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(Received April 5, 1995) 

B. Csakany [2] (see also [3]) characterized varieties of algebras having no one 
element subalgebras. Later on J. Kollar [5] proved that in a variety V no algebra has 
a one element subalgebra if and only if the universal relation A x A on every A G V 
is a compact element of Con A. 

In this paper we consider varieties containing at least two constants. Then every 
universal relation is a compact element of a congruence lattice in such varieties, by 
Kollar's theorem. Now we formulate a more detailed question under what conditions 
the finite generating set for the universal relation consists of pairs of constants only It 
is shown that this problem can be answered by means of missing skew subalgebras of 
direct products or of missing congruence classes in algebras. Furthermore, Mal'cev-
type conditions characterizing the above properties are presented. 

Let V be a variety. By a constant of V we mean either a miliary (fundamental) 
operation or an equationally defined miliary term function. 

From now on the type of V will be considered to be known and by C we denote 
the set of all constants of V. Throughout the paper, all varieties will be considered 
with cardC > 1. For A G V, we denote by CA the set of all constants of A. 

Let A, B be sets. A subset U of the Cartesian product A x B is called factorable 
whenever U = V x W for some subsets V C A and W C B; if U is not factorable, it 
is called skew. 

A subset 5 of A is called proper whenever S / A. 
The following simple result will be useful in the sequel: 

Lemma 1. Let A, B be non void sets. A subset M of A x B is factorable if and 
only if (a, b) G S and (c, d) € S imply (a, d) G S for any elements a. c of A and b, d 
ofB. 

P r o o f . Immediate. • 
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A binary relation on an algebra A is called compatible if it is a subalgebra of the 
square Ax A. As was shown in [1], the set of all compatible relations on A satisfying a 
given subset of the properties: reflexivity, symmetry, transitivity, forms an algebraic 
lattice with respect to set inclusion. Hence, for a subset M of A x A, we denote by 

R(M) the compatible reflexive relation on A generated by M, 
T(M) the tolerance on A generated by M, 
Q(M) the compatible quasiorder on A generated by M, 
0 (M) the congruence on A generated by M. 

Lemma 2. Let S be a subset of an algebra A. Then T(S x S) = R(S x S) and 

e(SxS) = Q(SxS). 

The p r o o f follows by the symmetry of the generating set S x S, see e.g. [4] for 
the details. • 

Theorem 1. Let V be a variety with a set of constants C, cardC > 1. The 

following conditions are equivalent: 

(1) for any A,B G V, the interval [CA x CB, A x B) contains no skew subalgebra; 

(2) for any A G V, A x A is a finite join of principal tolerances generated by pairs 

of constants from CA x CA; 

(3) for anyAeV,AxA = T(CA x CA) = R(CA x CA); 

(4) there are constants o\,... ,on,i\,... ,in G C and an (n + 2)-ary term p such 

that 

x = p(oi,...,on,x,y) and y = p(ix,... ,in,x,y) 

are identities in V. 

P r o o f . (1) => (3) and (2) => (3) are trivial. 
Prove (3) => (4): Let A = Fy(x,y), the free algebra of V with two free generators. 

Then (x,y) G A x A = R(CA x CA). By [1], there exist an (n + 2)-ary term p and 
constants o\,..., On, i\,..., in G CA with 

(x,y) = p((ox,ii),..., (on,in), (x,x), (y,y)). 

Writing it componentwise, we obtain (4). 
(4) => (2): The identities (4) mean that A x A = H((Oi,ii),..., (On, in)) = 

R(oi,h) V . . . VH(On,in), oi,...,on,ii,...,in G CA, for any A G V, see [1]. Conse­
quently, A x A = T(Oi,ii) V . . . VT(On,zn). 

(4) => (1): Let A,B G V and let 5 be a subalgebra from the interval [CA x CB, 
A x B]. Take (a, b) G 5 and (c, d) G 5. Putting x = a, y = c in the first and x = b, 
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y = d in the second identity of (4) we get 

(a,d) =p((oi,ii),...,(on,in),(a,b),(c,d)) , 

giving (a,d) G S. Lemma 1 completes the proof. D 

Corollary 1. Let V be a variety with exactly two constants 0 and 1. The following 

conditions are equivalent: 

(1) any subalgebra SofAxB,A,BeV, is factorable whenever (0A, 1^) G S and 

(lA,0A)eS; 

(2) for any A G V, A x A = T(0A, I A); 

(3) there is a quaternary term q such that 

x = q(0,l,x,y) and y = q(l,0,x,y) 

are identities in V. 

The p r o o f follows directly by Theorem 1. D 

Example 1. (a) For a variety of unitary rings, we can put q(a,b,x,y) = ay+b-x. 

(b) For a variety of bounded lattices, put q(a, b, x, y) = (a A y) V (b Ax). 
(c) By a ternary ring we call an algebra (Iv, l,0,1), where t is a ternary operation 

on A' and 0,1 are constants satisfying the identities 

t(x,0,y) = y = t(0,x,ij). 

t(x,l,0) = x = t(l,x,0); 

moreover, for every a,b,c G Iv' there exists a unique d G Iv with t(a,b,d) = c. 
Consider any variety of ternary rings and put 

q(a,b,x,y) = t(t(b,x,a),t(a,y,b),0). 

Theorem 2. Let V be a variety with a set of constants C, cardC > 1. The 

following conditions are equivalent: 

(1) for any A G V, the interval [CA,A] contains no proper congruence class; 
(2) for any A G V, the interval [CA x CA,A x A] contains no proper congruence 

on A; 
(3) for any A G V, A x A is a finite join of principal congruences generated by pairs 

of constants from CA x CA; 
(4) for any A G V, A x A = 0(CA x CA) = Q(CA x CA); 
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(5) there are constants o i , . . . , on, i\,..., in G C and ternary terms t\,..., £m such 

that 

x = fi(oi,x,u), 

tj(ij,x,y) = tj+i(oj,x,y) for j = l , . . . , r a - 1, 

y = tm(im,x,y) 

are identities in V; 
(6) there are constants o, o i , . . . , on, i\,..., in G C and binary terms s±,..., sn such 

that 

x = 5 i ( 0 i , _ ) , 

Sj(ij,x) = 5 i+i(oj,a:) for j = 1, . . . ,n - 1, 

0 = 5 n ( i n , x ) 

are identities in V. 

P r o o f . (1) «-> (2) and (2) ̂ > (3) => (4) are evident. 

(4) => (5): Take .4 = Fy(:r,H). Then (:r,y) G QtC^ x CU) from which 

(x,y) G -R(oi , i i )o . . .o i?(o m , i m ) 

(where o denotes the relational product) for some constants o i , . . . , om , i\,..., im G C 
(see e.g. [1] or [4] for some details). By [4] there exist ternary terms £ i , . . . , r m 

satisfying the identities (5). 
(5) => (6): Choose an arbitrary o G C and put y = o in the identities (5). 
(6) => (5): We observe that (6) gives 

x = Si(oi,x), 

Sj(ij,x) = S J + I ( O J , _ ) for j = l , . . . , n - 1, 

S n ( l ' n - S ) = O = S , i ( i n , y ) . 

5n_ i + i(on_j+ i ,?/) = sn-j(in-j,y) for j = l , . . . , n - 1, 

y = 5i(oi,u). 

Setting ra = 2n -f 1 and £n+i = o, 

tj(a,x,y) = Sj(a,rr) for j = 1 , . . . ,n, 

c n + i + i (a, a;, u) = sn_ j + i (a, H) for j = 1 , . . . , n, 

we obtain the identities of (5). 
It remains to prove (5) => (2): Let a, b G A G V and let 6 be a congruence from 

the interval [CA X CA,A X A]. Putting a; = a, y = b in the identities (5), we conclude 
(a, 6) G 0 . Hence 0 = A x A is apparent. • 
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Corollary 2. Let V be a variety with exactly two constants 0 and 1. The following 

conditions are equivalent: 

(1) for any A € V, A x A = 0(0,4,1A); 
(2) fciiere are quaternary terms Oi,..., qm such that 

x = qi(0, l ,x ,y) , 

ft(l,0,:r,y) = g i + i ( 0 , l , x , y ) for j = l , . . . , m - l , 

?/ = tfm(l,0,:i:,u) 

are identities in V; 

(3) there are ternary terms Ti,..., rn such that 

x = n ( 0 , l , x ) , 

r . ( l ,0 ,x) = r i + i (0, l , rr) for j = l , . . . , n - 1, 

0 = r n ( l ,0 ,x ) 

are identities in V. 

Remark . There exists a variety V with two constants 0 and 1 for which 
0(0,4, lA) = AxA for each A E V but T(0A, 1A) ^ Ax A for some A in V. 

Example 2. Let V be a variety of A-semilattices with 0 (the least element) and 

1 (the greatest element). Consider the three-element chain A = {0,4,a, 1^}, i. e. 

0A < a < I A- Evidently, 

T(0A, U) = (AXA)\ {(a, U ) , ( U , a)}. 

On the other hand, we can put n = 1 and ri(a, b, x) = b A x. Then 

x = 1 A x = Ti(0, l ,x) , 

0 = 0 Ax = n( l ,0 ,a ; ) , 

satisfying (3) of Corollary 2. Hence, .4x.4-= 0(0^, 1A) for each A of V. 
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