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ON THE DEGREES OF PERMUTABILITY 

OF SUBREGULAR VARIETIES 

GRAHAM D. BARBOUR and JAMES G. RAFTERY, Durban 

(Received February 10, 1995) 

Two distinct Mal'cev conditions for point regular varieties (which we shall call 
Fichtner's first and second theorems) were given in [Fic68] and [Fic70]. The latter 
refines the former in that it replaces certain terms of unspecified arity by quaternary 
terms, and the former is deducible from the latter. Consequently, the style of the 
latter condition is generally considered preferable. Similar characterizations of con­
gruence regular, weakly regular and (most generally) subregular varieties may be for­
mulated in either of the two styles, e.g., [Csa70], [Wil70], [Hag73], [DMS87], [Dud87]. 
A subregular variety which realises either style of Mal'cev condition in n equations 
is congruence n-permutable. In greater generality, [DMS87, Theorem 3.5] appears to 
offer a converse, viz. that for any n, an n-permutable subregular variety must realise 
the appropriate variant of Fichtner's second scheme in at most n equations, making 
the n-line scheme a Mal'cev condition for 'subregular and n-permutable' varieties. 
For each n, similar Mal'cev conditions for n-permutable varieties with each of the 
other regularity properties would follow. 

We point out here, however, that [DMS87, Theorem 3.5] is false. There is there­
fore no satisfactorily proved Mal'cev characterization of even 'point regular and n-
permutable' varieties (for fixed n) in the literature, other than unwieldy conjunctions 
of independent Mal'cev conditions for these two properties. The purpose of this note 
is to provide such a result as a consequence of a more general Mal'cev character­
ization of 'subregular n-permutable' varieties (Corollary 5). It seems unavoidable 
that the result be in the style of Fichtner's first theorem, i.e., that it involve terms 
of unspecified arity, but using n-permutability, we are able to replace the original 
(2 -f 2m)-ary Fichtner terms by (2 + m)-ary ones. We see no reason to expect an 
analogue of our result in the style of Fichtner's second theorem to be true, though 
an example showing this would be hard to construct. 
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[DMS87, Theorem 3.5] claims that for any integer n ^ 2, an (n + l ) -permu table 

variety K satisfies a quasi-identity f\(x) « g\(x) Sz.. . &fm(;v) « gm(x) —> r(x) & 

s(x) (in variables a? = # 1 , . . . , ;rp) if and only if there exist an integer k ^ n — 1, 

( p + l ) -ary terms ti,. ..,tk and pairs ( i / i , v i ) , . . . ,(uk,vk) G {(fi,gi): i = 1 , . . . , r a } 

such that K satisfies the identities 

r(x) ttti(x,ux(x)), 

tj(x,Vj(x)) &tj+i(x,Uj+i(x)) (j = l,...,k- 1), 

tk(x,vk(x)) & s(x). 

Over a variety, any such equational scheme certainly entails the quasi-identity, bu t 

the converse is false. The congruence permu table variety of Boolean algebras satisfies 

i ' A y « OSzy' A x « 0 —> ;r « y. By the above claim, it should satisfy x « 

t(x,y,u(x,y)) and H « t(x,y,v(x,y)), and therefore also u(x,y) « v(x,y) —• .x « 

H, for some ternary term £, where (u(x,y),v(x,y)) G {(x' A H,0), (Hr A x, 0)} . By 

symme try of the variables, Boolean algebras should satisfy x' A y « 0 —> x « H, 

which they do not . 

An (n + l ) -permu table variety satisfying the aforementioned quasi-identity mus t 

also satisfy a scheme of k+1 equations of the above form for some k, by the argumen ts 

given in [DMS87], bu t the example shows that the minimum number of equa t ions 

in such a scheme need not be bounded by the variety's degree of permutability. To 

correct this result, we need the following preliminaries. 

Consider a variety K of algebras and an algebra A = (A\...) G K. Let r be a 

binary reflexive relation on A, compatible with the fundamental opera t ions of A. 

We call r a tolerance (resp. a quasiorder) on A if r is symmetric (resp. transitive). 

If a e A then {b e A: (a,b) G r } is denoted by a/T. Let RefA, TolA and ConA 

be, respectively, the lattice of all reflexive compatible relations on A, the tolerance 

lattice and the congruence lattice of A. (All of these are ordered by set inclusion 

and are algebraic.) We use HA, TA and O A to denote, respectively, the algebraic 

closure opera tors on the power set of A2 associated with the algebraic closure systems 

RefA, TolA and ConA. If X = { ( a i , & i ) , . . . , (an,bn)} C A2, we write RA(X) as 

RA((ai,b\),... ,(an,bn)) and RA((a,b)) as RA(a,b); similar conventions apply to 

FA and O A . 

For T, n C A x A, we denote the relational product r o // by TT\ and we define 

r-°] = idA := {(a,a): a e A}, and r^n + 1 l = T^T (it € CJ). The transitive closure 

U T^ of a tolerance r on A is jus t O A ( r ) . The least positive n G u, if it exists, 

such that T^ is a congruence for every r G TolA, is called the tolerance number of 

A and is denoted by tn(A). We also write tn(A^) = n if n is the least positive integer 

such that tn(B) ^ n for all B G K. 
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Lemma 1. Let a\,..., an, bi,..., bn, c, d G A. 

(i) [Dud83] (c,d) e RA((ai,h),..., (an,bn)) if and only if there is an n-ary poly­

nomial G on A such that c = G(a\,..., an) and d = G(b\,..., bn). 

(ii) [Cha81] (c, d) G T A ( (a i , bi),..., (an, 6n» if and only if there is a 2n-ary poly-1 

nomial G on A such that c = G(a\,...,an,b\,...,bn) and d = G(b\,... ,bn, 

a\,... ,an). 

Theorem 2. 
(i) [HM73], [CR83] A variety K of algebras is congruence (n-\-l)-permutable if and 

only if tn(K) ^ n. 

(ii) [Hag73, Theorem 1, Corollary 4] If n is a reflexive compatible binary relation 

on an algebra A in a congruence (n + l)-permufcabie variety K then n^ is a 

quasiorder on A and every quasiorder on an algebra in K is a congruence, hence 

77M is e A (77). 

Given a set X of variables, T = T(X) = (T(X);...) denotes the term algebra and 
F = FK(X) = (FK(X); ...) the If-free algebra over X. Thus, F is the factor algebra 
of T modulo the congruence that identifies all pairs of terms t,s G T(X) for which 
K satisfies t » 5. The image tF(xi,... ,xp) G FK(X) of t = t(xi,... ,xp) G T(X) 

is denoted by i (so t G t). In particular, FK(X) is freely generated by X := {x: 

x e X}. The following result corrects [DMS87, Theorem 3.5]. 

Theorem 3. Let K be a variety and let fi,gt,r and s be terms in variables 
x = xi,..., xp, for i = 1 , . . . , m. 

(a) The following conditions are equivalent: 
(i) K satisfies the quasi-identity 

fi(x) « p i ( f ) & . . . & fm(x) « gm(x) -> r(x) w s(x). 

(ii) For some positive integer k, there exist (2m + p)-ary terms t\ ..., tk such that 
for j = 1 , . . . , k — 1, K satisfies the identities 

r(x) w £i (x, fi (x),..., fm(x),gi (x),..., gm(x)), 

tj(x,gi(x),... ,gm(x),fi(x), • • • , /m(£» 

~ tj+i($, h(x),.. ^fm(x),gi(x),.. .,gm(x)), 

tk(x,gi(x),.. .,gm(x),fi(x),..., fm(x)) « s(x). 

(b) Suppose that the equivalent conditions of (a) hold and that K is congruence 
(n + l)-permutable. Then we may choose k ^ n in (ii). More strongly, in this 

* 
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case, there exist a positive integer k ^ n and (m + p)-ary terms ti,..., tk such 

that for j = 1,..., к — 1, K satisfìes the identities 

r(x) &ti(x,fi(x),...,fm(x)), 

tj(x,дi(x),.. .,gm(x)) « tj+i(x,fi(x),..., fm(x)), 

tк(x,gi(x),...,gm(x)) « s(x). 

P r o o f . (a) (i) ^ (ii): Let T = Tк(x) = (T;...) and F = Fк(xľ,... ,xp) = 
m _ 

(F;...). Since K is a variety, (i) clearly implies that V ғ ( / г , g г ) Э ғ(f, 5). We 
i=l 

therefore have 
(ř.š) Є F ( ( / Ь š l ) , . • • , (]m,9m)) = | J TЮ, 

where r = Tғ((fi,gi),...,(fm,gm)). Choose к Є UJ such that (f,š) Є r^ ' . Note 

that if K is (n 4- l)-permutable then we can choose k ^ n, since tn(IţГ) -̂  n, by 

Theorem 2(i). 

There exist č"o,..., čk Є F such that f = čoтëiT . . . тčk = š. For j = 1,. . . , к, since 

čj-iтčj, there exists, by Lemma l(ii), a 2m-ary polynomial Gj on F such that 

(t) čj-i = Gj(fi,...,fm,gi,...,gm) and čj = Gj(gi,... ,gm,fi,... , / m ) . 

Thus, there exist a (2m -Һ ç)-ary term Sj and ãji,...,ãjq Є F such that 

Cгj {0,1, . . . , Ö m , el, . . . , Єm) — Sj {0,1, . . . , Clm, Єi, . . . , Єm, CLji, . . . , CLjq ) 

for all d,e G F™. Choosing terms ÜJI, ...,ajq Є T with â  Є ãji for all /, define a 

(2m -I- P)-ary term tj by 

tj\p\ï • • • , ^ p , -^l, • • • , znľ) ^ l , • • •, ivm) 

= 5 j ( Z i , . . . , Zm, ÎDi, . . . , Wm, ӣji \Xi, . . . , Xp), • . . , Üjq\Xi, . . . , Xp))-

We have 

tj(xi,..., xp, fi(xľ, ...,xp),..., / ғ ( Æ i , . . . , xv), gf (xi,.. ., xp) ..., gm(xi,..., xp)) 

= Sj \J 1, • • • , Jm, gl, • • • , gm, CLji, . . . , Ujq) 

= Gj(fi, . . . , / m , g l , - • • ,gm) 

for j = 1 , . . . , к, and the same is true if we interchange /г and gг for all i. This, 

together with (f), yields that F satisfies the identities of (ii). Consequently, all 

algebras in K satisfy these identities. 
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(ii) => (i) follows readily from the identities of (ii). 

(b) We use the argument of (a) (i) =t> (ii), replacing r by n = Rғ({fi,gi),..., 

(7m,gm)) and using Lenшia l(i) rather than (ii), to obtain the equations of (b); note 

that 77̂ ^ is a congruence, by Theorem 2(ii), so we may choose k -̂  n. Clearly, these 

equations entail the quasi-identity of (a)(i). D 

In fact the minimum length (taken over all Iŕ-quasi-identities) of the equational 
scheme in Theorem 3(b) characterizes Iv"'s degree of permutability, by the following 
converse of 3(b). If for every Iv-quasi-identity as in 3(a)(i), there exist k ^ n and 
t\,..., tk such that K satisfies the equations of 3(b), then K is congruence (n -Һ 1)-

permutable. For applying 3(b) toy&x-^xяíy yields IíГ-identities x « t\(x,y,y), 

ti(x,y,x) « ti+\(x,y,y) (i < к) and tk(x,y,x) « y. The Hagemann-style Maľcev 
condition for (k-f- l)-permutability [HM73] is realised by K when we set q^(x,y,z) = 
U(x,z,y) (i ^ к). 

We say that an algebra A is regular with respect to elements a\,..., an Є A 

provided that for any ,ҷ> Є ConA, if ar/ = ar/ҷ? for r = 1,... ,n, then = ҷ>. 

If g\,...,gn are unary terms, we say that A is regular with respect to g\,....,gn if 

for any a Є A, A is regular with respect to g^(a),... ,g„(a). A variety K is called 

regular with respect to g\,..., gn if all members of K have this property. An algebra 

A (resp. a variety K) is called congruence regular if it is regular with respect to 

the single unary term g(z) = z, i.e., any congruence on A (resp. on any B Є Iv") is 

determined by the congruence class of any element of A (resp. B). An algebra A 

(resp. a variety K) is called weaкly regular if it is regular with respect to a finite set 

of unary terms gr that are essentially nullary, by which we mean that A (resp. K) 

satisfies gr(x) « gr(y) for each r. In this case, if we define nullary 0 r = gr(x) for 

each r, we say that A (resp. K) is weaкly regular with respect to Oi,. . . ,0 n . Finally, 

A (resp. K) is called point regular with respect to 0, or just 0-reguiar, if it is weakly 

regular with respect to a single equationally defined constant term 0. 

Corollary 4. (a) The following conditions on a variety K with unary terms 

д\ 5 • • •, gn are equivalent: 

(i) K is regular with respect to дi,..., gn. 

(ii) For some positive integer m, there exist ternary terms p\,..., pm and a function 

r н-> ir from {1, . . . , m) to {1,..., n) such that K satisfìes 

pi(x,y,z) « дh(z)ííp2(x,y,z) &gІ2(z)&: ... &pm(x,y,z) « gim(z) <г>x&y. 

(iii) For some positive integers m,к, there exist ternary terms p\,...,pm, (m+3)-ary 

termsti,... ,tk anda functionr н-> ir from {!,... ,m) to {1,. . . ,n} such that for 
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j = 1 , . . . , k - 1 and r — 1 , . . . ,m, K satisfìes the identities Pr(x,x, z) « gi,.(z) 

and 

x&ti (x, y, z, giү (z),..., gim (z)), 

(*n) tj (x, y, z, pi (x, y, z),..., pш(x, y, z)) « г j + i (я, y, z, gh (z),..., gim (z)), 

tk{xìy,z,pi(x,yìz),...,prn(xђy,z)) « u. 

(b) íf the conditions of (a) hoid then the smallest positive integer k for which (*)n 

holds is the tolerance number tn(K) of K, i.e., it is the smallest k such that K is 

congruence (k + l)-permutabìe. 

P r o o f . (a) (i)<ř->(n) is essentially [DMS87, Theorem 2.2] and (iii)=>(i) is obvi-
ous. 

(ii)=-l>(iii) By [DMS87, Theorem 3.9], any variety satisfying a quasi-identity of the 
form 

/i(я,y,г) ъдi(x,y,z)b . . . kfm(x,y,z) « gm(x,y,z) -+xыy, 

as well as the identities fr(x, x, z) « hr(z) « gr(x, x, z), for suitable terms fr, gr and 

(unary) hr (where ž abbreviates z, z,..., z) is eongruence modular and congruence n-
permutable for some integer n > 1. Clearly, we have a special case of these conditions 
here, so the result follows from Theorem 3(b). 

(b) It suffices, by Theorem 3, to show that K is congruence (k + l)-permutable. 
Let 

qj(x,y,z) = íj(a;,2ř,í;,pi(y,г,z),...,pm(î/,z,z)) (1 ^ j ^ k) 

and observe that K satisfies the Hagemann identities [HM73] for congruence (k +1)-

permutability: 

x ~qi(x,y,y); qá(x,x,y) « qj+1(x,y,y) for j = 1 , . . . , k - 1; qk(x,x,y) « y. 

D 

Varieties that satisfy the conditions of Corollary 4(a) for some unary terms 

gi, • • • ,gn are characterized in several different ways in [DMS87, Theorem 2.2], e.g., 

they are just the varieties K such that for every A £ Jť and any subalgebra B of A, 
every congruence on A is determined by {b/ : b Є B}. (See [Dud87, Theorem 1] 

also.) Such varieties are called subregular. 

Corollary 5. For each positive k, a variety K is subregular and (k+l)-permutable 

if and only iffor some positive ?г, m, there are unary terms д\,..., gn, ternary terms 

PІÌ • • • ,Pm, (m + 3)-ary terms t\,..., tк and a function r i-> ir from {1, . . . , m} to 
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{ 1 , . . . , n} such that for j = 1 , . . . , k — 1 and r = 1,..., m, K satisfìes pr(x, x, z) « 

gir(z) and the identities of(*)iг. 

Requiring n = 1 and gi(z) = z in Corollary 5 amounts, for each k, to a Maľcev 
condition for (k-hl)-permutable congruence regular varieties. If each gr(z) is required 
to be an equationally defined constant 0 r and we replace zЪү y and the pr(x, y, z) by 

binary dr(x,y) throughout the argument, we obtain a Maľcev condition for weakly 
regular (k-hl)-permutable varieties. The further requirement n = 1 refines Fichtner's 
first theorem [Ficб8, Theorem 2] as follows: for each k, a variety K with constant 0 

is 0-regular and (k -h l)-permutable if and only if for suitable terms, it satisfies 

x ^tľ(x,y,0,...,0), 

(* ) tj^x^y^d^x^y),... ,dш(x,y)) tttj+i(x,y,0...,0) 

(j = l,...,k-l), 

tk(x,y,di(x,y),... ,dш(x,y)) « y 

and di(x,x) « 0 (i = 1,... ,m). Sharpening Fichtner's second theorem similarly in 

the presence of n-permutability (for some n) yields a scheme whose line j — 1 is the 

more elegant tj(x,y,dj(x,y)) æ tj+i(x,y,0) but there seems no reason to hope that 

such a scheme can always be found involving no more equations than the variety's 

degree of permutability. Point regular (k -Һ l)-pernшtable varieties which are not 

k-permutable exist for each k > 1 [BR]. 

Enriched groups and quasigroups are standard examples of congruence permutable 

congruence regular varieties. Here are some examples of point regular varieties which 

illustrate (*) less trivially. 

A BCK-algebra [IT78] is an algebra A = (A; - ,0) of type (2,0) satisfying the 

axioms 

(i) ( þ - r f - ^ . D - þ - ^ o , 
(2) x^Oяx, 

(3) O^o; « 0, 

(4) (x^y « 0) & (y^x « 0) -> x « y. 

The quasivariety of all BCK-algebras is not a variety [Wro83]. It satisfies x-x « 0 

and (x-y)-z « (x—z)—y; we shall omit brackets from expressions (a—b)—c. Any 

variety K of BCK-algebras is 0-regular, 3-permutable [Idz83], not congruence per-

323 



mutable (unless trivial) and satisfies 

x « x—0— ... -0 , 

(5) x-щ(x,y)- . . . -up(x,y) « y-vг(x,y)- . . . -i>,-(ж,î/), 

г / - 0 - . . . - 0 « г y 

for some terms UІ, Vj such that all BCK-algebras satisfy щ(x,x) « 0 « VJ(Ï ,Ж) 

[Idz83], [BR95]. We interpret (5) as a case of (*) by setting k = 2, m = p + q, 

di = щ (i ^ I>), dp+j = Vj (1 ^ j ^ ç), tг(x,y,z) = . T - Z I - . . . ^-zp and ł2(x,y,z) = 
гy-[г;i(x,г/)-2:p+i]- . . . -[vq(x,гj)-zp+q] (where z = zx,. . .,zp+q). A more complex 

realization of (*) with m = 2, dү(x,y) = x-гy and d2(x,y) = гy-x is also possible. In 

the variety of commutative BCK-algebras, the central equation of (5) takes the form 

x-(x-y) &y^(y^-x). 

An algebra A = (A; - , V (resp. Л),0) of type (2,2,0) is called an upper (resp. 

lower) BCK-semilattice if (A;-,0) is a BCK-algebra whose underlying partially 

ordered set, defined by a ^ b iíf a—b = 0, is an upper (resp. lower) semilattice with 

join (resp. meet) operation V (resp. Л). The class BCKV (resp. BCKЛ) of all such 

algebras is a 0-reguiar variety [Idz84a], [Idz84b]. The most useful identities of BCKV 

and BCKЛ arise from the fact that x-(x-y) is a lower bound for both x and y in 

any BCK-algebra. The variety BCKV is congruence permutable. A realization of (*) 

is given by x—x « 0 and 

xъ(xЩ\ł(y^-(y^x)), 

( ж - ( z ^ y ) ) V f ø ^ 0 ) « y . 

Here, k = 1, m = 2, di(x,y) = x-y, d2(x,y) = y-x and t\(x,y,z\,z2) = (x-z{) V 

(гy-Ҷгy---:!;---;̂ )). 

The variety BCKЛ is 4-permiнable and not 3-permutable [Raf94] so its realizations 

of (*) necessarilу involve at leaзt four lines. One such realízation is: 

x « x-0, 

x-^íx-y) ~ [z-íz^y)] Л (y-0), 

(x-0) Л [y-(y-x)] « y-(y-x), 

y^O «i/. 

Here, k = 3, m = 2, a7i(ж,гу) = ir-̂ гу, d2(x,y) = y-x, h(x,y,zi,z2) = x - z ь 

t2(x,у,2:i,Z2) = [ж-(я-г/^-гi)] Л (y-z2) and t3(x,y,zuz2) =y^(y^-x-^z2). 

We do not know whether corresponding realizations of Fichtneťs second theorem 
for BCKЛ and for arbitrarу varieties of BCK-algebras are achievable in the same 

numbers of lines. 
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