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Czechoslovak Mathematical Journal, 47 (122) (1997), Praha 

ANGULAR LIMITS OF THE INTEGRALS OF THE CAUCHY TYPE 

JOSEF KRAL and DAGMAR MEDKOVA, Praha* 

(Received September 15, 1994) 

Dedicated to Professor Fumi- Yuki Maeda on the occasion of his sixtieth birthday 

Abstract. Integrals of the Cauchy type extended over the boundary dA of a general 
compact set A in the complex plane are investigated. Necessary and sufficient conditions 
on dA are established guaranteeing the existence of angular limits of these integrals at a 
fixed z G dA for all densities satisfying a Holder-type condition at z. 
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MSG 1991: 30E20 

We shall identify the points (x,y) in the Euclidean plane U2 with the complex 
numbers x + iy in C (i is the imaginary unit). The scalar product of u, v G C will 
be denoted by (u,v) := Reuv where v is the complex conjugate of v. If U C C is 
open, then CQ ' (U) stands for the class of all continuously differentiable real-valued 
functions <p with a compact support spt </? C U. 

Let now A C U2 be a Lebesgue measurable set with a compact boundary dA, 

G = R2 \ A. The class of all restrictions to dA of functions in C^l)(R2) will be 
denoted by 

C^(dA):={<p\dA-(peC^(U2)}. 

Given / G C^(dA) and z G C \ dA we choose a (pf G ̂ 1}(IR2) such that <pf = f on 
dA, z $L spt iff and define the Cauchy's type integral 

^^••=ҺSЂ-øåx^ 
G 
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where A2 is the Lebesgue measure in the plane, d = \(d\ + id2) and dj denotes the 
partial derivative with respect to the j-th. variable (j = 1,2). The imaginary and 
real parts 

WAf(z) := lmJCAf(z), PAf(z) := ReJCAf(z) 

will also be investigated. It is not difficult to verify that JCAf(z), WAf(z), PAf(z) 
do not depend on the choice of </?/ with the properties specified above (compare 
Lemma 2.1 in [7]). If the boundary dG is a properly oriented smooth Jordan curve 
then JCAf(z) reduces to the well-known Cauchy's type integral 

1 [Ш 
2ҡ J z-

дG 

><« <* 

while WAf(z) is the value at z of the double layer potential with momentum density 
/ and PAf(z) is the so-called modified logarithmic potential in the sense of § 12, 
chap. II in [16] (cf. also [10]). It is easily seen that, for each / £ C^l\dA), JCAf: 

z i-> JCAf(z) is a holomorphic function on C \ dA, whence it follows that WAf: 

z H-> WAf(z) and PAf: z i-> PAf(z) are harmonic on the same set (compare Lemma 

2.4 in [7]). We shall first specify conditions on A guaranteeing natural extendability 

of JCAf, WAf, PAf to more general functions / on dA. 

Writing 

B(z,r):={£6 R2 • 

we denote by 

B(z,r):={t;eR2;\S-z\<r} 

d(A, z) := limsup X2[B(z, r) n A]/X2[B(z, r)] 
riO 

the upper density of A at z and define the so-called essential boundary of A by 

deA:= {ze U2;d(A,z) >0,d(G,z) > 0}. 

If U C C is open, then A(U) and H(U) will denote the space of all holomorphic func­

tions and harmonic functions on U, respectively; both A(U) and H(U) are equipped 

with the topology of uniform convergence on compact subsets of U. 

Let rj E dA be a fixed point and let q: dA -+ [0, +oo[ be a lower-semicontinuous 

bounded function on dA which is strictly positive on dA\{rj}. C(dA,q) is the space 

of all continuous functions / : dA —> U satisfying 

f(z)-f(r))=o(q(z)), z-+ri, z e dA; 

defining 

ll/IU,o = s u p ^ ^ W , zedA\{r,}, 
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we introduce the norm 

í|g.O+ SUp | / ( * ) | 
zčdA 

in C(dA,q) which turns it into a Banach space; clearly, | | . . . | | g > u is an equivalent 
norm in the subspace 

C0(dA,q) = {f EC(dA,q); f(n) =0}. 

Let Ai denote the 1-dimensional Hausdorff measure (= length in the sense of [17], 
chap. II, §8). Now we are in position to formulate the following result establishing 
necessary and sufficient condition for continuity of the operators 

(1) KA 

(2) WA 

(3) PA 

f -»• K.Af, 

f -• WAf, 

f H- PAf. 

Theorem 1. The following conditions (I)-(IV) are mutually equivalent: 

(I) J q(z)d\1(z) _ < +00. 

дeA 

(II) The operator (1) acts continuously form C(dA, q) n C^(dA) into A(C \ dA). 

(III) The operator (2) is continuous from C(dA, q) n C^(dA) into H(U2 \ dA). 

(IV) The operator (3) is continuous from C(dA, q) n C^(dA) into H(U2 \ dA). 

R e m a r k . The above theorem will be proved below. 

Assuming (I) and taking into account that C(dA, q) n C ^ (dA) is dense in C(dA, q) 

we extend the operators (1), (2), (3) by continuity to the whole space C(dA,q). For 

any / e C(dA, q) we have then 

JCf = JCAfeA(C\dA), 

wf = wAf en(u2\dA), 
Pf = PAfeH(U2\dA) 

and we shall be concerned with the existence of angular limits of these functions at 

rj. For this purpose it appears useful to introduce the following geometric quantities 

characterizing the complexity of the boundary dA near n e dA. 
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Notation. For Q > 0 denote by 

(4) W*(0,!7) :=5>(0> tedeA, |f-171 = 5, 

the sum counting, with the weight g(f), all the points f in the intersection of the 
essential boundary deA with the circle dB(r),o). (Note that this sum equals +oo if 
deA fl 8B(T),Q) is uncountable, because q(£) > 0 for f € 3.4 \ {rl}.) We shall see 
below that 

Q^W(Q,T)) 

is Lebesgue measurable which permits us to define for any r E ]0, +oo] 

r r 

(5) Wr(rj) = j\-'W(Q,r))dQ, ul(r)) = Jw(Q,r))dQ. 
0 0 

Denoting by 

H(r),0) = {r) + t0,t>O} 

the half-line issuing at rj in the direction of 0 E dB(0,1) we introduce the sum 

(6) t ; * ( M ) = 5 > ( 0 , £Eae-4nH(77,0) 

counting, with the weight q(£), all the points £ in the intersection of the essential 
boundary deA with the half-line H(r),0), and a similar sum 

(7) V*(M) = J>-»?|fl(0, f € 4-4 n-H^ff) nfl^.r) 

extended over all points f in the intersection of the essential boundary deA with the 
segment H(rj, 0) n B(r),r), where now the weight at f is given by q(£)\£ — r)\. Again, 
the functions 

(8) 0^V«(0,T)), 0 ^ ^ ( 0 , 7 , ) 

will be shown to be Ai-measurable on 8B(0,1) which permits to introduce the quan­
tities 

(9) vЧ(*) = Ł J vЧ( ^dX^ 
ӘB(0,1) 

V ' ( ч ) = è / V?(M)dAi(*). r > 0 -
ӘB(0,1) 
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For S C IR2 we denote by clS the closure of S, by contg(S,77) the contingent of 
S at 77 (cf. [17], chap. IX, §2) consisting of all the half-lines H(rj,0) for which there 
exists a sequence of points zn £ S \ {77} such that 

lim 7-^ - = 0, lim zn = 77. 
n-yoo \zn — 77I 71-+00 

With this notation we may present the following result. 

Theorem 2. Assume (I). Let S C U2\dA be a connected set, 77 € c lSDdA and 

denote by 

§ = {2r}-z; z e S} 

the reflection of S at 77. If 

(10) contg(d.A, 77) fl contg(S, 77) = 0 = contg(<9A, 77) n contg(,§, 77) 

then the following assertions (P), (W), (K) hold: 

(P) The finite limit 

lim Pf(z) 
z^tr) 

zes 
exists for each f € C(dA, q) iff 

(11) u«,(r,) + s u p r - 1 ^ ) < 00. 
r>0 

(W) The finite limit 

lim Wf(z) 
Z-+Г) 
zЄS 

exists for each f Є C(ӘA,q) iff 

(12) vq(r)) + s u p r _ 1 

r>0 
uq(rj) < OO 

(K.) The limit 

(13) lim fCf(z) 
Z—ЇT) 

zЄS 

(ЄC) 

exists for each f € C(dA, q) iff 

(14) u«,(»7)+i;«(t7)<oo. 

597 



Now we shall return to the proof of Theorem 1. Let / G C^(dA), z G C \ dA and 

suppose that <p = ipf has the properties specified in the definition of ICf(z). Writing 

z = x + iy, £ = fi + î 2 we have 

- й v ( 0 ( Í 2 - y ) + Э . v ( Ш i - a O 
- ~ l -G l í - * l 

g i y ( 0 ( 6 - » ) + 92V>(0(6-y) 

G lí"*.2 

dA2(0 

dЛ 2 (0-

Defining 

(15) 

we obtain 

(16w) 

(16P) 

Л г ( í ) -=- - - lП: * 2к |--í|' Ć # * , 

lV/(z) = Im/C/(z) = / ( g r á d v ( 0 , g r á d/ i 2 ( Ç ) ) dA2(f), 
G 

P/(z) = Re/C/(z) = j (grad^(z),-igrad/i 2(e)) dA2(£). 

We see that JV/ coincides with the double layer potential as investigated in [11] 

where the equivalence (I) <-> (III) has been established. Once we prove (I) «=> (IV) 

the proof of Theorem 1 will be complete, because (II) is equivalent with simultaneous 

validity of (III) & (IV). We start with 

P r o o f of ( I ) => ( I V ) . Assuming (I) and noting that q > 0 on dG \ {n} we 

observe that Xi(V D deG) < oo for each open bounded set V with clV C U2 \ {r]}. 

This implies that G has locally finite perimeter in IR2 \ {rj} (cf. [5], chap. 4 and 

[19], section 5.8) which implies that, for each (Revalued function v = v\ + iv<i with 

components Vj G CQ(U2 \ {rj}) the divergence formula holds 

(17) ЛðiiЛ + Э.«-)dÀ2 = / { n G , г ; ) d A ь 

ӘG 

where dG is the reduced boundary of G and nG: dG -> 95(0,1) is the exterior 
normal of G in Federer's sense which are defined as follows: 

dG consists of those £ G U2 for which there is a unit vector n G dB(0,1) such that 
the half-plane 

Hn(0:={z£U2; (z-£,n)<0} 

satisfies 
d{Hn(0 \G,S) = 0 = d(G \ tfn(£U); 
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such an n = nG(£) is uniquely determined and is then called the exterior normal of 
G at £ in Federer's sense. 

dG is a Borel set (cf. [4]) contained in deG and the fact that G has locally finite 
perimeter in R2 \ {77} implies that 

(18) X1(deG\dG) = 0. 

Assume first that / G C^l\dA) vanishes in some neighbourhood of 77 in dA; the 
corresponding <D/ = <D can then be chosen in CQ (R2 \ {rj}). Applying the divergence 
formula (17) to v(£) = iy>(£) |/~J2 (which vanishes in some neighbourhood of z 
together with <D) we transform (16p) into 

(19) Pf(z) = 1 J m(nG(0,ijl^)dX1(0. 

dd 

Thanks to (I), validity of (19) extends to all / in C^(dA)nC0(dA,q) (compare the 
reasoning in the proof of Lemma 2.1 in [7]). 

It follows from the definition of JCAf that, given / G C^l\dA), 

KAf(z) + )CGf(z) = ^l^0dX2(O = O. 

We may thus suppose without loss of generality that G is bounded (replacing A by 
G would only change the sign of JCf = JCAf). Doing so we have for z € int A (= the 
interior of A) and any g constant on dA 

ICg(z) = 0; 

if z € intG, g(dA) = {c}, then we may choose <pg € CQ (R2) and B(z,r) C intG 
with sufficiently small r > 0 such that (pg = c on clG \ B(z,r) and (pg = 0 in some 
neighbourhood of z, which results in 

B(z,r) dB{z,r) 

We see that for any g constant on dA 

Pg(z) = ReJCg(z)=0, 
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whence we get by (19) for any / G C^(dA) 

(20) Pf(z) = i - j[f(0 - / ( r 7 ) ] ( n G ( 6 , i r | ^ ) dA!(fl. 

SG 

Writing 

dist(*, M) := inf{\z - £|; £ G M} 

for the distance from z G IR2 to M C U2 we arrive at 

(21) \Pf(z)\ < ^[dist(z,ao)]-1 ll/H, JqdXi, 
ӘG 

feCW(dA)nC(dA,q), zGC\dA, 

which proves (IV). 

P r o o f of ( I V ) =>- ( I ) . Assuming (IV) we shall first prove that G has locally 
finite perimeter in IR2 \ {n}. Denoting by de . . . = (0, grad...) the derivative in the 
direction of 0 G dB(0,1) we have to verify that 

(22) sup (Jd0^d\2;^ G C£\V), \ij>\ ^ 1J < +oo 

G 

for any bounded open set V with cl V C IR2 \ {n} and any 0 G dB(0,1). 

Fix such a V and 0. As in Lemma 1 from [11] we shall employ the argument from 

the proof of Theorem 2.12 in [7]. 

Choose points z1, z2, z3 G U2\dG which are not situated on a single straight line. 

The assumption (IV) guarantees the existence of a c G [0, +oo[ such that 

(23) / G C™(dA) H C0(dA, q) =-» \Pf(zk)\ ^ c\\f\\q,0, 1 ̂  k < 3. 

Put Bj = {1,2,3} \ {j} and denote by Uj the straight line containing the points in 

{zk; ke Bj}. Since 
3 

\J(U2\Uj) = U2 

5=1 

we may choose 

ajeC^iU^muUj}) (j' = 1,2,3) 
such that 

600 
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is identically equal to 1 in some neighbourhood of cl V. 
tttl>ec£\v) then 

Jde^d\2 = / 0(03*^(0 dA2(0. 
G G 

Thus (22) will be verified if we show that 

(24) sup | Jaj(0de^(0dX2(0\ 1> € C ^ V ) , H < 1J < +oo, 
G 

je {1,2,3}. 

Fix j £ {1,2,3} and notice that the two vectors f - zk (k E Bj) are linearly indepen­
dent for all f sufficiently close to spt aj. This guarantees the existence of infinitely 
differentiable real-valued functions ajfe(f) such that (cf. (15) for the notation) 

6 = - ^2 «A:(0-grad/izfc(0 
keBj 

for all f in some neighbourhood of spt aj. Hence 

JajdejdX^ J2 /a J «)a f c (0(gradV(0,- igrad/ l 2 . (0)dA 2 (0 . 
G keBi G 

Fix j , k and put Fj^(0 = aj(Oafc(0, s o t n a t 

Fj,fceC(1)(M2\{zfc}) 

and 

/ Fj)fc(grad^,-igrad/i2fc) dA2 = / (grad(Fj|fc^), -igrad/izfc) dA2 

G G 

- / ^(gradFi|fc,-igradhzfc) dA2. 
G 

Clearly, the last integral has a bound independent of ip (e CQ(V), \ip\ ^ 1): 

/ t/>(gradFj)A:,-igrad/i2fc) dA2 

G 

^ ^ / I gradF;,,(0| • |f - ^ l " 1 dA2(0 < +oo. 
G 
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Noting that q > 0 on dG n spt ctj D dG n spt F^ we fix a € [0, +oo[ such that 

|F i | fc | < a g ondG, j e {1,2,3}, k G Bj. 

Denoting by f^k the restriction of Fj^ip to <9G we get from (16p) 

y (grad(F i f^),-igradftz f c) dA2 = Pfj,k(z
k), 

G 

whence it follows by (23) 

f (grad(Fj,fcV),-igrad/i2*:) dAs < a c , j e {1,2,3}, fceBj-

and (24) is verified. 

Now when we know that G has locally finite perimeter in (R2 \ {rj} we have for 

each / e C^\dA) vanishing in some neighbourhood of 77 in dG and any z G IR2 \ dG 

the formula (19) which implies that 

/ q\(nq, - igrad/i2>|dAi 

дG 

= sup{P/(z); / G cM(dA)nCo(dA,q),T,4 spt/, | |/ | |,,0 ^ 1}, 

z e U2 \ 8A. 

Setting z = zk we get by (23) 

/ a | ( n G , - i g r a d / i ^ ) | dAi < c, k G {1,2,3}. 

dG 

Since the points z 1, z2, z3 are affinely independent we have 

3 

£ G dG => £ | (nG(0, - igradMO) | ^ 6 
fc=i 

for suitable b G ]0, -|-cx)[, whence 

3 

fqdXx O - 1 ^ /g | (n G , - ig rad / i 2 « , ) |dAi ^ 36 - 1 

J l 1 ^ k=i: -
әG әG 

which proves (I). This also completes the proof of Theorem 1. • 
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Remark 1. In what follows we always assume (I). As verified in the course of 
the proof of Theorem 1, the operator (3) extends continuously to C(dA,q); for any 
/ G C(dA, q), the value of Pf G H(R2 \ dA) at z G R2 \ dA is given by the formula 
(20). 

As we know from [11], also the operator (2) extends by continuity to C(dA, q) and, 
for any / G C(dA,q), the value of Wf G rl(R2 \ dA) a t z G R 2 \ 9 . 4 is given by the 
formula 

(25) Wf(z) = -f(n)XG(z) + j[f(0 - f(rj)} (n G (0 ,grad/ i 2 (0> d A i ( 0 , 

SG 

where XG denotes the indicator function of G (cf. Remark 1 in [11]). 
Combining these results we conclude that the operator (1) extends by continuity 

to C(dA, q); for any / G C(dA, q), the value of K/ G ,4(C \ dA) at any z G C \ dA is 
given by the formula 

(26) /Cf(z) = -if(rj)XG(z) + ^ J m
zZ

f^]rG(0 d M O , 

SG 

where rG(£) = i n G ( 0 , £ € dG. 

The weight q has so far been defined on dA only; we extend it to R2 defining 
q(z) = supq(dA), z G R2 \ dA; thus q: R2 -> [0,oo[ remains bounded and lower 
semicontinuous on R2, q > 0 on IR2 \ {77}. 

Next we shall prove several auxiliary results needed for the proof of Theorem 2. 

Lemma 1. The function g 1-* Kq(g,rj) defined by (4) is Lebesgue measurable on 
]0, oo[ and ifu^(rj), U?(rj) are given by (5), then we have for any r G ]0,00] 

(27) ««(r/) - s u p { y ( g r a d 9 ( 0 , i | | ^ i ) d A 2 ( 0 ; 

G 

<p e C(
0

1} (B{V, r) \ {»?}) on spt <p, \<p\ < g } 

= / ^ ) | ( n G ( a : ) I i ^ i ) | d A 1 ( x ) ) 

aSnB(77,r) 

(28) Wr{t})= J Q(0\(na(0,i^^)\dXi{0, 

dGnB(77,r) 

where we put B(rj, 00) := R2. 
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P r o o f. Fix r Є ]0, oo] and put for j Є {1,2,3,4} 

= {V + Qвiв ;0<в<r,{j-2Ą< < Ą), 

so that 
4 

U ^ = ^,r)\w = U. 
J = I 

Choose continuously differentiable functions fj on U such that 

4 

£ / ; = l, / i ^ O , £ = 0 onU\U j ( 1 < J < 4 ) . 

Define for ^ 6 C ^ ( [ / ) 
ад = /(åř«iv>(o,i||--^|)dA2(o. 

G 

It is not difficult to show that 

(29) s u p i L ^ ^ G c ^ ^ U ) , ^ ! < ? o n spt(D} 
4 

= ^supjFOD j ) ; <^ € ^ ^ ( U ) , ! ^ ! < fjq on s p t ^ } . 

i= i 

Consider <Di G CQ (U) such that |<pi| < /i<? on spt(Di (whence spt<Di C Ui). Em­

ploying the diffeomorphism 

introducing the polar coordinates O, 6 by 

*(Q,0) =r] + Qeie, 0<Q<r, ~\<0 <\ 

we get 

L(<Pi)= J (grad(Di(0,i||^)dA2(0 = y,am(^^)d^ 
Gnc/i G 

where we have put 

G = ^-^U ! HG), <pi(D,0) = y>i(*(e,0)) 
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and do denotes the derivative w.r. to the variable 6. Denoting by q\ = fi(^l)q(^l) the 
composition of # and f\q we have clearly <p\ < q\ on spt (p\ C ]0, r[ x ] — | , | [. If </>i 
runs over {<Di e CQ (U); |y?i| < / i# on spt<Di}, then the corresponding (p\ = (Di(^) 
runs over the class 

M = \q>x ^ ^ ( ^ r l x J - ^ J ) ; | £ i | < q i on s p t f t } . 

Referring to lemma 5 in [11] we obtain that the function 

«i: Q -• 2>fc?'*)' (<?,*) € 9«Gfl(W x ]-\,\{j 
e 

is Lebesgue measurable and 

r 

sup j / d0(f1(g,6)dg; <pi£Ai> = h^dg. 

G o 

Since ^ is a diffeomorphism, it is easy to see that for x e ]0, r[ x — | , | the following 
equivalences are true: 

dG($(x)) = 0 0 d6(a;) = 0, 

dA(*(x)) = 0 <-> 3^ (a) = 0 (here A = * _ 1 ( A ) ) ; 

hence 

*(x) edeG &xe deG, 

so that 

fti(tf) = £/i(f)<1(0, f € 9eGH {77 + De^,-| < 0 < £}. 

Noting that / i vanishes on U \ U\, we have 

fiite) = £ A(0?(0, € € aec? n {f; |f - i,| = rf. 

We have thus proved that 

r 

sup{L(<pi); y>i G C ^ ^ U ) , ! ^ ! < / i ? o n spt<Di} = nx(g)dg. 

o 

Defining 

ftj(e) = £ / j ( £ M 0 , e e aeGn {^; |£ - I J | = e} 
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we get similarly 

r 

sup{L(<^); <pj £ C£\U), \<p5\ < fjq on spt ^ } = / n5(g) dg 

o 
forj E {1,2,3,4}, 

which together with (29) proves 

sup{L((.D); (peC^](U),\(p\ <qon spt(D} =uq(rj). 

We have seen in the course of proof of theorem 1 that (I) implies that G has locally 

finite perimeter in R2 \ {rj}. Using the divergence formula we have thus for any 

¥>€<#> (CO 

| ( grad^) , i |^ | )dA 2 (0 = |^) ( i |^ i ,n G (e) )dA 1 (0 , 
a ea 

whence 

sup{L(<^>); >p G c£\U),\<p\ <qon sptip} 

= I ^\(І^,ПG(0)\<ІW 
dGnB{r),r) 

and the proof of (27) is complete. • 

It is easy to observe that boundedness of q: R2 -> [0, oo[ is irrelevant for validity 

of (27). Defining 

[ 0 , £ = r) 

and applying (27) to Q instead of q we obtain 

u«(i.)= «?(»,)= J q(0m-v\\(nG(0,i^^)\d\i(0 
dGnB(T],r) 

which is just (28). 

Lemma 2. Define 

H"(M)= í gdAi 

мnдeG 
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for any Borel set M C R 2 . Then 

(30) 

and, in case vq(rj) < oo. also conversely 

(31) 

supr lџq(B(r),r)) < oo -=> supr luq

r(rj) < 00 
r>0 r>0 

supr гuq(r)) < oo =-t> supr lџq(B( ,r)) < 00. 
r>0 r>0 

P r o o f . Using Lemma 1 we get 

<(n)= J q(Q\(nO(t),i±Zl.)\d\l{t) 

dGnB(r),r) 

€ / q{Od\t(t) = џЧ(B(r,,r)), 

dGnB(rj,r) 

which implies (30). Since the unit vectors 

lí-чľ lí-чl 
(£?-».) 

are orthogonal, we have 

c-»? 
K~r?l 

(32) £ 1 , ţєдG\{n}. (»°«).|^i>l+!(-0«>^) 
Integrating over <9G fl B(rj,r) and using (18) we obtain 

/i'(B(rj,r)) = / gdA^ / g ( o | L n O ( 0 > i l ^ ^ | d A l ( 0 

aGHB(r7,r) aGnB(77,r) 

+^ / «(0|(»°(0,||r^)|^i(0-
aGnB(77,r) 

The first integral in the last sum equals uq(rj) by Lemma 1. The second integral can 

be estimated with help of (27) from Lemma 3 in [11] as follows: 

/ H( n G ( ^j f^) l d A i ( e ) 

= 2TT / q(0\^-v\-\(nG(0,gradhr,(0)\dX1(0 

§GnB(r),r) 

^ 2nr / q\ (nG,gradli7 y) | dAi = 2nrvq(rj). 

dGnB(r),r) 

дG 

607 



We thus arrive at 

fiq(B(r,,r)) ^uq(r]) + 2Krvq(r]) 

which yields (31) in case vq(rj) < oo. D 

P r o o f of t h e a s s e r t i o n (W) in T h e o r e m 2. Combine Lemma 2 

and Theorem 3 in [11]. D 

Combining Lemma 2 with Theorem 2 in [11] we obtain 

Theorem 3. Suppose that Sj C U2 \ dA are connected sets such that 

z - rj 

zЄSj 

rjeclSj n dA, lim - '- = 0, (j = 1,2). 
z->77 \Z - 77| 

If the vectors 6\, 62 are linearly independent, then (12) is necessary for the existence 

of the finite limits 

HmWf(z) (J = 1,2) 
2—*T) 

zeSj 

for all f E C(dA,q); if, besides that, 

contg(dA,r])ncontg(Sj,r]) = 0 (j = 1,2), 

then (12) is also sufficient. 

Lemma 3. Let S C (R2 \ dA, n G cl S (1 dA. Then the finite limit 

(33) lim PAf(z) 
Z—¥T] 

zes 

exists for each f G C(dA, q) iff 

(34) s u p | g ( 0 | ( n G ( 0 , i | | ^ ) | d A 1 ( 0 < oo. 

SG 

P r o o f . We shall first show that validity of 

l imsup |P A / (z ) | < 00 
z—ïri 
zЄS 
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for all / G Co(9.4, q) implies (34). Observe that, for any fixed z G (R2 \ dA, the norm 

of the linear functional 

Lz:f^PAf(z) = ^ l/(0(nG(ai||Z^)dA] (0 
ӘG 

on Co(dA,q) is given by 

sup iŁ I f{i)(nG{oл^z )dЛi(ð; ìf] ̂ qje c°{дA^} 
ӘG 

= ifM(n°^iw^)\dXi^ 
дG 

If the values attained by the functional {Lz}zes at any / G C0(dA,q) remain 

bounded, then the Banach-Steinhaus principle of uniform boundedness guarantees 

(34). Conversely, assume (34). Fatou's lemma yields 

(35) 

where 

(36) 

f Mi^^ihw)^0 < s, 

ӘG 

: -=sup |< 2 (0 | (n o (0, i- | ---^-) |dA 1 (0, 

ӘG 

so that we may define for any / G C(<9̂ 4, q) 

-3 > 1/(»?)--/[/(0-/(»?)](no(0.i||f^-)dA1(0. 
ӘG 

We shall show that 

(37) lim PAf(z) = Pлf(V), fєC(ӘA,q). 
z-+ri 
zЄS 

It will suffice to verify (37) for / G C0(dA,q) only, because PAf(z) = 0 (z G S) for 

constant / by (20). Fix an arbitrary / G Co(dA,q) and e > 0; choose 8 > 0 such 

that 

tedAnB(n,6)^\f(0\<eq(0. 
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Then 

dAi(í) \Pf(z)-Pf(v)\^ I |/(0|.|(n(0,i-i-i-) 
[v,S) 

I ìm •|(nrø'iiíг|î)ldA-rø 
ÌB(í7,<5) 

/ IЛвl-|(-(в.i-^-i]|£^)|«.(0 
vВ(т,,Ä) 

/ ? ( 0 | ( n ( 0 , i | | ^ ) | d Л i ( 0 

aGnB(77,í) 

+ 
áGnB(77,<5) 

+ 
áG\B(77,5) 

dG 

+ e 

dó 

\t-z\2< 

/ « ( í ) | ( n ( 0 . i | | r ^ í ) | dAi(0 + Jí/(z), 

where 

*/(*) = / 1/(01 • | ("(0, i j | r^-i | | r^) |dA1(o. 
§G\B(T,,6) 

Using the notation from (36) we have 

\Pf(z)-Pf(v)\^2es + J6f(z). 

Noting that ii/l/ia -+ 'i/TJla uniformly w.r. to £ e d o \ B(TJ, <5) as - —>• 77 (~ e 5), 

we conclude that 

\imsup\Pf(z)-Pf(r1)\^2es 
z—trj 

zes 

which proves (37), because e > 0 was arbitrary. • 

Lemma 4. Let 5 C IR2 \ <9-4 be a connected set, rj E cl£ n 9.4 and assume (10). 

Then (34) implies validity of the following relations (38)-(40): 

(38) 

(39) 

(40) 

fMi^^ihw)^1® < oo, 

дG 

supr 1nq(B(r),r)) < oo, 
r > 0 

s u p r - / ^ ) | ( n ( 0 , | ^ í ) | d A i ( 0 < c o . 

aGnB(?7,r) 
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Proof . Assume (34). In view of (35), (36) we have then 

/ff(o|<»°(o,i1fE-5-->|dA1(o < -
dG 

and (38) is checked. Next we shall use reasoning similar to that in the proof of 
Proposition 3 in [11]. It follows from (10) that there are constants 6 G ]0,TC/4[ and 
g G ]0, oo[ such that, for f G dG n [B(rj, g) \ {n}] and z G S n B(rj, g), the angle 
enclosed by the vectors 

Z-r) z-t) 
K-r l l ' \z-r)\ 

exceeds 26 and the same holds of the vectors 
f-77 z-n 
K-r l l ' \z-r)[ 

Since rj G cl S and 5 is connected we may assume that g > 0 has been fixed small 
enough to guarantee that 

0 < r < g=> SndB(r),r) ?-0. 

Fix r G ]0, g[, f G dG n £(77, r) and choose z G 5 n dB(r),r). If the vector mG(f) 
encloses with one of the vectors 

(41) ^ * - * 
iz-*?r I * - *? I 

the angle not exceeding |rc — 6", then 

| ( in G (0 ,£ -"> | + | ( inG (0 ,£-*>| > \(inG(0,z-V)\ 

^rcos(-K — 6). 

If both vectors (41) enclose with inG(£) the angle exceeding |TT — (J, then one at least 
of the vectors 

l f - ^ 1 ' K-Ul 
encloses with inG(£) the angle which is less than 

-K-26 + 6=-K-6, 

whence 
\(inG(at-v)\>\t-ri\cos(±K-6). 
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Since |£ — z\ ^ |£ — rj\ + \rj — z\ ^ 2r, we have in any case 

K i n ° ( Q , . - n ) | ^ \(inG(Q,Z-z)\ 1 _, / I 

IC-»I2 të-*l 
^ - r cos ( ? - « ) • 

Hence 

-V9(-?(",»•)) ^ 4 c o s - 1 ( | * - * ) [ | g (0 |< in G (0 , | ^_ r ^ |_ - ) |dA 1 (0 

aGnB(r7,r) 

+ / ?(a|(mGЮ,j|_^_)|dA1(0] ^^cos-ҶÌя-í) • 2 5 . 
K-*l2 ' 

aCnB(77,r) 

If r ^ _?, then r " V (#(*?, r)) ^ _ r V ( ^ 2 ) < °° and (39) is verified. Clearly, (39) 
-=> (40) and the proof is complete. • 

Lemma 5. Assume (38), (40). If S C R2 \ dA, rj G clS n dA and 

(42) contg(5, rj) n contg(<9G, 77) = 0, 

then 

(43) l i m ^ s u p | 9 ( 0 | ( n G ( 0 , i | | f ^ ) | d A 1 ( 0 < 00. 

zes §G 

P r o o f . We shall first show that (39) is a consequence of (38) and (40). Note 

that 

/ ff(0|<"°<0.-ifz^.f>|dAi(« 
tfGn£(r7,r) 

> r - ] J «(0 J <« G (0 , i]f__r_J-> I «-A_ (€) 
OGn£(77,r) 

for any r > 0. Using this together with (32) and (18) we get 

r-y (B(n,r)) < r"1 J _(o[|(n0(0,i-|_^|) 
aGnB(r?,r) 

+ 

Í£ 

K"°(o.^)B<"'(o 
J lW\(n°(í),i^p)\^M) 

ŠG 

+ V-1 I 9(0|(n°(0,|_^|)|dA1(0. 
aGnB(T7,r) 
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We see that 

k:=supr ljiq{B(fq,r)) 
r>0 

is majorized by the sum of the expressions occurring in (38) and (40). The assump­

tion (42) guarantees the existence of constants a, e £ ]0, oo[ such that 

(44) zЄSП B( ,є) => dist(z,дG) ^ a\z - r)\ 

(cf. (0.1) in [3]); we may clearly suppose that 0 < a < 2. According to formula (45) 

from [11] there is a constant c E ]0, oo[ such that 

(45) z Є 5 П B(r], є) => sup r " V {B(z, r)) ^ cfc. 
r>0 

Fix now z e S n £(77, e) and put F = dG n B(z, 2\z - r]\), E = dG\ B(z, 2\z - rj\), 
so that 

Jq(0\(nC{0,i^^)\^i(0 
dG 

= ( / + /)^)|(nG(ai1 |^)|dA1(0. 
F F 

Clearly, 

/«(0|(n°(0,i-|---^-)|dA1(0^/9(OІC-^Г1dA1(0 
F F 

oo (2І2-Г7І)- 1 oo 

= (џq{B(z,Гl)ПF)dt= í џq(F)dt+ [ џq{B(z,Г1)) 
0 0 

M« (_•(*, 2[z-r?|)) V ' _2 , 
^ _Ţ_—^ ì + 1 Г ť(B(z,r))dr. 

dř 

(2N-VІ)-1 

In view of (44) we have fiq{B(z,r)) = 0 for 0 < r < a\z — rj\. Employing (45) we 
arrive at 

_ | Z - T , | 

J Ю\(nG(0л4^)\d\i(0^ck + ck J r - Ч r = ck(l + l n ? ) . 

613 



We proceed to estimate the integral 

Jq(0\(nG(0,^^i^)\dXi(0 
E 

^J^)\(nGm^)\dM(o+Jq(o\^z *-" 
E E 

/ 9 ( 0 | ( n G ( 0 , i | | _ ^ 2 - ) | d A 1 ( 0 + J i + / 2 , 

\S-z\2 lí-í?l2 dAi(0 

§G 

where we have put 

Ii = / « ( O I Í - » I I K _ , , . ie—-»!-« 
E 

= \z-v\Jq(m-z\-2dXl(0-

dAi(f), 

Ii < 

E 

/*ш l£-*7l 2 - l£-~1 2 l 
\І-Z\^\І-ГÌ\ 

dAi(0 

-"/^[^?+ | {-,M{-JdAlK)-
Observe that 

Í Є E = > | í - t 7 | > | í : - z | - | z - r / | ^ | í - - | - i | í - - | = | | í - г | l 

whence 

II < |z • •i?l/«(0 
\i-A 

•dAi(0, 

Il+I2^4J2. 

Note that, for any r > 0, 

( í Є E, |f - - Г 2 > í) =» 2|z - t7| < | í - -| < Г - =• ť < (2|~ - Г7|)-2. 

Hence 

(2|*-*7ІГ 

Í 2 < k - î 7 | У мҶ-5(-,*-ł))dí = 2 |z- î7І / r - V ( - в ( г , r ) ) d r 

0 

oo 

^ 2\z — rj\ • ck • / r ~ 2 d r - - c k . 

2|z-r7| 

2|z-r,| 
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Summarizing we have for z € S n B(n, e) 

/«(0|(»°(0.ij|£^)|<-M0< /••• + /••• 
SG F E 

< cfc(l + l n ^ ) + Jq(^(nG(0,i-^^)\dXi(0 +4cfc 

aS 

which completes the proof of (43). D 

Lemma 6. The functions (8) of the variable 0 e dB(0,1) defined by (6) and (7) 

(where r > 0 is fixed) are Ai-measurable on dB(0,1) and 

(46) J vq(0,V)d\1(0) = J q^n0^,^^)^^ 
dB(0,l) QG 

(47) J Vq(0,n)d\l(e)= J ^ 1 ( ^ ( 0 , 1 ^ 1 ) ^ ^ ( 0 . 
aB(o,i) dGnB(v,r) 

P r o o f . We shall use the following assertion: 
Let q: (R2 —r [0, oof be lower semicontinuous and suppose that G has locally finite 

perimeter in (R2 \ {n}. Define vq(0,n) by (6) for any 0 G dB(0,1). Then 0 ^ vq(9,n) 
is A1-measurable on dB(0,1) and 

i - | t7*(M)dAi(0) = |g(OI ^(O.grad^JOjIdAxtO. 
0-9(0,1) §G 

This assertion was proved in Lemma 3 in [11] (dealing with (Rm for general ra ^ 2) 
under the additional assumptions that q is bounded and strictly positive off {n}. An 
easy inspection of the proof reveals that these additional assumptions are superfluous. 

This gives us the formula (46) and permits us to replace q by the function Q defined 
by 

Q(e) = fqm~Tl1 teB^r^ 
[ 0 , { G K 2 \ % r ) . 

Applying (46) to Q instead of q we obtain that 

0^vQ(0,n)=Vq(0,r1) 

is Ai-measurable on dB(0,1) and (47) holds. D 
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Now we are in position to prove the rest of Theorem 2. 

P r o o f of t h e a s s e r t i o n (P) in T h e o r e m 2. It follows from Lemmas 
3, 4, 5 that the existence of the finite limit (33) for each / G C(dA,q) is equivalent 
with simultaneous validity of (38) and (40) which by Lemma 1 and Lemma 6 amounts 
the same as (11). D 

P r o o f of t h e a s s e r t i o n (K) in T h e o r e m 2. It follows from (P) 
and (W) that the existence of the limit (13) for each / G C(dA, q) is equivalent with 
simultaneous validity of (11) and (12) which, in view of the inequalities 

W i W > ^ ( 9 ) > r - V ( t 7 ) , 

vq(v) >r-lV?(r)) ( r > 0 ) 

amounts the same as (14). 
Thus the proof of Theorem 2 is complete. D 

This theorem establishes the conjecture presented by J. Krai in [6] (see 10.3, 
pp. 415-417 in Part 1) where, however, in the assertion concerning Wf the quantity 
U® should be replaced by u® as defined by (5). 

R e m a r k 2. The method of defining the Cauchy type integral with a smooth 
density on the boundary of a general domain G C C based on the transformation of 
the integral with help of the divergence theorem into the two-dimensional integral 
extended over G was employed in [1]; the same method was used in [2], [8] (cf. also 
[7], [15], [18]) for defining double layer potentials on boundaries of general domains 
G C (Rm. Additional references concerning angular limits of double layer potentials 
may be found in [11]. Related investigations of Cauchy's integrals on rectifiable 
curves appeared in [9], [12], [13], [14]. 
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