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INTRODUCTION 

The problem of finding differential invariants of G-structures leads to the problem 

of finding natural connections associated to G-structures. Let us explain how it 

goes in the case of Riemannian manifolds. Let M be a differentiable manifold. 

Suppose that there exists a scalar function F = F(jrg) defined over the manifold 

of r-jets of Riemannian metrics on M with the following property: If / : M —•> M 

is a diffeomorphism then F(jf,x^f*g) = F(jrg). Such a function is said to be a 

differential invariant. Examples of such functions are the Weyl invariants, which are 

the functions obtained by taking the successive covariant derivatives of the curvature 

R of the metric, taking tensor products and contracting in all possible ways: 

trace(V/l/t0---® Vl'"R). 

It is a well known result that the Weyl invariants generate all the polynomial invari

ants (see [1] and [4]).Taking into account this result, it is natural to approach the 

problem of finding the differential invariants of an arbitrary G-structure in that of 

finding a natural connection attached to the G-structure like the Levi-Civita connec

tion is attached to the Riemannian structures, i.e., functorial with respect the action 

of the group of diffeomorphisms of the base manifold and adapted to the G-structure. 

The connection must also depend only on the first contact of the G-structure, i.e., 

the connection must not loose information of the G-structure. This is the aim of this 

paper.1 

Briefly our main theorem says that if the Lie algebra 0 of G satisfies certain 

algebraic condition then there exists a unique connection V p adapted to each G-

structure P —•> M and attached in a functorial way which is determined by the 

1 For a recen t exposi t ion on na tura l geome tric objec ts see [7] 
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following condition: For every section 5 of the adjoint bundle of endomorphisms 
associated to the principal bundle of the G-structure and for every vector field X 
of M 

t r a c e ( 5 o i x T o r V p ) = 0. 

The algebraic condition on (3 holds immediately if the first prolongation 0 ^ of 0 
vanishes and (3 is invariant under matrix transposition. Hence it holds if G is a 
subgroup of the orthogonal group as a particular case. Of course we obtain the Levi-
Civita connection if G is the orthogonal group. However in general the connection 
obtained is not symmetric. This is not a surprise, since in general a G-structure is 
not 1-integrable. We also find that the condition 0 ( 1 ) = 0 is a necessary condition for 
the existence a functorial connection. This explains why there exists no canonical 
linear connection attached to the conformal or symplectic structures. In the last 
section this canonical connection is explicitly computed in the almost Hermitian and 
almost metric contact cases. In the paper [3] all the functorial connections attached 
to an almost Hermitian structure are computed using techniques completely different 
from those of this paper. So our paper points out one of these connections as a very 
particular one. 

The authors wish to express their sincere thanks to Prof. D. Blair. Also the first 
author wishes to express his sincere thanks to his thesis advisor, Prof. J. Munoz. 

1. T H E MAIN RESULT 

Let G be a subgroup of the full general linear group GL(n,U). Let n: P —•> 
M be a G-structure, and let V be a connection on P. We denote by B(v) the 
standard horizontal vector field corresponding to v e M.n; (Xi,..., Xn) is said to 
be the canonical basis of standard horizontal vector fields where X{ = B(ei) and 
{Ci,..., en} is the canonical basis of Rn (see [6]). 

We denote by 9 the structure form of the G-structure, defined by 

0(Xu) = (A1,...,A") 

where it*(Xu) = £ * ^ ( X * ) , , and ( X j , . . . , K;) = //. Let © = ( 0 1 , . . . , © " ) be 
the torsion form of V. Let us denote by T the torsion tensor field of V, and by 
(CJ1, . . . ,c.jn) the dual basis of u G P. Then 

Ti(Xi,X*)=L>i(T{Xi,XZ)) = ^(X^X,). 

We denote by (5 the Lie algebra of G. We will denote by Ad .P the adjoint bundle 
of the total space of a G-structure, P. A section of Ad .P is an endomorphism of 
TM. The notation Tor(V) stands for the torsion tensor field of the connection V. 
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The Lie algebra (3 of G may be seen as a subalgebra of gl(n, tR) = Hom((Rn, (Rn). If 
T £ Hom((Rn,0), alt(T) £ A2(Rn* eg) (Rn is the torsion-type tensor given by 

alt(T)(H. v) = T(u)(v) - T(v)(u), 

where u,v £ Un. The vector subspace given by all the T £ Hom((Rn,<3) such that 
alt(T) = 0 is called the first prolongation of the Lie algebra of G. Let us denote by 
(,) : gl(n, (R) x gl(n, (R) —> (R the Cartan-Killing form, given by (a, b) = trace(a • b). 
The orthogonal subspace of (9 in gl(n, (R) with respect to this form will be denoted 
by (5^. Our main result is: 

Theorem 1.1. The following two assertions are equivalent: 

1. For every G-structure P over a manifold M there exists a unique connection 
V adapted to the G-structure such that, for every endomorphism S given by a 
section of the bundle Ad .P and every vector held X £ X(M), one has 

trace(5oixTor(V)) = 0 . 

Moreover this connection only depends on the first contact of the G-structure.2 

2. IfT £ Hom((Rn,6) satisfies that 

iv alt(T) £ 0-1 

for any v £ (Rn. then 

T = 0. 

P r o o f . Let (J5 C gl(n, (R) be given by the equations 

^ r l ^ j - . O , A = 1, . . . ,H5 

-.J 

2 — ?n, 

where m = d im6, and (#*•) € gl(n, (R). Let e j , . . . ,e* be the standard basis of (Rn*. 
The homomorphism T E Hom((Rn,0) may be written as 

T = £e?®^, 

where x2- = (x^)j^ £ <&• Let a i ? . . . , a m be a basis of 0 , with a; = ( a^ ) j^ - It is 
readily verified that condition 2) in the statement of the theorem is equivalent to 

1 i.e., if P and P are G-structures over M, V and V' are their attached connections and 
P and P have a contact of order one as submanifolds of LF(M) in the fiber of x £ M, 
then j°xV = j°xV 
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saying that the following homogeneous linear system of n3 equations in n3 unknowns 
only admits the trivial solution: 

(ì . i) 
/ f\iXki — 0 

«.J 

where i, j , k = 1 , . . . ,n, s = 1 , . . . ,ra, and A = 1 , . . . ,n'2 - m. 
Let us prove that condition 2) implies condition 1). To do so, let us first suppose 

that V and V are connections satisfying 1). We will see that V = V. Let to and Q 
be the connection forms of V and V, respectively, and let 0 and O be their torsion 
forms. Let Xi = B(ei) be a basis of the V-horizontal distribution in P , formed by 
standard horizontal vector fields. It will be enough to prove that the vector fields Xi 
are also V-horizontals. Our hypothesis and the first structure equation imply that 

0 = ^Г/(
 i - i)(Xj,Xk)ail 

ij 

= ІY>ÚÂ0)-£](Л\))<.. 

Since Q(Xk) € ©> we conclude that 0(Xk) — 0, and so V = V. 
Now let us see that there exists a connection V satisfying 1). Let V* be any 

connection over P , and let Xi be the associated basis of standard horizontal vector 
fields. Let us construct the connection V by giving its connection form LU. Again 
using the first structure equation, we have 

(1.2) 

' ]>>s lK(A7) - u>)(X*k)) = - 25> a i A8HXJ,XI) 
i,j i>i 

£'V4(^) = °-

Since our hypothesis imply that this system has a unique solution, we can determine 
the functions i.j](K£), and it is readily verified that they define a connection form uj 
over P. 

Let us prove now that condition 1) implies condition 2). To do so, it will be 
enough to prove that condition 1) implies that the system 1.1 only admits the trivial 
solution. So, let x), be a solution of this system, and let V be the connection given 

j K 

by condition 1). Let X1 be its associated basis of horizontal standard vector fields. 
Let s: U C M —> P be a section of the G-structuro. and let us define 2j.(Kj)| 

as being the constant functions xl
jk. It is a straightforward computation to prove 
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that we have a linear connection V over U, extending Qk(Xj) to all P\V' Let 0 be 
its torsion form. We have that 

£(e< - e'KXjMcii = \ £(*;* - 4 > i . = o, 
i,j i,3 

and then, using the uniqueness of V, we conclude that ul
k(Xj)\a(M) = xl

jk = 0. This 
ends the proof. • 

It should be remarked that the proof of this theorem provides a method of con
structing V, by solving the system 1.2. 

Definition 1.2. The linear connection V given by 1.1 will be called the canon
ical connection attached to the (7-structure. 

2. EXISTENCE OF FUNCTORIAL CONNECTIONS 

If condition 2) of the theorem is satisfied for a Lie group G, then the first pro
longation of its Lie algebra, 0 ^ \ vanishes, as it is easily seen. With the additional 
assumption of the invariance of 0 under transposition, i.e., 0^ = 0 , condition 2) of 
the theorem holds. 

Theorem 2 .1 . If G C GL(-/i, U) verifies that 0 ( 1 ) = 0 and 0 is invariant under 
transposition, then condition 2) of the previous theorem holds. 

P r o o f . Let T G Hom(IRn,0), with T(ek) = xk = (x^)^. We must see that if 

^Tc4(xlJ-x)k)=0 

for every a = (or?) G 0 , then each xk vanishes. Since 0* = 0 , we have that 

£4i(4j-*} fc) = 0' 
*J 

and so 

£ ( 4 * ) 2 = £ £ 2 4 ^ 
tit < J<k 

= ££(-(4i-4*-)2 + (4i)2 + (4*)2). 
i j<k 



and then 

5>k-4.)2 = o. 
i.j.k 
;<k. 

therefore 
T e <3{1) = 0 . 

D 

Every Lie subgroup of the orthogonal group 0(n) verifies the conditions of this 
theorem. In the particular case of G = 0(n) we get the Levi-Civita connection of 
the metric structure. However the domain of applicability of Theorem 1.1 includes 
also subgroups not contained in the orthogonal group. For example, one can check 
that the Theorem can be applied if G = {A • In: A G IR*} where In is the identity 
matrix, or if G is the group formed by exponentiating the Lie algebra 

0 a b 

b c 0 

a 0 —c 

<Ď= < \ b c 0 : a,b,ce 

In the next Theorem we see that the condition 0 ( 1 ) = 0 in Theorem 1.1 is also a 
necessary condition. Let us note that the connection is not supposed to be adapted 
to the G-structure. 

Theorem 2.2. If it is possible to attach a connection to each G-structure in a 
functorial manner with the additional assumption that the connection only depends 
on the first contact of the G-structure then 0 ( 1 ) = 0 . 

P r o o f . Let a = (a{j) G 6 ( 1 ) . The Lie algebra of the group G 1 of 2-jets of 
invertible maps with source and target Rn which fixed 0 and preserves the contact 
up to order 1 of the trivial G-structure P0 of (Rn is given by 0 0 0 ( 1 ) (see [5]). Let 
ft be a curve in G 1 through the identity at 0 and with tangent vector at 0 is a. This 
curve have the following form in the standard coordinates of (Rn: 

fi(x) = j2<(t)*i + Y^^x^' 
l jk 

hence we have 

a.(0) = 4 

aІk(0)=à[(0) = 0, 

i,Іk(0) + àkj(0)=aІk. 
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Suppose now t h a t there exists a functorial assignment of a connection to each G-

structure Let V* be the connection attached to each ft(Po). Let us denote X1 = 

d/dx{. From the definition of G 1 and from the dependency of the assignment of the 

connection on the first contact of the G-structures we have t h a t : 

V/..(XA)(/« • X J ) = V / M * A ) ( / ' ' A " ) = f'*<?°xiXj). 

Therefore, 

d2ft

h 

ftЛv°xixђ = v°ItЛXІ)ift • XІ) = £ ^ - ( o ) ^ + v°xíj iXJ. 

h 

Derivation of this last identity with respect t and evaluating in t = 0 gives: 

0 = a «X0
h , 

thus finishing the proof. • 

T h e o r e m 2 .3 . Suppose that G satishes the hypothesis of the Theorem 1.1. Then 

1. Let 
P •» P 

M •> M 

be an isomorphism of G-structures and V, V are the canonical connections. 

Then f • (Vx-V) = V / . x / • y for every X, Y tangent vector fields to M. 

2. A G-structure is integrable if and only if the tensors of torsion and curvature of 

the canonical connection vanishes. 

P r o o f . The torsion tensor field of V is / - re la ted with the torsion tensor field 

of / • V. From this and from the characterization of the canonical connection readily 

follows tha t V = / • V. 

It is a classical result tha t the it the torsion and the curvature tensors of a connec

tion adapted to a G-structure vanish then the G-structure is integrable. Conversely, 

if the G-structure is integrable we can choose a section of partials (d/dx\,..., d/dxn) 

of the bundle of the G-structure P —> M. Let V* be the connection defined by 

This connection is adapted to the G-structure and can be used as the auxiliary 

connection of the proof of Theorem l .L But then dOz(Xj, X£) = 0 and the non-

singular system 1.2 turns to be homogeneous. Hence u>l(Xj) = 0 and the canonical 

connection V coincides with V*. • 
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3. TWO EXAMPLES 

In the following two subsections are given explicit formulas for the canonical con
nection attached to almost Hermitian and almost metric contact structures by means 
of Theorem 1.1. No proof is given. All the formulas can be checked through straight
forward although very tidy computations. 

3.1. Almost Hermitian structures. Giving an almost Hermitian structure 
(J, g) on a manifold M is equivalent to reduce the structural group of the tangent 
bundle to G = U(n). A linear connection V is reducible to a connection adapted to 
a U(n)-structure P —> M if and only if Vg = 0 and VJ = 0. 

Theorem 1.1 gives a canonical connection attached to each almost Hermitian struc
ture V which can be proved that it is characterized by means of the following two 
conditions: 

1. Vg = 0, VJ = 0. 
2. g(T(X, Y),Z)- g(T(Z, Y),X) + g(T(JX, Y), JZ) - g(T(JZ, Y), JX) = 0. 

It is important to give a formula which enable us to make explicit computations 
with this connection. This formula is the following: 

12<?(V*y, Z) = 6Xg(Y, Z) + 2Yg(Z, X) - 2Zg(X, Y) 

- 2JXg(Z, JY) + 2JYg(X, JZ) - 2JZg(X, JY) 

+ 3g([X,Y],Z) + 2g([Z,Y],X)-3g([X,Z],Y) 

+ 2g([JZ, JY], X) + g([JX, JY], Z) - g([JX, JZ], Y) 

- g([JX, Y], JZ) + g([JX, Z], JY) + 3g([JZ, X], JY) 

-3g([JY,X],JZ). 

The torsion tensor field of the canonical connection of an almost Hermitian structure 
is also explicitly given by the formula: 

12O(T(K, y ) , Z) = 4Ko(y, Z) - 4Yg(X, Z) + 4JZa(y, JX) 

+ a(/v(z,y) + 4J[Jz,y],K) 

+ a(V(K,Z) + 4J[K,JZ],y) 

-2a(N(y,K) + 4[y,N],Z) 

where N stands for the Nijenhuis tensor of the almost complex structure J. 

3.2. Almost contact metr ic structures. To give an almost contact metric 
structure (¥>i£,n,g) on a manifold M is equivalent to reduce the structural group 
of the tangent bundle to G = U(n) x 1 [2]. A linear connection V is reducible to a 
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connection for a U(n) x 1-structure P —> M if and only if Vg = 0, V<p = 0 and V?/ = 
0. The following 4 properties can be checked by an straightforward computation: 

Let V be a connection for the U{n) x 1-structure P —> M. Then we have, for any 
vector fields X, Y and Z: 

1. The almost contact metric structure is normal if and only if 

T(X, Y) - T(<pX, <pY) + <pT{<pX, Y) + <pT(X, <pY) = 0. 

2. 2d?/ (N ,y )=7/ (T(K ,y ) ) . 
3. If X and Y are vector fields orthogonal to £, then 

7/(vxy) = o. 

4. V*£ = 0.. 

The canonical connection which is provided by Theorem 1A is characterized as fol
lows, as can be easily checked: Given an almost contact metric structure (<£,£, 77, g) 
on M, there exists a unique linear connection V satisfying the following two condi
tions: 

1. Vg = 0, V<p = 0 and V?/ = 0. 
2. 
g(T(v2Z,Y),<pX)-g(T(v2X,Y),vZ)+g(T(^X,Y),vZ) 

- g(T(<pZ, Y),<pX) + 2?/(N) d?/(Z, Y) - 2?/(Z) dn(X, Y) = 0. 

The following formulas allow explicit calculations with this canonical connection: 
With respect to the canonical connection V associated to the almost contact metric 
structure, we have 

1. 
4g{VzX, Y) = g([Y, f] - <p[<pY, £],X) - g([X, £] - ^[<pX, Z],Y) 

-?/(N)7/([y,e])+r/(y)/ /([N ,e]) 

- 2^n(Y))n(X) + 2S(v(X))i!{Y) + 2^g(K ,y), 

for all X, Y tangent vector fields on M. 
2. 

12g(Vxy, Z) = 6Xg(Y, Z) + 2Yg(Z, X) - 2Zg(X, Y) 

- 2<pXg{Z, <pY) + 2<pYg{X, <pZ) - 2<pZg(X, <pY) 

+ 3g([X Y], Z) + 2g([Z, Y], X) - 3g([X, Z], Y) 

+ 2g([<pZ, <pY], X) + 9{[pX, <pY), Z) - 9{[<pX, <pZ], Y) 

- g([<pX, Y],<pZ) + 9{[<pX, Z),<pY) + Zg([<pZ, X],<pY) 

-3g{[<pY,X],<pZ) 

for all X, Y and Z tangent vector fields orthogonal to £. 
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Now we can compute the canonical connection V explicitly as follows: 
Let X = X + rj{X)£, Y = Y + rj{Y)^ Z = Z + r/(Z)f be tangent vector fields on 

M, where X, Y, Z are orthogonal to f. Then using formulas in the beginning of this 
subsection we get 

g(VxY, Z) = g(VxY, Z) + v(X)g{ViY, Z) 

= g(VxY,Z)+r1(X)g(VsY,Z) 

+ X(V(Y))r,(Z) - ttv(Y))v(X)v(Z), 

and as a consequence of the previous two formulas, the canonical connection V is 
completely determined. 
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