i n d l i m ( l - S „ ) * j r ' . 
1 /c->oo 

Conversely, given k G N and y G ^ , let ^ = (1 - Stl)
k<p G J ^ . If g G N and 

(̂  G ̂ , then 

((i - s„)fe/)M-0 = <(- - s„)kf,Tx<p) = </, (i - s/()V.^) 
= (f,Tx(l - S / t )V) = (/«(1 - S„)k>p)(x) = иЫ')(х) (x € I) 
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[10, Proposition 2.1]. Thus [5, (proof of) Theorem 2.2], 

H((i - sM)fc/)MU = ll/MU < E W^MfMh 
n+m=0 

= j ^ \\xmTnAx-»-l,2{^f)(xm^)(x))\\2 
n+m=0 

= E lkn+m+M+1/2(^-1I?)n^-M-1/2(%/)^)^-"-1/2(^V')(a:))ll2 
n+m=0 

< E E(n)iia:"+m+'1+1/2(a:"1-')i(a:"'i"1/2^/)W) 
n + m = 0 j = 0 ^ ' 

X ( x - 1 o ) " ^ ( a ; - ' J - 1 / 2 ( í j ^ ) ( ^ ) ) l | 2 
q n 

< E E(n)ikn-j(x- io)-^--"- i/2(i3Mv)(x)iu 
n+m=0 i=0 ^ ' 

x | | x " l + ^ + 1 / 2 ( x - 1 o ) ^ - " - 1 / 2 ( i J M / ) ( x ) | | 2 

= E E (n)lkn-J'^-1o)n-^-M-1/2(%^)WIU||a:mTM,i(^/)(x)||2. 
n + m = 0 j = 0 ^ ' 

By [6, Lemma 1] and [5, Theorem 2.2 and Proposition 2.15], there exist r,s 6 N 
(not depending on ip) such that 

IK(i - sM)fc/)MU < qi*M>IL-l|iWlk, = c|M|M,-||/|L, < olML.il/IL--

This shows that (1 — S^)kf G £?J>9, and that the embeddings 

(1 - SM) fc^« --> < „ --> indlim *?»,, = ^ 

are continuous. Since k G N is arbitrary, we conclude that 

ind\im(l-SrfjT? --> ^ 
A;—>oo A y 

is also continuous. This completes the proof. • 

As a consequence of Proposition 4.10, we obtain some results about continuity, 
topological properties, and structure in O^ (q G f^). 

Corollary 4.11. For each q G N, the following holds. 
(i) The embedding 6^ c-> Jf[ is continuous, when Jff^ is endowed with either its 

weak* or its strong topology. 
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(ii) ff\ is the strong dual of projlim(l - S^Jtr-i. 
k—ïoo 

P r o o f . To prove (i) it suffices to show that the mapping (1 — S^)kJ^q <--» Jf^ 
is continuous for every k G N, when either the weak* or the strong topology are 
considered on Jg*'. Indeed, for k G N, T G (1 - S^Jf*, and <p G J^ we may write 

I for) | = | ((i - sfy, (I - s,rkT) | < ||(i - 5/f)VIL-Jtt - 5M)-*r|ug. 

The space Jr^ being continuously contained in J¥~q [5, Propositions 2.15 and 2.4], 
this establishes (i). 

Part (ii) follows from Lemma 4.9 (iv) and Proposition 4.10. • 

Corollary 4.12. For every q £ N, the space 0\ is complete, reflexive and 
bornological. 

P r o o f . Let q e M. The Frechet space projlim(l - S^)~kJ{?~q is barrelled 
k—too 

[12, II-7.1, Corollary], bornological [12, II-8.1] and semireflexive [12, IV-5.8]. Hence, 
proj \\m(l-SIJ)-

kJf-q is reflexive [12, IV-5.6], and its strong dual G\ is reflexive [12, 
fc-4-OO 

IV-5.6, Corollary 1], complete [12, IV-6.1], and bornological [12, IV-5.6 and IV-6.6], 

• 

Proposition 4.13. Let q G N and T G Jf%. Then T G 0\ if, and only if, there 
k 

exists k G M, c3- G C (0 ̂  j ^ fc), and (D G J^q, such that T = ]T CjS^. 
3=0 

P r o o f . Fix q G N. Assume that <D G Jfq, and let k, j G N, with 0 ^ j < k. We 
claim that (1 - S^Sfo G Jfq, whence S£(D G (1 - S^)kJfq. In fact, we have 

(i - s,rksfc = ^((i + x2rk^(s^)) = ^((-i)^^'(i+x2rk(^)). 

For 0 ^ j ^ k the function x 2 j( l -f rc2)~fc lies in £?7)<7 [6, Proposition 4], which 
establishes our claim. 

A: 

Now, let T G ̂ ' . If T = £ c y S ^ for some A: G N, q G C (0 ^ j ^ k), and 

<p G J^q then, as just proved, T G (1 - S^)kJfq. Conversely, suppose T G 6\, so 
that F G (1 - S^Jtf* for some k G N. If <p G ^ is such that (1 - S,L)~kT = if 

then ( ^ r ) ( x ) = (1 + x2)~k(S)'^)(x), whence T = (1 - 5 M )V = £ ( - ) ( - l ) ^ , 

w i t h S ^ G ( l - S ^ ) ^ . • 
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Next we characterize the bounded subsets of ^ (q £ N). 

Proposition 4.14. Let q G N. A set B C 6\ is bounded if, and only if, there 
exists keN such that B c (1 - S^)hJfq and B is bounded in (1 - S^)kJfq. 

P r o o f . The sufficiency is clear. To prove the necessity, we argue by contradic
tion. Assume that B \ (1 - S^Jf^ ^ 0 for all k G N. Then there exist sequences 
{kj}f=l in N and {fj)f=1 in B such that fj G (1 - S^)k^Jfq \ (1 - SrfiJf*. 
Choose a bounded closed convex neighborhood U\ of zero in (1 — S^)klJfq such 
that fi ^ Ui. Once Ui,U2,- • •, U? have been chosen, apply [8, Lemma 1] to find 
a bounded closed convex neighborhood Uj+\ of zero in (1 — S^l)

kj+1J^f
q such that 

Uj C Uj+i and fi ^ iUj+i for 1 ^ i ^ j + 1. Then IJ Uj is a convex neighbor-

hood of the origin in ^jj which does not absorb { / j } ^ ! C JB; this is the expected 
contradiction. Hence, B C (1 - S^)kJfq for some k G N. 

Now suppose that B is not bounded in any (1 — S^yjifq (j ^ k). Write Vk = 
{T G (1 - S M ) ^ : ||(1 - S^)-kT\\^q < 1}, and choose ft € 5 \ jV* (j = *, k + 1). 
By [8, Lemma 1] there is a bounded closed convex neighborhood Vk+i of zero in 
(1 - S^L)kJrlJ^q satisfying Vk C Vk+i and ft £ jVk+i (j = k, k + 1). An inductive 
procedure allows to define sequences {gj}JLk C B and {Vj}JLk such that Vj is a 
bounded closed convex neighborhood of zero in (1 — S^)jJi?q and gi £ iVj (k ^ i ^ j ) . 
Therefore IJ Vj is a convex neighborhood of zero in &^ which does not absorb 

{gj}°fLk C B. This contradiction completes the proof. • 

In the sense indicated by Proposition 4.15 below, J#J4 is a dense subspace of (@\+i)' 
(qeN). 

Proposition 4.15. Let q G N, and for each <D G «yf̂  deiine 

/•OO 

( L v , r ) = / ^ ( T M ( i ) d i (T€0*+l). 
Jo 

Tiiei2 j ^ = {L^: <D G ̂ } is a (weakly * strongly) dense subspace of (^ j + 1 ) ' . 

P r o o f . Fix <p G ^ , p G N, and T G <?*>7+1. Then [5, Theorem 2.2] 

/*oo /»00 -i 

I (VT) I ^ / | ^ (TMWI d-r < / ——|(1 + ^)%(TMW| do; 
Jo Jo -1 + x 

r POO j -\ 1 /2 j ' »oo •> 

^ cil-MTMILrH = c||:rtMU,+i < oll-lP,,+ilMkp-
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Hence, L^: @VA+\ —> C is continuous. The arbitrariness of p G N yields L^: 

@\+i —> C continuous, so that j£fM = {L^: <p G _ ^ } is a subspace of (&\+i)'. 

Since _ ^ j + 1 is reflexive, the strong topology of (ff\+l)' is the Mackey topology, and 

convex subsets of ( ^ + 1 ) ' have the same closures in both the weak* and the strong 

topologies [12, IV-3.3]. Thus, we only need to prove that jSf̂  is weakly* dense in 

(^9+1 )'• This may be accomplished by showing that JfM separates points of &\+l 

with respect to the duality ( ( ^ + 1 ) ' , ^ + 1 > [12, IV-1.3], In fact, let T G ff\+l be 

such that 
/>oo 

0 = (LV,T) = / x-»-ll2($J)(x)(f)M(x)&x 
JO 

for all (D G _#^ (Proposition 4.3). Then 

Г 
Jo 

a т _ м _ 1 / 2 ( i . , т ) ( a ; ) ^ . ) c I ; ( ľ = 0 

for all (D G _^_, whence x~ti~1^2(S)f
flT)(x) = 0 (x G J). Here we have used the fact 

that x~^_ 1 / / 2(io^T)(x) is a continuous function on I [6, Proposition 5]. Therefore 
T = 0, which completes the proof. • 

Given two topological vector spaces &/, &, denote by J£s(srf,!M) (respectively, 
_£f& (.*./, _^)) the space _Sf (_-#, _^) endowed with the topology of pointwise convergence 
(respectively, of bounded convergence). Fix q G N. By Proposition 4.7, 0^ may be 
regarded as a subspace of .if(Jr^, _#^). Hence, besides the inductive topology r, it 
is natural to consider on 0q the topologies rs and n, induced by .ifs(_^,J_^) and 
J%(«^ ,«^?) , respectively We shall prove that all these topologies coincide on 0^q 

(Proposition 4.19). For this purpose we need an auxiliary result about the Hankel 
convolution, stated as Lemma 4A 7, which we shall derive from the corresponding 
property of the multiplication (Lemma 4.16). 

Given k, q G N, let us consider the spaces 

(1 + x2)~hJf-q = {(1 + x2)~ku G W;: u G 3?-q}, 

(1 + x2)kJf; = {TG Jf;: (1 + x2)~kT G Jf'}, 

endowed with the topology induced by J^~q (respectively, J^q) through the mul
tiplier (1 + x2)~k. In is apparent that for each k,a G N, the Hilbert spaces (1 + 
x2)~kJ$?~q.and (1 + x2)kJ^q constitute a dual system with respect to the bilinear 
form 

(1 + x2)~kJ?~q x (1 + x2)kJf% —• C, 

(H, v) i—> (u, v) = ((1 + x2)ku, (1 + x2)~kv) . 
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By [5, Theorem 2.2], the Hankel transformation defines an isomorphism between 
(l+x2)-kJf-q and (l-S^)-kJf~q, respectively (1 + x 2 ) * ^ and (1 -S»)k,7?q. In 
particular, indlim(l +x2)k J^fq is the strong dual of proj lim(l + x2)~kJf-q (Lemma 

4.9, (iv)). 

^ x^ „** ö u u u . _ ~ - . ^ - ~ J y - . , ~ f ~~џ 

Lemma 4.16. Fix q EN. Assume that B C proj lim(l + a;2) kJ^ q is bounded, 
k—>oo 

and let A denote the unit hall of Jif~q. There exists ip G Jtf^ such that B C 
x-^-^2if(x)A. 

P r o o f . To every k eN there corresponds Ck > 0 such that BC^l(l + x2)~k A. 

Let _9°, respectively A 0, denote the polar set of B, respectively A, and let v G 

Ck(l + x2)kA° = (C^(l + x2)-kA°). I f u G C - 1 ( l + x 2 ) - f c A t h e n C A : ( l + x 2 ) ^ G A, 

C " 1 ( 1 + . T 2 ) - ^ G A 0, and 

\(u,v)\ = \((l+x2)ku,(l+x2)-kv)\^l. 

As B C C ^ ^ l + x2)~kA, it follows that | (u,v) \ ^ 1 for all u G B and v G Ck(l + 

x2)kA°. Therefore, C f c(l + x2)kA° C B°. 

Now, let ty G C°°(U) satisfy 0 ^ x/;(t) ^ 1 (t G R), i)(t) = 0 (t ^ 0), a n d r/;(t) = 1 

(t^l). For d > 0 a n d h G A 0 t h e r e holds 

j = 0 

w i t h C i n d e p e n d e n t of d a n d h, w h e n c e l im s u p \\I/J(X — d)(l + x2)~1h(x)\\fliq = 0. 
d->oo / . .£_» 

Thus, given k G N there exists a sequence {d/c}/^ such that dk > 0, dk+i > 1 + dk, 

and 

sup U(x - dk)(l - x 2 ) " 1 ^ ) ! ! ^ ^ 2-k~lCk+1 (k G N). 
he A" 

T h e n , for k G N a n d h G A 0 , 

^P(x - dk)(l + x2)kh(x) = (1 + x2)k+^(x - dk)(l + x2)-1 

x h(x) G 2~k-1Ck+l(l + x2)MA°. 

Define 

ҷ> г (x) = x _ „ . - / І - 1 / 2 1 °° 

2 
k = l 

(x Є I), 

where M > 0 is chosen so that MA° C (1 + .T 2 )A° [6, Proposition 4]. 
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Note that <D G Jf^. Moreover, if h e A0 we have 

oo 

x^^2if-l(x)h(x) = -dMh(x) + ] T ^ ~ dk)(l + x2)kh(x) 
k=i 

CO 

e - C i M A 0 + ^ 2 - / c - 1 C f c + 1 ( l + ar2)fc+1A0 

k=i 
OO ^ OO s 

C ^ 2 - f c C f c ( l + x 2 ) f c A ° c ( ^ 2 - f c ) H ° = B°. 
k=i 4 = i ' 

That is, A0 c x-^-^2^>(x)B°. 
On the other hand, x-^_i/2(D(x)(l + x 2 ) * ^ C MP* (k e N), because 

x - M - i / 2 ^ c ^ [ĝ  Proposition 6]. Consequently, H° C indlim(l + x2)kJ^q C 
k—)-co ^ 

Now, let u € B C p r o j l i m t l + . T 2 ) - ^ - « C JTM' C .<#',. The\\x^+ll2tp~l{x)u{x) G 
fc—>oo 

^ , and for w G ̂  n A0 C Sd(i C\ x-^-^2(p(x)B° we find that 

\{x^l^2^~l(x)u(x),w(x))\ = \{u(x),x^^2^~l(x)w(x))\ ^ 1. 

The space 38^ being dense in Jfq [5, Proposition 2.12], this shows that 

x^l'2y-l(x)u(x)e A. 

Since u G B is arbitrary, we conclude that H C x~^~[//2(f(x)A. The proof is thus 
complete. • 

In view of the remark preceding Lemma 4.16, and applying Corollary 4.4, we 
immediately obtain 

Lemma 4.17. Fix q eM. Assume that B C proj lim(l - SH)-kJ^-q is bounded, 
k—^oo 

and let A denote the unit ball of J^~q. There exists <p G Jr^ such that B C ip$A. 

Lemma 4.18. For every q G N. the inductive topology of O^ is generated by the 
system of seminorms £ = {|| • M U . g } ^ ^ . • 

P r o o f . Let q e N. As above, we denote by T the inductive topology of 0\v 

Note that the S-topology is just the topology of pointwise convergence Ts that 0\ 
inherits from ^(je^,J^q). 

For each p G N, the estimate ||T1J<D||M ^ l|T||* J M k P , valid whenever T G G^q 

and (D G ̂ , shows that the identity mapping 0^q -̂> (&*,TS) is continuous. Thus, 
T is finer than TS. 
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Conversely, choose a T-neighborhood U of zero in C\ = indlim(l — Su)kJi?q 

H k—J-oo ^ 

Then there is a bounded set B C proj lim(l - S^)~kJ^~q such that B° C U (Corol-
k—• oo 

lary 4.H) . By Lemma 4.17, there exists ip G Jf^ satisfying B C <DtfA, where A 
denotes the unit ball in Jf~q. For T G (1 - S^)kJfq C Jf% and ^ G ^ , we have 
(T,<p§ip) = (T$(p,ip) [10, Proposition 3.5]. Since Jr^ is dense in ^ , ~ 9 [5, Proposition 
2.12], for each T 6 ^J we may write 

sup{| (F,T) |: F G B} ^ sup{| (T,<DftH) |: ix G A} 

= sup{| {TM^)V^ € ^ , II^IU,-, ^ 1} 

= sup{| (Ttf<D, V) |: V € J ^ , II^IU,-, < 1} = | |TJMU-

Thus {T G ^ : ||PML<7 ^ 1} C £ ° C U, and therefore TS is finer than r. • 

Proposition 4.19. Let q G N. The bounded convergence topology and the point-
wise convergence topology coincide on 0q as a subspace of ^(Jf^,Jifq), and they 
equal the inductive topology of @\. In particular, the inductive topology of 0^ is gen
erated by any one of the families of seminorms {IhlMU^j^e^. , {sup ||-tMU,g}Be33,.; 

V?€S3 

where 93 M denotes the family of all bounded subsets of J^. 

P r o o f . The notation for the spaces and topologies that will be used here was 
introduced after Proposition 4.15. 

The identity mapping 0^q -+ ^b(Jf^,J^q) (p G N) is continuous. Thus, 0^q <-> 
J£b(jF^L,Jfq) (p G N) is continuous [5, Proposition 2.15], and consequently so is 
(&\,T) «--•» ^fb(J^,J^q). This means that n C T. AS T = TS (Lemma 4.18), and 
since TS C Tb, we conclude that r = TS = Tb. D 

Remark 4.20. @\+\ 1S neither Montel nor nuclear. For the proof take a sequence 
B = {kn}neN in Jr^ such that ||.fen|U,9+i = 1 and (S)^kn)(x) = 0 (x ^ l/n). 
This B is bounded in &q+i (Proposition 4T4). Moreover, if </? G J^^ is such that 
(9)^if)(x) = x^-l2 (0 < x < 1), then [5, Theorem 2.2] and the exchange formula for 
the Hankel convolution yield 

9 + 1 ^OO 

(4.4) ||fc„M|2i,+1 = H^(fcnMII|.,,+i = £ / ňMknШ-)?dx 
i+j=0J° 

9 + 1 л l / n 

= £ / \xi+i+џ+1/2(x~lD)ìx-»-1/2(S!tllkn){x)\2dx 

ч ' * />0O 

= £ / \x%A^kn)(x)\2 åx = \\f)џkn\\l,q 

i+j=0J° 

= IIML+1 = 1. 
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Prom (4.4) and Proposition 4.19 we infer that B does not have any cluster point 
in ^ j + 1 . In particular, B is closed in ^ j + 1 . Also by (4.4) and Proposition 4.19, B 

cannot contain zero-convergent subsequences in ^ j + 1 . 
In the notation of Proposition 4.15, for every <p G ,^p we have 

/•CO /-CO 

\(Lv,kn)\= / ^ ( f c n M ( ^ ) d x = / x-"-l/2(^kn)(x)(f)fl<p)(x)dx 
JO JO 

(4.5) ^ n - ' ^ s u p l x - " - 1 ! 2 ^ ^ ) ^ ) ! ! fX \(%kn)(x)\2 dx\ 
xei ( Jo ' 

<n-1 /2sup|x-"-1 /2(iSM V)(a;) | | |An | | ; / , ,+ 1 —> 0. 

1/2 

z g / 

Now (4.5) and Proposition 4.15 imply that B converges weakly to 0 in ^ j + 1 . As 

convergence in ^ } + 1 is stronger than weak convergence, we conclude that B does 

not contain any convergent subsequence in OqJtl. Therefore 1? is not compact, and 

^ j + 1 is not Montel. 

Since ^ + 1 is complete (Corollary 4.12) and B is closed in oKx we find that B is 

not precompact, so that ^ + 1 is not nuclear [13, Proposition III-50.2]. 

5. MULTIPLIERS ON Jf* (p e 1) 

Let p, q G N. In this Section we present new properties of the spaces Op^q of 
multipliers from J¥? into Jfq and of Jf~q into J^~}\ investigated in [6] and treated 
in Section 2 above. As an interesting consequence, the space 0 of multipliers of Jf[L 

and Jr^' is expressed as a projective-inductive limit of Hilbert spaces. 
According to Proposition 4.1 and the remark following Proposition 4.6, we have 

oP,q+v ^ oPiQ <-> op+hq (p,q e N), 

with continuous embeddings. Hence, for q G r\] we may consider 

Oq — indlirn 0Va. 
/>—>-00 

The generalized Hankel transformation makes 0'\ and xti+^2Oq isomorphic, where 
the latter space is topologized so that the mapping ^ \—> x*l + i/2ip(x) defines an 
isomorphism from Oq onto xilJ['{l2Oq. We may also consider 

0 — proj lim Oq. 
q—>oo 
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Here 0 is the space of multipliers of Jr^ and «#^, topologized in such a way that the 
generalized Hankel transformation is an isomorphism between 0r ^ and x^Jrll20 [6, 
Proposition 14]. 

Via the generalized Hankel transformation, for q G N the properties of 0q enumer
ated below can be immediately derived from the corresponding ones of the spaces 
0^ studied in Section 4. Proofs will be omitted. 

Proposition 5.1. For each q G N, 0q is the space of all continuous multipliers 
from Jf* into Jfq and from M~q into Jf' 

Proposition 5.2. Given q £ N, let s//$}(Ji?^,J%:)q) denote the space all those 
F G - ^ such that x~^-1/2if(x)F(x) G Jfq for all <D G ^ , and the mapping 
ip i—> x-^-^2(p(x)F(x) is continuous from ^ into J?q. Then, J/$(3*?^,^) = 
x»+l'20q. 

The spaces (1 + x2)kJ^q and (1 + x2)~kJf-q(k,q G N) were defined prior to 
Lemma 4.16. 

Proposition 5.3. Let q G N. 
(i) The identity x^1120q = indlim(l + x2)kJfq holds. Moreover, x»+1l20q is the 

k^-oo 
strong dual of proj lim(l + x2)~k J^~q. 

k —>oo 

(ii) The embedding x^1l20q <-->• JFJL is continuous, when Jf?^ is endowed with 
either its weak* or its strong topology. 

(iii) The space 0q is complete, reflexive and bornological, but neither Montel nor 
nuclear. 

(iv) Let T e Jf%. Then T G x»+xl20q if, and only if, there exists k G N, Cj G C 
k 

(0 ^ j ^ k), and </> G Jf?, such that T = £ CjX2jy(x). 

(v) A set B C 0q is bounded if, and only if, there exists k G N such that x^+1/2B C 
(1 + x2)kJfq and xLi+1/'2B is bounded in (1 + x2)kJ?q. 

(vi) For every cD G Jf^, define 

/»oo 

(MV,T)= / T(x)<p(x)dx (T€0q+l) 
JO 

Tiieti ..//fL — {M^: (D G J^} is a (weakly*, strongly) dense subspace of (0q+\)'. 
(vii) The bounded convergence topology and the pointwise convergence topology 

coincide on 0q as a subspace ofJf(J^L,J^q), and they equal the inductive topology 
of 0q. In particular, the inductive topology of 0q is generated by any one of the 
families ofseminorms {|| •</?(*) IUt7/>e^,, {sup || • v^OIL tzW^,, , where ^B^ denotes 

tp£B 

the family of all bounded subsets ofJr)t. 
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6. JOINT CONTINUITY OF MULTIPLICATION AND OF HANKEL CONVOLUTION 

OF DISTRIBUTIONS 

Our purpose here is to analyze the joint continuity of the Hankel convolution as 
an ^/-valued mapping. We will establish first the corresponding property for the 
ordinary product in Jr^'. 

An auxiliary result is required. 

Lemma 6.1. Given q € N there exist p G N, p ^ q, and a sequence {pm}me^ C 
Jf?^ such that 

sup \\x **• 1/2(pm(x)\\P,q = 1 and lim \\pm(x)e x~||p,<7+i = °°-
mGN m->oo 

P r o o f . Fix q G N, and define 

hm{x) = m^+i/2-ge-(mx)2 ( m eM^xe jy 

Then, for j G N, 0 ^ j ^ q, we have 

sup \xj+^ll2{x-lDYhm{x)\ < 2«mJ'-« sup |(m£) j+ '1+1/2e-<m:, : )2 

cc€/ 16 / 

^2 9 sup |a ; i + " + 1 / 2 e - : c 2 | (m € N). 

Note that sup \xj^^^2e-x2\ < oo (0 ^ j ^ q), because j)(x) = a ^ + ^ e - * 2 

xG1 
(x G I) is continuous and the limits lim fj(x), lim fj(x) exist and are finite 

X—>0+ X—> + 00 

(0 < j < g). By [6, Proposition 4], there exists p G N, p ^ <l, such that lim G (?p,q 

(m G N), with S = sup Hbmllp^ < oo. 
m£N 

Now, set 

<^m(x) = S - 1 m " + 1 / 2 - « t - ' , - и / 2 e - ( m x ) : ' (нi 6 N , I Є J). 

70 



Clearly pm G J^ (m G N), and sup ||x ^ l/2<Pm(x)\\p,q = S 1 sup ||/im | |p>g = 1. 
mgl^ m€N 

Moreover, 
/•OO 

ll^m(.T)e- l2||^+1 ^ / i r ^ + i ^ ^ e - ^ l M a ; 
JO 

/•CO 

= 5 " 2 m ^ + 1 - 2 9 / | x^ + 3 / 2 ( a ; - 1 D) < ? + 1 e- ( m 2 + 1 ) x 2 | 2 da; 
Jo 

/•CO 

= 5- 24 9 + 1m 2^+ 1 - 2 < ? (7Tl 2 + 1 ) ^ + 1 ) / | x ^ + 3 / 2 e - ( m 2 + l)x2|2 dx 

JO 
/»oo 

= S"24<+1(1 +m- 2 ) 2 ^ + 1 >m / | ^ + ^ + 3 / 2 e " ( 1 + m " 2 ^ 2 | 2 d x 
Jo 

> S " 2 4 « + 1 ( l + m - 2 ) 2 ( ^ D m / a.2,+2/x+3e-4xa
 d a . 

JO 

= S-24-^-3/*2(l + m- 2 ) 2 ( ? + 1 ) mr( / i + q + 2) (m G N). 

Thus, lim ||(Dm(x)e~x ||M,g+i =00 . • 
m—•oo 

From now on /? and cr will refer to the strong and the weak* topologies of J^fL, 
respectively. 

In [6, Proposition 16] we established that the mapping (0,T) 1—> 6T is G-
hypocontinuous from G x (Jf/,/3) into (Jf/,(i). However, the following holds. 

Proposi t ion 6.2. The product (0,T) \—•> OT is not jointly continuous from G x 
(Jf/,(3) into (Ji?/,o). Hence, it is not jointly continuous from G x (J^/,/3) into 
(Jf/L,P), either. 

P r o o f . The polar set P of the singleton {x^Jrl/2e~x } C ^L is a o-
neighborhood of zero in J%". If the multiplication were jointly continuous from 
G x (Jf/,/3) into (J?/, o), then we could find zero-neighborhoods U, V in G, (Jl%,0), 
respectively, with UV C P. For some q G N there exists a zero-neighborhood G in 
Gq such that G n G C U. Let p G N correspond to g as in Lemma 6.L Choose a 
ball BPtq(e) centered at zero, with radius e, in GPjq, satisfying Bp,q(e) C G, and a 
sequence {pm}meN C J#^ such that 

sup ||.T-M-1/2(^m(a;)||p,r7 < e and lim ||(Dm(a:)e-x" |Lg+i = 00. 
m G N m->oo 

For each m G N and <? G V we have x~fJ'~1/2iprn(x)g(x) G UV C P, so that 

K * - ' ' - 1 / 2 ^ (*)<?(*), ̂ + 1 / 2 e - * 2 ) | = \(g(x),<pm(x)e-*')\ < 1. 
2 

This means that all functions pnl(x)e~x (m G N) lie in the polar set Q of V. Since 
Q is bounded in J^Li, so is the sequence {pin(x)e~x^}rrie^ , and we conclude that 
sup ||(Dm(x)e_x"||MW+i < oo [5, Proposition 2.15]. This contradiction completes the 
proof. • 
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In [6, Proposition 19] we proved that the Hankel convolution is C - -hypo-

continuous from ^ JJ x (Jf^fi) into (J^,/3). It is not jointly continuous from 

0^% x (J^',/3) into ( ^ , / 3 ) , however. 

Proposition 6.3. The Hankel convolution is not jointly continuous from &' * x 

(Jf^P) into (Jf^o), neither from 0'^ x (Jt%,0) into (Jf%,0). 

P r o o f . This follows immediately from Proposition 6.2 and [10, Proposition 5.2]. 

• 
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