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Czechoslovak Mathemat ica l Journal , 47 (122) 1997, P r a h a 

RELATIONAL STRUCTURES AND DEPENDENCE SPACES 

VÍTĚZSLAV NOVÁK and MIROSLAV NOVOTNÝ, Brno 

(Received May 3, 1995) 

Dedicated to Professor Josef Novák on the occasion of his 90 t h birthday 

The present paper is an attempt to connect the theory of pseudodimension of re
lational structures with the theory of dependence spaces. The concept of pseudodi
mension was introduced in [5] for ordered sets as a generalization of the dimension 
and especially of the a-dimension as follows. Let G be an ordered set, L a chain of 
type a, \L\ ^ 2, let (ft] t £ T) be a system of mappings of G into L such that for 

any x,y EG the following condition is satisfied: 

x^V<=>ft(x)^ft(y) for all t£T. 

Then (ft; t G T) is called an a-realizer of G. Furthermore, put 

a-pdimG -= min{|T|; (ft\ t E T) is an a-realizer of G}\ 

this cardinal is called the a-pseudodimension of G. 

While a-dim G need not exist, in [5] it is shown that a-pdimG always exists. The 
theory of 2-pseudodimension is developed in [6], In the present paper we extend the 
concept of a-pseudodimension to arbitrary relational structures; consequently, a is 
a type of some (fixed) relational structure. Another generalization of dimension of 
ordered sets can be found in [7]. 

The second outcome of our paper is the theory of dependence spaces. This concept 
has appeared in the theory of information systems ([10], [11], [12]) and in mathe
matical linguistics in connection with constructions of grammars ([9]) in a natural 
way. We use dependence spaces introduced in [9] that facilitate the investigation of 
infinite sets. 
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When investigating these problems the authors remember with gratitude the work 
of Professor Josef Novak. His outstanding scientific work (cf., e.g., [4]) has inspired 
them to study relational structures and the present paper may be regarded as a result 
of his activity. This paper is dedicated to him on the occasion of his 90 th birthday 

1. BASIC NOTIONS 

All sets in this paper are assumed non-empty, if the contrary is not stated. If 
G is a set, then \G\ denotes the cardinality of G and B(G) is the power set of G, 
i.e. B(G) = {H; H C G}. If G, H are sets, then HG denotes the set of all mappings 
/ : G - > H . 

Let G be a set and X C G x G a binary relation on G. The pair G = (G, X) will 
be called a relational structure; the set G is said to be the carrier of G and the set 
X the relation of G. Sometimes we use the symbols G = ^ ( G ) , X = &(G) for the 
carrier and the relation of G. 

If G = (G, X), H = (H, Y) are relation structures and h G HG, then h is called a 
homomorphism of G into H iff for any x,y G G the following condition is satisfied: 

(x,y)eX^(h(x),h(y))£Y. 

The set of all homomorphisms of G into H will be denoted by Hom(G,H). A ho
momorphism h G Hom(G,H) will be called strong, iff for any x,y G G the condition 

(x,y)eX^(h(x),h(y))eY 

is satisfied. 
An injective strong homomorphism is called an embedding of G into H. A bijective 

strong homomorphism of G onto H is clearly an isomorphism of G onto H. 

A relational structure G is called discrete if 3P(G) = 0. 
Let G = (G,X), H = (H,Y) be relational structures. The power H G is a 

relational structure where %"(HG) = Hom(G,H) and 

^ ( H G ) = {(hl,h2) G ^ ( H G ) x ^ ( H G ) ; (hi(x)Ji2(.v)) £ ^ ( H ) for any x G G}. 

If the structure G is discrete then clearly ^ ( H G ) = HG. The arithmetics of rela
tional structures is developed in [1]; for general relational systems see, e.g. [13]. 

A binary relation X on a set G is called a preorder if it is reflexive and transitive; 
the relational structure G = (G,X) is referred to as a preordered set. An antisym
metric preorder is an order; if X is an order on G, then G = (G, A") is said to be an 
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ordered set. Of course, an order on a set G will be denoted by the standard symbol 
^ . An ordered set G = (G, ^ ) is a chain (or linearly ordered set) if x ^ y or y ^ x 
for any x,y G G; it is an antichain if for any x,y € G, x ^ y implies x = y. A 
symmetric preorder on a set G is an equivalence relation on G. 

Let B be a set and ^ an order on B such that B = (B, ^ ) is a complete lattice. Let 
K be an equivalence relation on B such that every K-block has a greatest element. 
Then the triple (B,^,K) is called a dependence space ([9], [10], [11], [12]). Such 
a dependence space will be referred to as natural if there exists a set M such that 
B C B(M) and the relation ^ on B coincides with inclusion. 

Let (B, ^,K) be a dependence space and let x G B be an element. An element 
x' G B is called a K-reduct of x if x' ^ x and #' is a minimal element in the K-block 
containing x ([9], [10], [11], [12]). A IC-reduct of x need not exist; of course, if (B, ^ ) 
satisfies the descending chain condition (especially, if the set B is finite) then the 
A'-reduct exists for any x G B. 

Let (B, C, K) be a natural dependence space and suppose x G B. We put 

CK(X) = min{|2:|; (z,x) G K,z C x); 

this cardinal will be called the K-character of x. While a Iv'-reduct of x need not 
exist, the If-character of x is always defined. Clearly, if (B,C,K) is a natural 
dependence space and if (H,C) satisfies the descending chain condition then any 
element x G B has a Iv'-reduct x' such that CK(X) = \x'\. 

2. NATURAL DEPENDENCE SPACE GENERATED BY RELATIONAL STRUCTURE 

Let G be a set, L = (L,H) a relational structure and suppose \G\ ^ 2, \L\ ^ 2. If 
x,y eG,feLG then we put ((x,y); / ) G It iff (f(x),f(y)) G H. 

For any X C G x G put 

5(K) = { / E L G ; ((-r,y);/) G I? for any (x,H) G K} 

= {/ G L G ; (/(:r),/(H)) G H for any (x.y) G K}. 

In other words, we set S(X) = ^f(LG) where G = (G,X). Furthermore, for any 
Y C LG put 

T(Y) = {(z,H) G G x G; ((x,y);f) G It for any / G Y} 

= {(x,H) G G x G; (f(x),f(y)) G H for any / G Y}. 

Clearly, the pair of mappings (S, T) forms a Galois connection ([2], p. 124) between 
(B(G x G), C) and (B(LG), C). Thus T o S is a closure operator on B(G x G) and 
S o T is a closure operator on B(LG) . 

181 



If Yx G B(L G ) , y2 G B(LG) then we set (YUY2) G NL iff T(YX) = T(Y2). Then 
I\"L is an equivalence relation on B(LG) . 

Theorem 2.1. (B(LG), C, IvL) is a natural dependence space. 

P r o o f . (B(LG) ,C) is a complete lattice and A'L is an equivalence relation on 
B(L G ) . Let C be any KL-block. Let us choose a set Y G C; we show that S(T(Y)) 
is the greatest element in C. As T(S(T(Y))) = T(Y), we obtain (y, S(T(Y))) G NL, 
i.e. S(T(Y)) G C. Let Yx G G be any set; then ( l ^ y ) G Iv~L, i.e. S(T(yi)) = 
S(T(Y)) and hence ^ C S(T(YX)) = 5(T(y)) . D 

Note that we have proved the following assertion: 

Corollary. For any Y G B(LG) the set S(T(Y)) is the greatest element in the 
Ki,-block containing Y. 

In the following lemmas and theorems we assume that G is a set, L = (L, H) is a 
relational structure and \G\ ^ 2, |L | ^ 2. 

Lemma 2.1. If the relation H is reflexive (symmetric, transitive), then for any 

Y C LG the relation T(Y) on G is reflexive (symmetric, transitive). 

P r o o f . Let H be reflexive and Y C LG. If ;r G G then (f(x)J(x)) G H for 
any / G Y so that (x,x) G T(Y) and T(y) is reflexive. 

Let H be symmetric and Y C LG. If x,y G G, (;r,g) G T(l ' ) , then (f(x)J(y)) G 

H for any / eY, thus (f(y)J(x)) G H for any / G Y and (H,x) G T(y) . Hence 

T(Y) is symmetric. 

Let H be transitive, let y C LG. If x,y,z G G, (a:,i/) G T(y) , (y,z) G T(y) , then 
(f(x)J(y)) G H, (f(y)J(z)) G H for any / G y , thus (f(x)J(z)) G H for any 
/ G y and (x, z) G T(y) . Therefore T(Y) is transitive. D 

Corollary. If H is a preorder on L then T(Y) is a preorder on G for any Y C LG. 
If H is an equivalence relation on L then T(Y) is an equivalence relation on G for 
anyY CLG. 

Lemma 2.2. If the relation H is antisymmetric and if Y C LG contains at least 

one injective mapping then the relation T(Y) on G is antisymmetric. 

P r o o f . Let H be antisymmetric, let Y C LG and let / G Y be injective. If 
x,yeG, (x,y) G T(Y), (y,x) G T(Y), then (f(x)J(y)) G H, (f(y)J(x)) G H, thus 
f(x) = f(y) and x = y as / is injective. Thus T(Y) is antisymmetric. • 
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Corollary. If H is an order on L then T(Y) is an order on G for any Y C LG 

containing at least one injective mapping. 

Lemma 2.3. Let f G LG be surjective. If the relation T({f}) on G is reflex
ive (symmetric, transitive, antisymmetric), then the relation H on L is reflexive 
(symmetric, transitive, antisymmetric). 

P r o o f . Let T({f}) be reflexive and suppose that / G L is any element. 
Choose x € G such that f(x) = I. By hypothesis (x,x) G T({f}) so that (/,/) = 
(f(x),f(x)) G H and H is reflexive. In the other cases the proof is similar. D 

Corollary. 1. Let \G\ ^ \L\. The relation T(Y) on G is reflexive (symmetric, 

transitive) for any Y C LG iff the relation H on L is reflexive (symmetric, transitive). 

2. Let \G\ = \L\. The relation T(Y) on G is antisymmetric for any Y C LG 

containing at least one injective mapping iff the relation H on L is antisymmetric. 

In particular, we have: 

Theorem 2.2. Let \G\ ^ \L\. The relation T(Y) is a preorder (an equivalence 
relation) on G for any Y C LG iff the relation H is a preorder (an equivalence 
relation) on L. 

Theorem 2.3. Let\G\ = \L\. The relation T(Y) is an order on G for any Y C LG 

containing at least one injective mapping iff the relation H is an order on L. 

3 . REALIZER AND PSEUDODIMENSION OF A RELATIONAL STRUCTURE 

Let G be a set, L = (L,H) a relational structure, \G\ ^ 2, \L\ ^ 2 and suppose 
that X C G x G is a relation on G. A set Y C LG is said to be an ~L-realizer of the 
structure (G,X) if T(Y) = X. 

Theorem 3.1. Let X C G x G be a relation on G. The structure (G, X) has an 
L-realizer iffT(S(X)) = X. 

P r o o f . If T(S(X)) = X then S(X) is an L-realizer of (G,X). On the other 
hand, if Y C LG is an L-realizer of (G, X) then T(Y) = X and, therefore, T(S(X)) = 
T(S(T(Y))) =T(Y) = X. D 
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Corollary. An L-realizer of(G, X) exists for any X CGxG iffToS = idB(CxG)-

Theorem 3.2. Let X C G x G be a relation such that (G, X) has an L-realizer. 

AsetY C LG is an L-realizer of (G, X) iff (Y, S(X)) G KL-

P r o o f . By Theorem 3.1, T(S(X)) = X holds. A set Y C LG is an L-realizer 
of (G, X) iff T(Y) = X = T(S(X)), i.e. iff (Y, S(X)) G IvL. D 

Let y C LG be any set. By the evaluation map for Y ([3], p. 116) we mean the 
mapping e: G -> Fy given by 

e(s)(/) = / ( * ) . 

Theorem 3.3. Let K C G x G, y C LG. Then the following statements are 
equivalent: 

(i) y is an L-realizer of (G,X). 
(ii) The evaluation map for Y is a strong homomorphism of (G, X) into L Y where 

Y = (y, 0) is a discrete structure. 

P r o o f . Let (i) hold and suppose x,y G G, (x, y) G X. As T(Y) = X, we obtain 
(f(*)J(y)) <- # for any / G 7 , i.e. (e(x)(/),e(H)(/)) G H for any f eY, which 
implies (e(x),e(y)) G ̂ ( L Y ) . On the contrary, ifx,y G G and (e(x),e(y)) G ^ ( L Y ) 
then (e(x)(f),e(y)(f)) = (f(x),f(y)) G H for any / eY and as Y is an L-realizer 
of (G, K), this implies (x,y) G K. Thus e is a strong homomorphism of (G,X) into 
L Y and (ii) holds. 

Let (ii) hold and suppose x,y G G. Then we have (x,y) G X <=> (e(x),e(y)) G 

^ ( L Y ) <=> (e(x)(f),e(y)(f)) G H for any / G y «=> (f(x),f(y)) G H for any 

f eY <=> (x,y) e T(Y). Thus K = T(Y), Y is an L-realizer of (G,X) and (i) 

holds. • 

Let G = (G,X) be a relational structure, L = (L,H) a relational structure of 
type a and suppose \G\ > 2, \L\ ^ 2 and T(5(K)) = X. We put 

a-pdimG = min{|y|; Y C LG is an L-realizer of G}; 

this cardinal will be called the a-pseudodimension of the structure G. 

Theorem 3.4. Let G = (G, K) be a relational structure, L = (L, H) a relational 

structure of type a and let T(S(X)) = X. Then a-pdimG = cK^(LG)). 

P r o o f . By definition we have cK^(LG)) = min{|y|; Y C LG,(Y,tf(LG)) G 
Kh}. As (^(L G ) ) = S(X), it follows that (y , ^ (L G ) ) G ICL ^=> ( r , 5 ( I ) ) G 
Kh <£=> T(Y) = T(S(X)) = X <=^Y is an L-realizer of G. Thus cKL(<tf(LG)) = 
min{|y |; y C LG is an L-realizer of G} = a-pdim G. • 
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4. PREORDERS AND ORDERS 

In this section we suppose that L = (L, H) is a preordered set such that there 
exist Zi,/2 € L with (/i,/2) G H, (l2,l\) £ H. Furthermore, let G be any set; by 
Corollary of Lemma 2.1, T(Y) is a preorder on G for any Y C LG. 

Lemma 4 .1. If X is a preorder on G and x,y G G, (x,y) £ X then there exists 
anfe ^ ( L G ) such that (f(x),f(y)) $ H. 

P r o o f . Suppose h,l2 € L, (/i,/2) G H, (l2,h) $ H. Let us define a mapping 
/ : G -> L as follows: for t G G put 

/ / i if (*,</) GX, 

/(*) = ( 
\l2i{(t,y)tX. 

We will show that / G Hom(G,L). Let us have tx,t2 G G, (h,t2) G K and suppose 
(f(h),f(t2)) i H. Then f(h) = /2, / ( t 2 ) = /-. so that (t2,</) G X. Transitivity of 
X implies (t\,y) G X and then f(t\) = /i , a contradiction. Hence (ti,£2) G K -=> 
(f(h),f(t2)) G H, i.e. / G Hom(G,L) = <*f(LG). From the definition of / we have 
fix) = fc, /(y) = /i so that (f(x),f(y)) = (/2,/i) $ H. D 

Theorem 4 .1. If X C G x G is a preorder on G then (T(S(X)) = X. 

P r o o f . As T o S is a closure operator, we obtain X C T(S(X)). Conversely, let 
(x,y) G T(S(X)) and suppose (x,j/) g X. By Lemma 4.1 there exists / G ^ ( L G ) = 
5(X) such that (f(x),f(y)) $ H. But then (:r,u) g T(5(K)) , a contradiction. Thus 
(x,y) G X and T(5(X)) C X. We have proved T(S(X)) = X. D 

Corollary. For any preordered set G there exists cY-pdim G where a is the type 
ofL. 

Theorem 4 .2. Let X C G x G be any relation on G. Then T(S(X)) is the least 
preorder on G containing X. 

P r o o f . We have X C T(S(X)) and T(S(X)) is a preorder on G by Corollary 
of Lemma 2.1. Let Ki C G x G be a preorder on G such that X C X\. Then 
T(S(Xi)) = X! by Theorem 4.1 and, therefore, T(S(X)) C T(5(K i)) = Xi. D 

Prom now on, we suppose that L = (L, ^ ) is an ordered set which is not an 
antichain, and a is its type. From Theorem 4.1 we immediately obtain 

Theorem 4.3. Let X C G x G be an order on a set G. Then T(S(X)) = X. 
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Corollary. Let a be a type of an ordered set which is not an antichain. Then for 

any ordered set G tiiere exists cr-pdimG. 

Furthermore, Theorem 3.3 implies 

Theorem 4.4. Let G = (G, X) be an ordered set and suppose Y C LG. Then 
the following statements are equivalent: 

(i) Y is an L-realizer of G. 
(ii) The evaluation map for Y is an embedding of G into L Y where Y = (Y, 0). 

P r o o f . Let (i) hold. By Theorem 3.3 it suffices to show that the evaluation 
map e: G —•> LY is injective. Let x,y e G, x ^ y. As A' is antisymmetric, we obtain 
either (x,y) fi X or (y,x) £ X; let us suppose (x,y) £ X. As Y is an L-realizer 
of G, there exists an / e Y such that f(x) ^ f(y), i.e. e(x)(f) ^ e(y)(f). Then 
e(x) ^ e(y), in particular e(x) ^ e(H) and e is injective. 

Let (ii) hold. Then e is a strong homomorphism of G into L Y and Y is an 
L-realizer of G by Theorem 3.3. • 

Let us note that if a is a type of a chain containing at least two elements and G 
is an ordered set then a-pdimG coincides with the notion introduced in [5]. 

5. EQUIVALENCE RELATIONS 

In this section we assume that L = (L,H) is a structure such that \L\ ^ 2 
and H = idr,; the type of this structure will be denoted by m where m — \L\. 

Furthermore, let G be a set such that \G\ ^ m. As id/, is an equivalence relation on 
L, Corollary of Lemma 2.1 implies that T(Y) is an equivalence relation on G for any 
Y C LG. As an analogue to Lemma 4.1 we have 

Lemma 5.1. Let X C G x G be an equivalence relation on G and suppose 
x,y e G, (x,y) £ X. Then there exists f e K(LG) such that (f(x),f(y)) £ H 
(i.e. f(x) ± f(y)). 

P r o o f . Choose l\,l2 G L, l\ ^ /2 and define a mapping / : G ->• L as follows: 

for any t € G put 
ih if (t,x)eX, 

fit) = ( 
\ .2 if (t,x-) g A". 

We show that / e Hom(G,L). Suppose tut2 G G, (ti,t2) G X. If (<i,x) G X then 
(«2,a;) G X so that /(fi) = h = /(<2) and (f(h),f(t2)) G i / . If (<i,x) ^ X then 
(/2,x) ^ X and f(h) = Z2 = f(t2), i.e. (f(h),f(t2)) G i / . Thus / G ̂ ( L G ) and by 
definition f(x) = h jLl2 = f(y). • 
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From Lemma 5.1 we get 

Theorem 5.1. Let X C G x G be an equivalence relation on G. Then T(S(X)) = 

X. 

P r o o f . We have X C T(S(X)). Suppose (x,y) e T(S(X)); if (x,y) £ X then 
by Lemma 5.1 there exists / G ^ ( L G ) = S(X) such that (f(x),f(y)) £ H. Then 
(x,y) $ T(S(X)), a contradiction. Thus (x,y) e X; we have proved T(S(X)) C X 

and thus T(S(X)) = X. D 

Corollary. Let X C G x G be an equivalence relation on G and G = (G,X). 

Then there exists m-pdim G. 

Let us denote by E(X) the least equivalence relation on G containing X for a 
given X C G x G. The proof of the following theorem is analogous to the proof of 
Theorem 4.2 and is therefore omitted. 

Theorem 5.2. Let X C G x G be any relation. Then E(X) = T(S(X)). 

Let us have / G LG. P u t k e r / = {(x,y) eGxG; f(x) = f(y)} = {(x,y) eGxG; 

(f(x)J(y)) e H} = T({/}). If Y C LG, Y ? 0 then T(Y) = {(x,y) eGxG; 

(f(x)J(y)) e H for all / e Y] = n(r({/}); / € Y) = n(ker/; / G Y). Thus we 
obtain 

Theorem 5.3. Let X C G x G be an equivalence relation on G and suppose 
Y C LG. Then Y is an L-realizer of G = (G,X) iff X = H(ker / ; / G Y). 

Regarding Theorem 5.2 we get further 

Theorem 5.4. Let X C G x G be a relation on G. Then £(K ) = n ( k e r / ; 
/ e S(X)). 

Let 2̂  be an equivalence relation on G. If \G/E\ ^ ??i then E will be called an 
m-equivalence. Clearly, for any / G LG, ker / is an ?n-equivalence. 

Let y = (Ei; i G I) be a system of equivalence relations on G and let E be an 
equivalence relation on G. If E = f](Ei; i G I) then we say that ^ generates E. 
If X is an equivalence relation on G and Y C LG is an L-realizer of (G,X) then 
(ker/ ; / G F) generates K by Theorem 5.3. Conversely, let (Ei; i G I) be a system 
of ??i-equivalences on G that generates X. Denote by y>i the natural projection of G 
onto G/Ei (i e I) and by i\)i any (arbitrarily chosen) injective mapping of G/Ei into 
L. Put fi = i\)iO ^p{ and F = (/?:; i G I). Then Y C LG and it is easy to see that it 
is an L-realizer of G = (G, X) where X = f](Ei; i G I). Thus we have 
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Theorem 5.5. Let X C G x G be an equivalence relation on G and G = (G, X). 

Then m-pdimG is the minimum of cardinalities of systems of m-equivalences on G 

generating X. 

In view of Theorem 3.4 this assertion can be formulated as follows. 

Theorem 5.6. Let X C G x G be an equivalence relation on G and G = (G, X). 

Then c/<L(^7(LG)) is the minimum of cardinalities of systems of m-equivalences on 

G generating X. 

6. EXAMPLES 

Example 1. Let G = (G, X) be an ordered set with the following Hasse diagram: 

We find 3-pdimG, 2-pdimG, a-pdimG where 3 (2) is the type of the 3-element 

chain (2-element chain) and a is the type of the ordered set 

(1) Le tL = ({0,1,2}; 0 < 1 < 2). Define mappings f L , / 2 : G-> {0,1,2} by 

x y Z U 

Һ 
Һ 

0 1 1 2 
1 0 1 0 

If Y = {/1./2} then it is easy to see that T(Y) = A', i.e. Y is an L-realizer of G. 

Thus 3-pdimG ^ 2. As trivially 3-pdimG > 1 we have 3-pdimG = 2. 
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(2) Suppose L = ({0,1}; 0 < 1). We find all isotonic mappings of G into L. They 

are given by the following table: 

x y Z u 

Һ 0 0 0 0 

Һ 0 0 1 0 

Һ 1 0 1 0 

Һ 0 0 0 1 

Һ 0 0 1 1 

Һ 1 0 1 1 

Һ 0 1 1 1 

Һ 1 1 1 1 

We are looking for an L-realizer of G. As z, u are incomparable in G, any L-realizer 

of G must contain /4 and either / 2 of / 3 . As x,y are incomparable, any L-realizer 

of G must contain fy and either / 3 or /6. Putting Y = {/3,/4,/?} we obtain that 

T(Y) = X and Y is an L-realizer of G. Since no two-element subset of Y is an 

L-realizer of G we have 2-pdim G = 3. 

(3) Suppose L = ({0,a,b},0 < a,0 < b). Let us define mappings / i , / 2 : G -> 

{0,a,b} by 
x y Z U 

Һ 
Һ 

0 a a a 
a 0 a b 

If Y = {/i,/2} then T(Y) = X. As a-pdimG > 1, we have a-pdimG = 2. 

Example 6.2. Let G = (G, X) be an ordered set and let L = (L, -<Q be a chain 

of type 2. Let Y C LG be a 2-realizer of G. Any / E Y may be interpreted as a 

characteristic function of a filter in G, i.e. Y may be interpreted to be a set of filters 

in G. In particular, ^ ( L G ) , the greatest L-realizer of G, is the set of all filters in G 

which is a complete ring of sets ([6]). 

Let Y be a set of filters in G. By definition, Y is a 2-realizer of G iff the condition 

x,y E G, (x,y) $. X is equivalent to the existence of a set M E Y such that x E M, 

y £ M. In particular, if x,y E G, x ^ y then there exists M E Y such that either 

x E M, y £ M or y E M, x £ M. It follows that two L-realizers Yi,Y2 of G have 

the same separation property: For any x,y E G, x ^ y there exists Mi E Y\ with 

x E Mi, y £ Mi iff there exists M2 E Y2 with x E M2, g £ M2 (see [6], Theorem 2.5.). 

Examp le 6.3. Let G be a finite set, |G| ^ 2 and let X be an equivalence 

relation on G. We find 2-pdim G where G = (G,X). By Theorem 5.5, 2-pdim G 

is the minimum of cardinalities of systems of 2-equivalences on G generating A". If 

(Ei,..., E7n) is a system of 2-equivalences on G and Ar = f](E{; i = 1 , . . . , m) then 
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clearly \G/X\ ^ 2 m (as each E{ has at most 2 blocks). If \G/X\ = n then there 

exists an integer m ^ 1 such that 2 m _ 1 < n ^ 2m; then 2-pdimG = m. 

Example 6.4. A monounary algebra is a set G ^ 0 and a mapping f:G-*G; 

it will be denoted by (G, / ) . (See, e.g. [8].) As usual, / may be regarded as a binary 

relation on G by putting (x,y) e f iff y = f(x). If (G,f), (H,g) are monounary 

algebras, then the homomorphisms of the algebra (G, f) into (H,g) coincide with the 

homomorphisms of the relation structure G = (G, / ) into the relational structure 

H = (H,g). A monounary algebra (G, / ) is called a connected monounary algebra 

with a one-element cycle if there exists exactly one (dement c e G such that f(c) = c 

and that for any x € G there exists an integer m ^ 0 such that frn(x) = c where fm 

denotes the ra-th iteration of / . Let L be the set of all nonnegative integers with 

the operation H given by H(0) = 0, H(n + 1) = n for any n ^ 0: 

Let G = {a,b,c, d, e} and let X be a binary relation on G such that 

(G,X) is a connected monounary algebra with a one-element cycle with 

the following diagram: 
0 

I ! 

<> 2 

o 3 

' e 

Define mappings / i , / 2 of G = (G,X) into L by 

a b c d e 

Һ 
Һ 

0 0 0 1 2 
0 1 2 2 3 

It is easy to see that f\, f-2 are homomorphisms of G into L. Furthermore, 

T({fi, /2}) = X; hence {/i, f2) is an L-realizer of G. 
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