Czechoslovak Mathematical Journal

C. Jayaram; E. W. Johnson
Strong compact elements in multiplicative lattices

Czechoslovak Mathematical Journal, Vol. 47 (1997), No. 1, 105-112

Persistent URL: http://dml.cz/dmlcz/127342

Terms of use:

© Institute of Mathematics AS CR, 1997

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents
strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz



http://dml.cz/dmlcz/127342
http://dml.cz

Czechoslovak Mathematical Journal, 47 (122) 1997, Praha

STRONG COMPACT ELEMENTS IN MULTIPLICATIVE LATTICES

C. JAYARAM, Kwalsuni Campus, and E. W. JOHNSON, Iowa City

(Received September 19, 1994)

PRI

Throughout we assume that L is a C-lattice. It is well known that a Noether
lattice is a principal element lattice if and only if every maximal element is weak
meet principal (see Theorem 5 of [6]). Also it is known that if L is principally
generated, then L is a principal element lattice if and only if L is an M-lattice
satisfying the ascending chain condition (see Theorem 6 of [4]). In this paper, we
introduce strong compact elements, P-weak meet principal elements and P-principal
elements and using them, principal element lattices and almost principal elements
lattices are characterized. -

For any a € L, we define a* by a® = A a". The reader is referred to [1] and [3]

1 b v

n=

for general background and terminology.

We begin with the following definitions.

Definition 1. An element a € L is said to be a strong compact element if both
a and a" are compact elements.

Definition 2. A prime element m € L is said to be P-weak meet principal
(P-principal) if every prime element ¢ < m is weak meet principal (principal).

Obviously, idempotent compact elements, compact nilpotent elements and com-
plemented elements are examples of strong compact elements. Also L satisfies the
ascending chain condition if and only if every element is strong compact. Observe
that L is a principal element lattice if and only if every prime element is P-principal.
If L is principally generated, then L is an M-lattice if and only if every maximal
element is P-weak meet principal (see Theorem 1.4 of [7]).

Lemma 1. Let m be a maximal element of L. If m is weak meet principal, then

mk is weak meet principal for all k € 7.

Proof. We show that m"*! is weak meet principal if m” is. Let a < m™+!
for some a € L. If m™! = m", then we are through. Suppose m™t! < m”. Then
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a <m™t!l < m", soa=m"for some b € L. Since m"b < m"™t! and m™*! is
m-primary, it follows that m” < m™*! or b < m. In the first case, we are done. In
the second case, b = mc for some ¢ € L. Then a = m"b = m"(mc) = m™t!c and
hence m"*! is weak meet principal. a

Lemma 2. Let m be a maximal element of L with m* # m**! for all k € 7+. If
m is weak meet principal, then
(i) m" is a prime element.
(if) mm¥ =m".
(iii) If p is a prime element such that p < m, then p < m%.

Proof. (i) Suppose z and y are two compact clements such that zy < mv.
Since zy < m, it follows that either x < m or y < m. Without loss of generality,
assume that y < m. If 2 € m, then y < m* for all k € Z* as zy < m™ and each
m* is m-primary. So assume that z < m. If 2 £ m" and y € m™, then = < m",
z€&m ™ and y <m®, y £ m**! for some r,s € Z+. By Lemma 1, m” and m® are
weak meet principal, so x = m”a and y = m°b for some a,b € L. Note that a € m
and b € m. Then zy = m"*ab < m™**+1. As m"t*+! is m-primary and ab € m. it
follows that m™+t® < m™s+! a contradiction. Therefore m® is a prime element.

(ii) Since m™ < m and m is weak meet principal. we have m* = ma for some
a € L. Again since ma < m", m* < m and by (i). " is a prime element, it follows
that a < m?, so m¥ = ma < mm¥ and hence m¥ = mm®.

(iii) Suppose p is a prime element such that p < m. If p £ m*, then p < m* and
p £ mFt! for some k € Z+. By Lemma 1, p = m*a for some a € L. Note that
a € m, som* < pandp=m~ This shows that p = . a contradiction. Thercfore
p < my. a

Lemma 3. Suppose L is a join principally generated and let m be a maximal
element which is weak meet principal and m* # m**! for all k € 7. If m* is
compact, then

(i) rankm =1,
(i) m" = 0,, and
(ili) ¢ =mY or ¢ =m* (k € Z1) for every primary element ¢ < m.

Proof. (i) By Lemma 2(i), m" is a prime element and m* < m. Suppose p < m
is a prime element. By Lemma 2(iii), p < m*. As " is compact and mm® = m"
(by Lemma 2(ii)), by Lemma 1.1 of [2], m V (0 : m") = 1 and so m* < p. Therefore
p =m" and hence rankm = 1.

(ii) Since m Vv (0 : m¥) = 1 and 1 is compact, it follows that m vV =1 for some
compact element x € L such that zm* = 0; m* < 0,,. Obviously 0,, < m¥ as n"
is a prime element. Hence m* = 0,,.
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(iii) By (i), rankm = 1. Suppose ¢ is m-primary. Then, by imitating the proof of
Lemma 2(iii), it can be easily shown that ¢ = m* for some k € Z*. The remaining
part is obvious. O

Definition 3. A maximal element m of L is said to be a A-prime if p" is p-
primary for all prime elements p < m and for all n € Z*.

Every maximal element m with rankm = 0 is a A-prime element. Complemented
maximal elements are A-prime elements. Note that, if L is a principally generated
M-lattice, then every maximal is a A-prime element. In fact, if L is generated by
compact join principal elements and if every semiprimary element is primary, then
every maximal element is a A-prime element (see Theorem 4.2, Corollary 3.2 and
Corollary 3.5 of [2]).

Lemma 4. Let L be a quasilocal with maximal element m. Suppose m is weak

oo

meet principal and A m* = 0. Then every nonzero element is a power of m.
k=1

Further, every element is principal.

Proof. Leta (a <1) be a nonzero element of L. Then a < m* and a £ m*+!
for some k € Z+. By Lemma 1, a = m*c for some ¢ € L. Note that ¢ £ m and so
¢ =1 as L is quasilocal. Therefore a = m*. This shows that every nonzero element
is a power of m. Note that m is weak join principal and so principal as L is a chain.
Consequently, every element is principal. O

Lemma 5. Let L be a join principally generated quasilocal lattice with maximal
element m. Assume that m is weak meet principal and m* is compact. Then, every
element is principal.

Proof. If mF = m**! for some k € Z*, then m* = m* and mm®¥ = m®. If
mk £ mk*! for all k € Z+, then by Lemma 2, mm" = m®. As m™ is compact, by
Lemma 1.1 of [2], m* = 0 and hence by Lemma 4, every element is principal. O

An clement a € L is simple if there is no element = € L such that a? < z < a.

Lemma 6. Let L be a join principally generated quasilocal lattice with maximal
element m. Assume that m is the join of weak meet principal elements. If m is
strong compact and simple, then every element is principal.

Proof. If m = m?, then we are through. Suppose m? < m. Choose any weak

meet principal element a < m such that @ € m?. Then m = m?2 Va. As m is
compact, by Lemma 1.1 of [2], m = a which is weak meet principal. Now the result

follows from Lemma 5. (]
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Theorem 1. Suppose L is principally generated and let m be a maximal A-prime
element of L. Then the following statements are equivalent:
(i) m is P-principal.
(ii) m is P-weak meet principal and strong compact element of L.
(iii) m is strong compact and weak meet principal.
(iv) m is strong compact and every m-primary element is a power of m.
(v) m is strong, compact and simple.

Proof. (i) = (ii) follows from Lemma 2 and (ii) = (iii) is obvious. (iii) = (iv).
Suppose (iii) holds. Then mm" = m™ (see the proof of Lemma 5) and since m is
strong compact (m*),, = 0,,. But (m*), = A(mm)* and so by Lemma 4, L,, is a

k

principal element lattice. Consequently, every m-primary element is a power of m.
Thus (iv) holds. (iv) = (v) is obvious.

(v) = (i). Suppose (v) holds. By Lemma 6, L,, is a principal element lattice.
As m is locally principal and compact, it follows that m is principal. Note that
rankm < 1. If rankm = 0, then we are through. Suppose rankm = 1. Then
p = 0,, is the only prime element properly contained in m. As m is a A-prime, p?
is p-primary and therefore p?> = p = 0,, (by Lemma 3). Since m® is compact, by
Lemma 3(ii), 0., is compact and hence p is an idempotent compact element and so
by Lemma 1.1 of [2], p is complemented element. Again by Lemma 2.2 of [2], p is
principal. Thus (i) holds and this completes the proof of the theorem. O

Theorem 2. Suppose L is principally generated. Then the following statements
are equivalent:
(i) L is a principal element lattice.
(ii) Every maximal element is P-principal.
(iii) Every maximal element is P-weak meet principal and strong compact.
(iv) Fach maximal element is strong compact and weak meet principal.
(v) For every maximal element m € L, m is strong compact and every m-primary
element is a power of m.

(vi) For each maximal element m € L, m is strong compact and simple.

Proof. (i) « (ii) is obvious. For (ii) = (iii) = (iv) = (v) = (vi), see the proof
of Theorem 1. We show that (vi) = (i). Suppose (vi) holds. By Lemma 6, L is an
almost principal element lattice. Note that dim L < 1. Let p be a prime element
of L. Then p is locally principal. Also p is either maximal or p = m" for all maximal
elements m such that p < m. Therefore, by hypothesis, p is compact and hence p
is principal. Thus every prime element is principal. Consequently every element is
principal. This completes the proof of the theorem. a
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Theorem 3. Let L be generated by weak join principal elements and let p be a
P-weak meet principal element. Then rankp < 1. If ¢ < p is a prime element, then
q=0,.

Proof. Suppose ¢ and r are prime elements such that r < ¢ < p. As p is
P-weak meet principal, we have ¢ = pg. Choose any weak join principal element
2 < ¢ such that £ £ . Then z = qa for some a € L.

So x = gqa = (pq)a = pz and therefore pvV (0:z) = 1. Sincez €7, (0: z) < r < p,
a contradiction. Therefore rankp < 1.

Now assume that ¢ is a prime element such that ¢ < p. Obviously 0, < ¢. If
x < ¢ is any weak join principal element, then x = ap (by the above argument), so
pV(0:x) =1 and hence pV (0 : a) = 1 for any compact element a < g. Consequently
q < 0p. This shows that ¢ = 0,,. O

Corollary 1. Let L be generated by weak join principal elements. Suppose L
is quasilocal with maximal element m. If m is P-weak meet principal, then every
element is principal.

Proof. By Theorem 3, rankm < 1. If rankm = 0, then by Lemma 2, m* =
m*+! for some k € Z+. By Lemma 1, m* is weak meet principal and hence weak
join principal. Consequently m* = 0 and so by Lemma 5, every element is principal.
If rankm = 1, then by Lemma 2, and by Theorem 3, m® = 0 and hence by Lemma
5, every element is principal. a

Definition 4. A maximal element m of L is said to be P*-weak meet principal,

if m,, is a P-weak meet principal element of L,,.

Lemma 7. Let L be generated by compact weak join principal elements and let
m be a maximal element of L. If m is P*-weak meet principal, then L., is a principal
element lattice.

Proof. The lemma follows from Corollary 1. O
Theorem 4. Let L be generated by compact weak join principal elements. If

every maximal element m is P*-weak meet principal, then L is an almost principal
element lattice.

Proof. The theorem follows from Lemma 7. 0O

Theorem 5. Let L be generated by compact weak join principal elements. If
every maximal element is strong compact and P*-weak meet principal, then every
element is principal.
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Proof. By Theorem 4, L is an almost principal element lattice. So every
maximal element is locally principal. Since every maximal element is compact, it
follows that every maximal element is principal. Again by hypothesis and Theorem
2(iv), every element is principal. a

Theorem 6. Let L be generated by compact weak join principal elements. Then
the following statements are equivalent:

(i) L contains only a finite number of minimal prime elements and every maximal
element is P*-weak meet principal.

(i1) L is a finite direct sum of almost principal element domains and special principal
element lattices.

Proof. Suppose (i) holds. By Theorem 4, L is an almost principal element
lattice and so it is an r-lattice. Let py,ps,...,p, be the minimal prime elements of
L. Suppose p; (1 < ¢ < k) are nonmaximal prime elements and p; (k+1 < j < n) ave
maximal elements. By hypothesis, rankm < 1 for every maximal element m € L. As
Ly, (k+1 < j < n)is aspecial principal element lattice, 0, = pﬁjj fork+1<j<n
and if rankm = 1, for some maximal element m € L, then 0,, = p;,, for some i
(1 €t < k). Therefore 0,, = (p1 A+ Apx A pi‘:l' A Ap), for every maximal
element m € L and hence 0 = py A--- Apg /\pi‘jl‘ A Aple. Asthe pi’s (1 < i< n)
are pairwise comaximal, we have L 2 L/p; X L/pa X - - - x L /py X L/Pikﬂl X x L/ph.
Note that, for 1 <7 < k, L/p; is a domain and an almost principal element lattice.
So each L/p; is an almost principal element domain. For A +1 < j < n, L/p?’
is a quasi-local, almost principal element lattice and hence it is a special principal
element lattice.

Now assume that (ii) holds. Let L = Ly x Ly X -+ X Lp X Lgyy X -+ x L,
where each L; (1 < ¢ < k) is an almost principal element domain and each L;
(k+1 < j < n)is a special principal element lattice. Note that each L; is an
r-lattice in which every compact element is principal and hence L is an r-lattice
in which every compact element is principal. Let m he a maximal element of L.
Then m = (1,1,...,m4,...,1), where m; is a maximal element of L;. If L; is a
two element chain, then m is a complemented element and so it is P*-weak meet
principal. So assume that each L; is not a two element chain. Note that rankm < 1.
If m; € L; (1 <1< k), then rankm =1 and m is nonidempotent. As L, is totally
ordered, m,, is principal (by Lemma 7 of [5]) and p = (1,1,...,0;,...,1) is the only
prime element contained in m which is also a complemented element and so p,, is a
principal element of L,,. Therefore, if m; € L; (1 <i < k), then m is p*-weak meet
principal.
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So assume that m; € L; (k+ 1 < < n). Then rankm = 0 and m¥ = 0; for some
k € Z*. Note that m* is a complemented element. As L; is not a two element chain,
m # m?, and so by Lemma 7 of [5], m,, is principal in L,,. Thus every maximal
element is P*-weak meet principal. Obviously L contains only a finite number of
minimal prime elements. This completes the proof of the theorem. O

Theorem 7. Let L be generated by compact weak join principal elements. Then
L is a finite direct sum of almost principal element domains if and only if L satisfies
the following conditions:

(i) L contains only finitely many minimal prime elements.
(ii) Every maximal element is P*-weak meet principal.
(iii) For every maximal element m € L, L,, is a principal element domain.

Proof. Suppose L satisfies the conditions (i), (ii) and (iii). By (iii), L is
an almost principal element lattice and so it is an r-lattice. By (i) and (ii), there
exist pairwise comaximal prime elements pi,ps,..., Pk, Pk+1,---,Pn such that for
k+1 < j < n, p;’s are maximal elements and 0 = pyA- - - Apy /\pi‘fl‘ A+ -Apf (see the
proof of Theorem 6). Let £ +1 < j < n. Since L, is a domain, 0,, = pﬁj, it follows
that 0,, = p; and hence p; = p']z- = pﬁj. Therefore 0 = py A - AP ADgg1 A=+ Ap,,.
As p;’s are comaximal, L = L/p; x --- x L/p, and each L/p; is an almost principal
clement domain.

The converse follows from the proof of Theorem 6. a

Corollary 2. Let L be generated by compact weak join principal elements. Then
L is a finite direct product of principal element domains if and only if L satisfies the
following conditions:
(i) L contains only finitely many minimal prime elements.
(ii) Every maximal element is P*-weak meet principal.
(iii) For every maximal element m € L, L,, is a principal element domain.

(iv) Every maximal element is strong compact.

Proof. Suppose L is a finite direct product of principal element domains. By
Theorem 7, L satisfies the conditions (i), (ii) and (iii). Since each factor is a principal
clement domain, it follows that L is a principal element lattice and so L is a Noether
lattice. Consequently every element is strong compact.

The converse follows from Theorem 4, Theorem 5 and Theorem 7. O
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