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SEVERAL RESULTS ON CHORDAL BIPARTITE GRAPHS 

MlHÁLY BAKONYI, Atlanta, and AARON BONO, Columbia 

(Received January 7, 1994) 

Abstract. The question of generalizing results involving chordal graphs to similar concepts 
for chordal bipartite graphs is addressed. First, it is found that the removal of a bisimplicial 
edge from a chordal bipartite graph produces a chordal bipartite graph. As consequence, 
occurance of arithmetic zeros will not terminate perfect Gaussian elimination on sparse 
matrices having associated a chordal bipartite graph. Next, a property concerning minimal 
edge separators is presented. Finally, it is shown that, to any vertex of a chordal bipartite 
graph an edge may be added such that the chordality is maintained. 
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1. INTRODUCTION 

For terminology and results concerning graph theory we essentially follow the book 
[4]. An undirected graph is a pair G = (V,E) is which V, the vertex set, is a finite 
set (usually V = { 1 , . . . ,n}), and the edge set E is a symmetric binary relation on 
V. The adjacency set of a vertex v is denoted by Adj(v), i.e. w G Adj(i>) if vw G E. 
Given a subset A C V, define the subgraph induced by A by GA = (-4, EA), in which 
EA = {xy € E I x G A and y G A}. The complete graph is the graph with the 
property that every pair of distinct vertices is adjacent. A subset A C V is a clique 
if the induced graph on A is complete. 

A special type of undirected graphs are the bipartite graphs. An undirected graph 
is called bipartite if V = X -f- Y (the union of two disjoint sets X and Y) and any 
edge ij G E has one endpoint in X and the other one in Y. If G = (X, Y, E) is a 
bipartite graph and S C X+ Y then Sx and Sy will denote SnX respectively SOY. 
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A path [vi,... ,vn] is a sequence of vertices such that VjVj+i £ E for j = 1,..., 
k — 1. A cycle of length k > 2 is a path [v\,..., Vk, vi] is which v i , . . . , u* are distinct. 
A graph C7 is called chordal if every cycle of length greater than 3 possesses a chord, 
i.e. an edge joining two nonconsecutive vertices of the cycle. A bipartite graph is 
called chordal bipartite if every cycle of length greater than 4 has a chord. 

An edge xy of a bipartite graph G = (X, Y, E) is said to be bisimplicial if Adj(;c) -f 
Adj(y) induces a complete bipartite graph. Let <D = [-^(1)2/^(1),.. • --r^W^M*)- be a 
sequence of pairwise nonadjacent edges of a bipartite graph G = (X, Y, E). Denote 

(1.1) Sj = {a;v,(i),...,xv,( i)}U{yy,(i),...,2/(p(i)} 

and let So = 0. Then <D is said to be a perfect edge elimination scheme for G if each 
edge ^0)2/^0) is bisimplicial in GX+Y-S, , for j = 1 , . . . ,k - 1 and Gx+Y-sk has 
no edges. Bipartite graphs with a perfect edge elimination scheme will be referred 
as perfect elimination bipartite graphs. 

A pair of edges xaya and Xbyb of a bipartite graph G = (X, Y, E) is separable if 
Xayb, Xbya fi E. In this case, a set S of vertices is called an xaya, Xbyb separator if 
the removal of S from the graph causes xaya and Xbyb to lie in distinct connected 
components of the remaining subgraph GX+Y-S- S is called minimal if no proper 
subset of S is an xaya, Xbyb separator. The graph G is said to be separable if it 
contains a pair of separable edges. Otherwise it is said to be nonseparable. Bipartite 
chordality can be characterized in terms of minimal edge separators ([5]). 

Theorem 1.1. A bipartite graph is chordal bipartite if and only if every minimal 

edge separator is a biclique. 

Let S be a minimal xaya, Xbyb edge separator in the chordal bipartite graph G = 
(X,Y,E) and let A be the connected component of GX+Y-S containing xaya. We 
prove in Section 3 that there exist x € XA such that Sy C Adj(x). This generalizes 
a result mentioned in [4] for chordal graphs. 

The next two theorems present important properties of chordal bipartite graphs. 

Theorem 1.2. ([5]) Let G = (X,Y,E) be a chordal bipartite graph. If G is 
separable, then it has at least two separable bisimplicial edges. 

Theorem 1.3. ([5]) Every chordal bipartite graph is a perfect elimination bipar

tite graph. 

Unfortunately, the converse of Theorem 1.3 is false. 
Let M = (mij)lj=1 be a matrix. The bipartite graph G = (X,Y,E) is said 

to be the bipartite graph of the nonzero-pattern of M if X = {xi,... ,xn}, 
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Y = {y\,.. -,2/n} and m^ 7-- 0 if and only if (xi,yj) G -S. Perfect elimination 
bipartite graphs play an important role in matrix theory in connection with 
the graph-theoretic description of Gaussian elimination on sparse matrices. Let 
ip = [£^(1)^(1),... ^p^Utpik)] D e a perfect edge elimination scheme for the bipar
tite graph G = (X, Y, E). If G is a bipartite graph of the nonzero-pattern of a matrix 
M, then M can be reduced by perfect Gaussian elimination ([4]), This means that 
choosing the entries on the positions £^(1)^(1),.. . ^^^V^k) to act as pivots, M 
will be reduced to a matrix with at most one nonzero element on each row and 
column without ever changing (even temporarily) a zero entry to a nonzero. Based 
on a result in Section 2, we present a property of Gaussian elimination on sparse 
matrices having associated a chordal bipartite graph. 

Given two chordal (not bipartite) graphs G = (V,E) and G' = (V,E') such that 
E C E' and E' contains at least two more edges than E. It is known ([9] and [2]) that 
there is a chordal graph G" = (V,E") such that E C E" C E'. This property was 
independently proved in the case G' is complete and used as a key tool in the theory 
of positive definite completions of partial matrices in [6]. Motivated by a conjecture 
in [3] concerning minimal rank completions of partial matrices, we prove in Section 
4 that it is possible to add an edge to any vertex of a chordal bipartite graph such 
that the resulting graph retains its chordal bipartite property. This latter problem 
was suggested to us by Professor H.J. Woerdeman. 

2 . ARITHMETIC ZEROS 

We present in this section an algorithmic characterization of chordal bipartite 
graphs and its application to Gaussian perfect elimination. The following simple 
result plays a key role. 

Proposi t ion 2 .1 . A bipartite graph G = (X,Y,E) having a bisimplicial edge 
xy G E is chordal bipartite if and only if the graph G' = (X, Y,E — {xy}) is chordal 
bipartite. 

P r o o f . Let G be a chordal bipartite graph with a bisimplicial edge xy. Assume 
that the removal of this edge creates a chordless cycle in G' (note that this cycle must 
bo of length 6) which is of the form {x, y\,x\,y, x<i,yi,x}. Then x\, X2 G Adj(y) and 
2/i, yi G Adj(x). Since xy is bisimplicial, we have x\y<i, X2y\ G E which both are 
chords in the latter cycle, thus G' is chordal bipartite. 

If the additions of xy to the chordal bipartite graph G' creates a chordless cycle 
of length ^ 6, this cycle must be of the form {x,y,x\,y\,... ,Xk,yk,x}. Then x\ G 
Adj(?/), yk G Adj(x) and xy bisimplicial imply that x\yk G E, a contradiction. Thus 
G is chordal bipartite. • 
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We next examine the applications of the above proposition. 

A bipartite graph G = (X, y, E) is said to be a complete edge reduction bipartite 

graph if the edges in E can be ordered in a sequence {#12/1,..., x m y m } , where Xiyi 7-

Xjyj for i ^ j and each Xkyk is bisimplicial in the bipartite graph induced by G on 

the set of edges {xkyk,..., Xmy™}, for k = 1 , . . . , ra. 
The following is a consequence of Proposition 2.L 

Theorem 2.2. A bipartite graph is chordal bipartite if and only if it is a complete 

edge reduction graph. Moreover, if a bipartite graph G = (X, Y, E) is a complete 

edge reduction graph and xy is a bisimplicial edge in G, then (X, Y,E — {xy}) is a 

complete edge reduction graph also. 

The above theorem leads to simple algorithm that can be used to determine 
whether or not a bipartite graph is chordal or not. It consists in successively elimi
nating bisimplicial edges. The bipartite graph is chordal if and only all its edges can 
be eliminated in this way. Unfortunately this algorithm is not time efficient. 

Another consequence of Proposition 2.1 involves coincidental zeros that may ap
pear during Gaussian elimination. 

An arithmetic zero in the Gaussian elimination process is a zero entry created as 
a result of numerical coincidence. Zeros in the original matrix are called generic. 

As mentioned in Chapter XII of [4], a matrix A can be reduced by perfect Gaussian 
elimination to a matrix with at most one nonzero element on each row and column 
if and only if the bipartite graph associated with the nonzero-pattern of A has a 
perfect edge elimination scheme. A problem occurs, if an arithmetic zero appears 
during the process causing the disappearance of a bisimplicial edge in the associated 
bipartite graph, crucial for the perfect Gaussian elimination. For example, consider 
the matrix 

/ 0 1 1 0 o\ 
0 1 1 0 0 

0 0 1 1 0 
0 0 0 1 1 

\o 0 1 0 1 / 
The associated bipartite graph with A has the perfect edge elimination scheme <p = 
[#i2/2, £22/3)^32/4, £42/5]. Any perfect Gaussian elimination must use as first pivot the 
(1,2) or the (2,2) entry. This will create at the next step a situation in which 
the unique entry corresponding to a bisimplicial edge is 0, so a perfect Gaussian 
elimination cannot be performed on A. 

Let ip = [^(1)2/^,(1), • • • ,#<p(fc)2Mfc)] be a perfect edge elimination scheme for the 
chordal bipartite graph G = (K, Y, E) and let A be matrix having G as associated 
bipartite graph. Consider the Gaussian elimination process of A subordinated to <p. 
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Assume that at step j , the entry a^yjj/^y) is 0 due to an arithmetic coincidence, so it 
cannot act as a pivot. The bipartite graph Gj obtained by deleting the edge x<p(j)y<p(j) 
from GX+Y-SJ, where Sj is given by (1.1) is chordal bipartite by Proposition 2.1. 
Thus Gj has another bisimplicial edge e. If in the partially reduced matrix the entry 
corresponding to e at this moment is 0, we can eliminate e and look for another 
bisimplicial edge. If we cannot find in this way a nonzero entry, the submatrix 
subordinated to GX+Y-SJ is zero. In conclusion, it is alway possible to carry out 
perfect Gaussian elimination on matrices with a chordal bipartite associated graph, 
without worrying about arithmetic zeros. 

3 . SEPARABLE CHORDAL BIPARTITE GRAPHS 

In this section we present a property of minimal edge separators of chordal bipartite 

graphs. It is a bipartite generalization of a result mentioned as Ex.12, Ch.IV in [4]. 

Theorem 3.1. Let G = (X, Y, E) be a separable chordal bipartite graph and let 

S be a minimal xaya, Xbyb separator. Then there exists a vertex x'a in the connected 

component ofGx+Y-s containing xaya such that Sy C Adj(x;
a). 

P r o o f . Let A and B be the connected components of GX+Y-S containing xaya, 

respectively Xbyb- Assume the statement of the theorem is false. Select xm a x G XA 

such that card (Adj(xmax) n Ys) ^ card (Adj(a;) n Ys), for any x G XA-

Define the set 

F = {x G XA I Adj(rr) n Ys <JL Adj(a;max) n Ys} 

If F = 0, by the minimality of 5 we have Adj(.rmax) = Ys and the result follows. 
Let {x'a, yi, xi,..., Xk = imax} be a shortest length path through A connecting a 

vertex in F to xm a x . It is clear that Xj £ F for any j = l , . . . , f c - l . Since x'a G F , 
we can choose ys G Adj(a;max) n Ys - Adjfc'J and y's G Adj(a;'0) n Ys - Adj(a;max). 
Since x'ays £ E, the shortest path in A from ys to y's must have length at least four. 
Since S is minimal, there exists a minimal length path from ys to y's through B. 
We obtain in this way a cycle {ys, x[,..., y's, x'p,..., ys} of length greater or equal 
to 6. This cycle is chordless because no vertex in A can be connected to a vertex in 
B. This completes the proof. 

A proof based on induction on the number of vertices of G can also be provided. 

• 
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4 . EDGE ADDITION TO CHORDAL BIPARTITE GRAPHS 

Motivated by a conjecture in [3] concerning minimum rank completions of partial 
matrices, we prove in this section that it is possible to add an edge to any vertex 
of a chordal bipartite graph such that the resulting graph is also chordal bipartite. 
Similar results for chordal graphs have been successfully used in the theory of positive 
definite completions in [6] and in many other papers later. 

It is known that any nonseparable bipartite graph is chordal bipartite ([4]). In [7] 
and [1] there is remarked that a bipartite graph G = (X, Y, E) is nonseparable if and 
only if any matrix having G as associated bipartite graph is permutation equivalent 
to a block lower triangular matrix. As consequence of the latter result we mention 
the following. 

Proposition 4 .1. Given any nonseparable bipartite graph G = (X,Y,E) and 

x G X with Adj(:r) 7*- Y, there exists y eY such that G' = (X, Y,EU {xy}) is also 

nonseparable. A similar statement holds for any y eY with Adj(y) 7-= X. 

The above result plays a key role in the theory of contractive completion of partial 
matrices (see e.g. [7] and [1]). 

Theorem 4.2. Let G = (X,Y,E) be a chordal bipartite graph and x e X with 
Adj(^) 7-- y Then there exists y eY such that G' = (X, Y, El) {xy}) is also chordal 
bipartite. A similar statement holds for any y eY with Adj(u) 7-- X. 

P r o o f . We have already discussed the case when G is nonseparable in Proposi
tion 4.1. We assume that G is separable and prove the theorem by induction on ra, 
the number of edges of G. For ra ^ 4 the result is immediate. Suppose the theorem 
is true for chordal bipartite graphs with less than ra edges and let G = (X, Y, E) 
be a separable chordal bipartite graph with ra edges. By Theorem 1.2, G has the 
separable bisimplicial edges xaya and xDyh. By Proposition 2.1, the bipartite graph 
G" = (X,Y,E — {xaya}) is chordal bipartite. 

Let x e X, x 7-- xa with Adj(:r) 7-= Y. By our assumption, there exists y eY such 
that (X, y, (E U {xy}) - {xaya}) is chordal bipartite. 

We first assume that y 7-= ya and prove that in this case (X, Y,E\J {xy}) is also 
chordal bipartite. Assuming that G' is not chordal bipartite, G' has a chordless 
cycle {x0 = x,y0 = y,xi,... ,xk = xa,yk = ya, • • • ,Hp,£p+i = x} of length greater 
than 4. Since xaya is bisimplicial, yk-iXk+i € E, a contradiction Thus G' is chordal 
bipartite. 

We next consider the case when y = ya and assume that G' = (X,Y,EU {xya}) 
is not chordal bipartite. Then there exists a chordless cycle in G', {x0 = x,y0 = 
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ya,xi = xa, 2/1, . . . , Zp+i = x} of length greater than 4. It is clear that xy\ £ E. Let 

in this case Ga be the subgraph of G induced by X + (Y - {ya}). By our assumption 

we can add the edge xy', y' 7-= ya to Ga and obtain a chordal bipartite graph G". 

Assume that G'a = [X, Y, Eu{xy'}) is also not chordal bipartite. Then there exists a 

cycle in G'a, {x'0 = x,y'0 = y',x'1,y'1,...,x'k,y'k = ya,... ,x'v+1 =x},k> 1, of length 

greater than 4. Then, since x'kya, x'k+1ya and xaya is bisimplicial in G we must 

have x'kyi, x'k+1ya € E. Thus {x'0 = x,y'0 = y',x[,... ,x'k,yi,x'k+1,... ,x'p+1 = x} 

is a cycle in G" of length greater than 4. Since G" is bipartite chordal, we have 

xyi G E, a contradiction. Thus either G' or G" is chordal bipartite and this solves 

the problem when x 7-= xa> 

In the case x = xa, we modify the previous proof by replacing xa by Xb, ya by 2/6 

and x by x a . Thus there exists y e y - Adj(xa) such that G' = (X, Y,EU {xay}) is 

chordal bipartite. This completes the proof. • 

We end by stating a possible generalization of Theorem 4.2. Let G = (X, Y, E) 

and G' = (X, Y, E') be chordal bipartite graphs such that E C E'. Then there exists 

an edge e e E' - E such that G" = (X,Y,EU {e}) is also chordal bipartite. This 

latter result is known to be true for chordal graphs (see [9] and [2]) but it is unknown 

for chordal bipartite graphs. 
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