Czechoslovak Mathematical Journal

Josef Kral; Dagmar Medkova
Angular limits of the integrals of the Cauchy type
Czechoslovak Mathematical Journal, Vol. 47 (1997), No. 4, 593-617

Persistent URL: http://dml.cz/dmlcz/127381

Terms of use:

© Institute of Mathematics AS CR, 1997

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents
strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz



http://dml.cz/dmlcz/127381
http://dml.cz

Czechoslovak Mathematical Journal, 47 (122) (1997), Praha

ANGULAR LIMITS OF THE INTEGRALS OF THE CAUCHY TYPE

JosEF KRAL and DAGMAR MEDKOVA, Praha*

(Received September 15, 1994)

Dedicated to Professor Fumi-Yuki Maeda on the occasion of his siztieth birthday

Abstract. Integrals of the Cauchy type extended over the boundary A of a general
compact set A in the complex plane are investigated. Necessary and sufficient conditions
on OA are established guaranteeing the existence of angular limits of these integrals at a
fixed z € OA for all densities satisfying a Holder-type condition at z.
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We shall identify the points (z,y) in the Euclidean plane R? with the complex
numbers z + iy in C (i is the imaginary unit). The scalar product of u, v € C will
be denoted by (u,v) := Reuv where 7 is the complex conjugate of v. If U C C is
open, then C((,I) (U) stands for the class of all continuously differentiable real-valued
functions ¢ with a compact support spt C U.

Let now A C R? be a Lebesgue measurable set with a compact boundary 9A,
G = R?\ A. The class of all restrictions to A of functions in C{"(R?) will be
denoted by

cM(B4) := {¢|,,; v € CSV(R?)}.

Given f € C(1)(0A) and z € C\ dA we choose a ¢y € Cél)(le) such that @5 = f on
0A, z ¢ spt ¢y and define the Cauchy’s type integral

K1) = = [ 2208y (e,

i -z
G
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where ) is the Lebesgue measure in the plane, 9 = -;—(81 +i0,;) and 0; denotes the
partial derivative with respect to the j-th variable (j = 1,2). The imaginary and

real parts
WAf(z) :=ImKAf(z), PAf(z) :=ReK4f(2)

will also be investigated. It is not difficult to verify that KA f(z), WA f(z), PAf(2)
do not depend on the choice of ¢y with the properties specified above (compare
Lemma 2.1 in [7]). If the boundary 8G is a properly oriented smooth Jordan curve
then K4 f(z) reduces to the well-known Cauchy’s type integral
1[50 4
2n )] z-¢
aG

while W4 f(z) is the value at z of the double layer potential with momentum density
f and PAf(z) is the so-called modified logarithmic potential in the sense of §12,
chap. II in [16] (cf. also [10]). It is easily seen that, for each f € C(V(9A), KAf:
z = KAf(2) is a holomorphic function on C \ dA4, whence it follows that WA f:
2z WAf(z) and PAf: z = P f(z) are harmonic on the same set (compare Lemma
2.4 in [7]). We shall first specify conditions on A guaranteeing natural extendability
of KAf, WAf, PAf to more general functions f on JA.
Writing
B(zr) = {€ € R Jg — 2| <7}
we denote by
d(A,z2) := liml'soup A2[B(z,7) N A]/A2[B(2,7)]

the upper density of A at z and define the so-called essential boundary of A by
0.A = {z € R?; d(A,z) > 0,d(G,z) > 0}.

If U c Cis open, then A(U) and H(U) will denote the space of all holomorphic func-
tions and harmonic functions on U, respectively; both A(U) and H(U) are equipped
with the topology of uniform convergence on compact subsets of U.

Let n € OA be a fixed point and let g: dA — [0, +00[ be a lower-semicontinuous
bounded function on A which is strictly positive on A\ {n}. C(9A4,q) is the space
of all continuous functions f: A — R satisfying

f(2) = f(n) =0(g(2)), z—n, z€d4;

defining

_ &) = fm)]
I fllg,0 = sup T e € 0A\ {n},
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we introduce the norm

1 £llg = I fllq.0 + sup |f(2)]
z€EO0A

in C(0A,q) which turns it into a Banach space; clearly, ||...||q,0 is an equivalent
norm in the subspace

Co(0A,q) = {f € C(0A4,q); f(n) =0}

Let A, denote the 1-dimensional Hausdorff measure (= length in the sense of [17],
chap. II, §8). Now we are in position to formulate the following result establishing
necessary and sufficient condition for continuity of the operators

(1) KA: f o KA,
(2) WA: fs WAS,
(3) PA: f PAS.

Theorem 1. The following conditions (I)-(IV) are mutually equivalent:

@ / q(z) dA1(2) < +o0.

9. A

(II) The operator (1) acts continuously form C(dA, q) N CM)(A) into A(C \ A).
(I11) The operator (2) is continuous from C(8A,q) NC(1)(8A) into H(R? \ HA).
(IV) The operator (3) is continuous from C(0A,q) N C()(8A) into H(R? \ dA).

Remark. The above theorem will be proved below.
Assuming (I) and taking into account that C(dA, ) NC(})(8A) is dense in C(8A, q)

we extend the operators (1), (2), (3) by continuity to the whole space C(84, q). For
any f € C(04,q) we have then

Kf=KAfe AC\HdA),
Wf=WAf e H(R?\DA),
Pf=PAf c H(R?\9A)

and we shall be concerned with the existence of angular limits of these functions at
n. For this purpose it appears useful to introduce the following geometric quantities
characterizing the complexity of the boundary A near n € 9A.
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Notation. For g > 0 denote by

4) Ul(en) =Y ql€), £€BA, |E—nl=e,
3

the sum counting, with the weight g(£), all the points £ in the intersection of the
essential boundary 8. A with the circle dB(n, 0). (Note that this sum equals +oo if
8.A N 0B(n, ) is uncountable, because g(¢§) > 0 for £ € A\ {n}.) We shall see
below that

e~ U (e,m)
is Lebesgue measurable which permits us to define for any r € ]0, +00]

r

(5) Ur(n) =/9‘1H"(9,n) de, ui(n) =/H"(9,n)d9-
0 0

Denoting by
H(n,0) = {n+16,t >0}

the half-line issuing at 7 in the direction of § € 0B(0,1) we introduce the sum

(6) v!(0,m) =D _q(€), £€d.ANH(n,H)
£

counting, with the weight ¢(£), all the points £ in the intersection of the essential
boundary 8. A with the half-line H(n,6), and a similar sum

(7) ViO,n) = € —nlg(6), &€ d.ANH(n,6)NB(n,r)
13

extended over all points £ in the intersection of the essential boundary 0. A with the
segment H(n,0) N B(n,r), where now the weight at £ is given by ¢(£)|€ — n]. Again,
the functions

(8) 0—vi0,n), 6~ Vi6,n)

will be shown to be \;-measurable on dB(0, 1) which permits to introduce the quan-
tities

1
©) v =5 [ vEmne)
8B(0,1)
i =5 [ viemane). r>o.
8B(0,1)
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For S C R? we denote by clS the closure of S, by contg(S,7n) the contingent of
S at n (cf. [17], chap. IX, §2) consisting of all the half-lines H(n,0) for which there
exists a sequence of points z, € S\ {n} such that

Zn—1 )
i =0, lim z,=n.
n—oo |z, — 1| n—oo

With this notation we may present the following result.

Theorem 2. Assume (I). Let S C R%\ A be a connected set, n € c1SNJA and
denote by
S={2n-z;z€ S}

the reflection of S at n. If
(10) contg(04,n) N contg(S,n) = @ = contg(dA,n) N contg(S,n)

then the following assertions (P), (W), (K) hold:
(P) The finite limit

lim Pf(z)
z—n
z€S
exists for each f € C(9A4,q) iff
(11) UL (n) +supr1V(n) < oco.
>0
(W) The finite limit
lim W f(2)
z—n
z€S
exists for each f € C(9A,q) iff
(12) v9(n) + suprul(n) < co.
r>0
(K) The limit
(13) lim Kf(z) (€ C)
z—n
z€S
exists for each f € C(8A,q) iff
(14) U, (n) +v7(n) < oo.
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Now we shall return to the proof of Theorem 1. Let f € C(V(dA), z € C\ dA and
suppose that ¢ = ¢ has the properties specified in the definition of X f(z). Writing
z=z +1iy, £ = & + 1€ we have

1 [ —01p(&)(&2 —y) + Dap(€) (&1 — )

Kfe) = 5= | e dxa(6)
i 010(6)(&1 — x) + 020(€)(§2 — v)
— /G E—ap dAs(8)-
Defining
1 1
(15) hz(§)=£1n‘z—_§‘|7 §F# z,
we obtain

(16w)  Wf(z) =ImKf(z) = / (grad o(€), grad ks (€)) dra(6),

G

(16p) Pf(z) = ReKf(2) = / (grad p(2), —i grad b (€)) dAa(€).
G

We see that W f coincides with the double layer potential as investigated in [11]
where the equivalence (I) < (III) has been established. Once we prove (I) < (IV)
the proof of Theorem 1 will be complete, because (II) is equivalent with simultaneous
validity of (III) & (IV). We start with

Proof of (I) = (IV). Assuming (I) and noting that ¢ > 0 on 9G \ {n} we
observe that A;(V N 8.G) < oo for each open bounded set V with c1V C R?\ {n}.
This implies that G has locally finite perimeter in R? \ {n} (cf. [5], chap. 4 and
[19], section 5.8) which implies that, for each R?-valued function v = v; + ivy with
components v; € C((,l)(IR2 \ {n}) the divergence formula holds

(17) / (81v1 + Bav2) dAg = / (nC,v) dAr,
G Te}
where 3G is the reduced boundary of G and nC: G — 0B(0,1) is the exterior
normal of G in Federer’s sense which are defined as follows:
OG consists of those £ € R? for which there is a unit vector n € dB(0, 1) such that

the half-plane
H,(€) == {z € R?; (z - &n) <0}

satisfies

E(H‘n(g) \G’ E) =0= E(G \ Hn(&)’g);
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such an n = n%(€) is uniquely determined and is then called the exterior normal of
G at £ in Federer’s sense.

3G is a Borel set (cf. [4]) contained in 8.G and the fact that G has locally finite
perimeter in R? \ {n} implies that

(18) A\ (8.G\ 8G) = 0.

Assume first that f € C(1)(9A) vanishes in some neighbourhood of 7 in 9A; the
corresponding @5 = ¢ can then be chosen in C((,l) (R%\ {n}). Applying the divergence
formula (17) to v(§) = iw(f)lf}:rz (which vanishes in some neighbourhood of 2
together with ¢) we transform (16p) into

(19) = / 1O, =27) h(®).

Thanks to (I), validity of (19) extends to all f in C())(0A) NCy(AA, q) (compare the
reasoning in the proof of Lemma 2.1 in [7]).
It follows from the definition of K4 f that, given f € C(1)(9A),

KAf(2) + K9 (2) / 6“” ) ax(e) =0,

We may thus suppose without loss of generality that G is bounded (replacing A by
G would only change the sign of Kf = K4 f). Doing so we have for z € int A (= the
interior of A) and any g constant on A

Kg(z) = 0;
if z € int G, g(0A) = {c}, then we may choose ¢, € C(()l)(IR2) and B(z,r) C intG

with sufficiently small 7 > 0 such that ¢4 = c on clG \ B(z,7) and ¢, = 0 in some
neighbourhood of z, which results in

Ko() = = "’g"““)dA ©=5 [ fgf“g@:—w

B(z,r) dB(z,r)
We see that for any g constant on 04
Pg(z) = ReKg(z) =0,
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whence we get by (19) for any f € C()(9A)

(20) Pf(2) = / (€)= F(n (€ iE =25 ) d(©).

Ié

Writing
dist(z, M) := inf{|z - &|; £ € M}

for the distance from z € R? to M C R? we arrive at

(21) IP£(2)] < 5-ldist(2,5G)] 1 [ adhn
5G
fecMB4)NCB4,q), zeC\IA,

which proves (IV). O

Proof of (IV) = (I). Assuming (IV) we shall first prove that G has locally
finite perimeter in R? \ {n}. Denoting by 85 ... = (6, grad...) the derivative in the
direction of 8 € 9B(0,1) we have to verify that

(22) sup { [osaras v ecd vl < 1} < 400
G

for any bounded open set V with c1V C R?\ {n} and any 6 € 8B(0,1).

Fix such a V and 6. As in Lemma 1 from [11] we shall employ the argument from
the proof of Theorem 2.12 in [7].

Choose points 2!, 2%, z3 € R?\ G which are not situated on a single straight line.
The assumption (IV) guarantees the existence of a ¢ € [0, +00[ such that

(23) fec®©@A4)nCo(94,q9) = |PF(F)| < cllfllgo, 1< k<3

Put B; = {1,2,3} \ {j} and denote by II; the straight line containing the points in

{z*; k € B;}. Since
3

U ®*\ 1) = R®

i=1
we may choose
a; € C{V(R2\[{n}UIL]) (j=1,2,3)

such that

3
a = E (27
=1
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is identically equal to 1 in some neighbourhood of cl V.
If € C§ (V) then

/aowd/\z = /a(f)ao¢(§) dXz(€).
G

G

Thus (22) will be verified if we show that

(24) sup { [ @@ dra(9)s v € W), vl < 1} < +oo,
G
j€{1,2,3}.

Fix j € {1,2,3} and notice that the two vectors £ —z* (k € B;) are linearly indepen-
dent for all £ sufficiently close to spta;. This guarantees the existence of infinitely
differentiable real-valued functions ax (&) such that (cf. (15) for the notation)

0=—> ar(f)igradh,.(€)

k€ B;

for all £ in some neighbourhood of spt ;. Hence

Jastnvdra= % [ as(€)an(e) (radv(), ~igrad o (€) dra(9).

a kEB; &
Fix j, k and put Fj(€) = ;(§)ar(§), so that
Fj € CgY (R*\ {z*})
and

/F;k (grad v, —igrad h,+) dXg = /(grad(Fj,kw), —igrad h,+) d)o
G G

- /'([) (gradFj,k,—igrad hzk> dAq.
G

Clearly, the last integral has a bound independent of ¢ (€ C(()l) ), |¥| <1):

/¢<gradFj,k, —igrad h i) dAe
G
1
< ;n/lgradf’j,k(ﬁ)l - |€ = 2F|71dAg (€) < +oo.
G
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Noting that ¢ > 0 on G Nspt a; D G Nspt Fjx we fix a € [0, +oo[ such that
|Fjel <ag ondG, je{l1,2,3}, ke B;.

Denoting by f; « the restriction of Fj xy to G we get from (16p)
[ (rad(Fya), igrad hus) d = Pa(),
G

whence it follows by (23)

I/(grad(F-,kz/)),—igradhzk) dXz| <ac, j€e{1,2,3}, k€ B;
G

and (24) is verified.

Now when we know that G has locally finite perimeter in R? \ {n} we have for
each f € C()(0A) vanishing in some neighbourhood of  in G and any z € R? \ G
the formula (19) which implies that

/q|(nq, —igradh,)|d)\;

P

oG
= sup{Pf(z); f € CM(9A4) N Co(d4,q),n & spt f, || flla0 < 1},
z € R?\ 0A.

Setting z = z* we get by (23)
/ql (n®, —igradhi)|d\ < ¢, k€ {1,2,3}.
a¢

Since the points 2!, 22, 2% are affinely independent we have

3
£€9G =Y |(n9(€), ~igrad he (§)) | > b
k=1

for suitable b € ]0, +o00[, whence

3
/qd/\l <bt Z/q| (nS, —igrad h,+) |dA; < 37l

—~ k=1~
aG oG

which proves (I). This also completes the proof of Theorem 1. ]
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Remark 1. In what follows we always assume (I). As verified in the course of
the proof of Theorem 1, the operator (3) extends continuously to C(9A4, q); for any
f € C(94,q), the value of Pf € H(R? \ dA) at z € R? \ A is given by the formula
(20).

As we know from [11], also the operator (2) extends by continuity to C(9A4, q) and,
for any f € C(94,q), the value of W f € H(R?\ 9A) at z € R? \ 94 is given by the
formula

(25)  Wf(z) = -f(mxe(2) + /[f(&) = f(m)]{n® (&), grad b= (€)) dMi(€)

where xg denotes the indicator function of G (cf. Remark 1 in [11]).

Combining these results we conclude that the operator (1) extends by continuity
to C(9A,q); for any f € C(8A,q), the value of Kf € A(C\ 0A) at any z € C\ 94 is
given by the formula

(26) KF(z) = —if mxa(z) + / Y f(” 79 (6) dn (6),

where 7€ (£) = in®(¢), £ € 8G.

The weight ¢ has so far been defined on A only; we extend it to R? defining
q(z) = supg(0A), z € R? \ 94; thus ¢: R? — [0,00[ remains bounded and lower
semicontinuous on R%, ¢ > 0 on R? \ {n}.

Next we shall prove several auxiliary results needed for the proof of Theorem 2.

Lemma 1. The function ¢ — U9(g,n) defined by (4) is Lebesgue measurable on
10, 00 and if ul(n), U3(n) are given by (5), then we have for any r € ]0, 0]

£~
1€ =l

@ eV (B(n,r)\ {n}) on spty,|¢| < q}

= [ a@|(f@ir)| e,

é?;’ﬁB('r],r)

(28) wo = [ a©)(no©ig) e

8GNB(n,r)

(27) ut(n) = sup { [ (gradp(e),ire—1 ) dha(e);
G

where we put B(n, o) := R2.
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Proof. Fixr €]0,00] and put for j € {1,2,3,4}

Uj={17+ge“";0<g<r,(j—2)E

T
) '—}
g <U<J3p

so that

U Us=Bmr)\{n} =

=1

Choose continuously differentiable functions f; on U such that

4
z fi=
j=1

<.
Vv

0, f;=0 onU\U;(1<j<4).

Define for ¢ € C(l)(U)
-1
rad dX2(8).
G/g o€ 1) (e

It is not difficult to show that
(29) sup{L(¢); ¢ € C§"(U), |¢| < g on spt}

= > sup{L(p;); ¢; € Y (U), |;] < fiq on sptp;}.
i=1

Consider ¢, € C((,l)(U ) such that |¢1] < fiq on spt¢; (whence spto; C Uy). Em-
ploying the diffeomorphism

\II:]O,T[X] - [—)Ul

T T
2’2

introducing the polar coordinates g, § by

U(o,0) =n+0e®, 0<o<r, -—g<0<g

we get

L= [ (eradea(®).i

GNU,

=) dha(e) = [ 801 (0,6) de,

where we have put

G=3"1UiNG), &i(e,0)=1(%(e,9))
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and 9y denotes the derivative w.r. to the variable §. Denoting by §1 = f1(¥)q(¥) the
composition of ¥ and fi1g we have clearly $; < G on spt@; C ]0,7[x |-3,5[. If ¢
runs over {¢; € C((,l)(U); |p1| < fiq on sptp; }, then the corresponding @; = ¢ (¥)
runs over the class

A = {4,51 € Cél)(]O,r[ x]—;—t,gD; |$1] < G1 on spttﬁl}.

Referring to lemma 5 in [11] we obtain that the function

Ao > d(e0), (09)€d.Gn ({o} X]_gg[)
6

is Lebesgue measurable and

r

sup{ [orrie0)de; € Al} = [m@ce
G.' 0

Since ¥ is a diffeomorphism, it is easy to see that for z € 0, 7| x] -3z [ the following
equivalences are true:

EG(\I’(:E)) =0& a(;(at) =0,

da(¥(z)) =0 d;(z) =0 (here A= T(4));
hence
¥(z) € .G & z € 8.G,

so that
N o _T I
fi1(e) = ;fl(ﬁ)q(f), £€0.GN {n+ 0e’, -5 <6< 2}.
Noting that f; vanishes on U \ U;, we have

() =Y f1(€)a(€), €€BGN{& € —n| =0}
3

We have thus proved that

r

sup{L(¢1); ¢1 € CV(U), 1] < fig on spte} = /fu(e) do.
0

Defining
A;(0) =D fi(€)q(), £€GN{E;|E—nl=0c}
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we get similarly

sup{L(p;); ¢ € C§”(U), ;] < fiq on spte;} = /ﬁj(e) de
foroj € {1,2,3,4},
which together with (29) proves
sup{L(¢); ¢ € C§(U),l¢| < g on spt} = ul(n).

We have seen in the course of proof of theorem 1 that (I) implies that G has locally

finite perimeter in R? \ {n}. Using the divergence formula we have thus for any
O¥ s

p€Cy’(U)

[ (maav@nig=) 0@ = [w@(ig=hn"©) ance
G

1§ =l
e
whence
sup{L(¢); ¢ € C§”(U), || < g on spt o}
= RSl g
= [ wel(emprio)|ane
8GNB(n,r)
and the proof of (27) is complete. O

It is easy to observe that boundedness of q: R? — [0, oo[ is irrelevant for validity
of (27). Defining
a€)/lE—mnl, £#n
Q) =
0, £=n

and applying (27) to @ instead of ¢ we obtain

wm=wm= [ a@N-nl|(n°©.iz=)|an®

5&03(1},1‘)

Ié nI

which is just (28).

Lemma 2. Define
won= [ qdn

MNo.G
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for any Borel set M C R?. Then

(30) supr~1pu?(B(n,r)) < oo = supr~lui(n) < oo
>0

>0

and, in case v?(n) < oo, also conversely

(31) supr~tul(n) < oo = supr~tpu?(B(n,r)) < 0o
>0 >0

Proof. Using Lemma 1 we get

= [ a@|(n©.ig=h) an

(?GﬂB(n,r)
< / ¢(©) dM(€) = u? (B(n,1)),
E;aﬂB(n,r)

which implies (30). Since the unit vectors

§-n .&-1
= e—m €77
are orthogonal, we have
@ |(© =)+ (@i 21 £edB\ i)

Integrating over 4G n B(n,r) and using (18) we obtain

wEan) = [ ans [ @@

5&03(7],1‘) 5&03(7, r)
v [ a@|(nC©, >'d/\1(£
8GNB(n,r)

The first integral in the last sum equals u(n) by Lemma 1. The second integral can

be estimated with help of (27) from Lemma 3 in [11] as follows:

[ GICIER= ENE

8GNB(n,r)
=2 [ a@le -l 1 (n%(©) grad by () | AN (©
@ﬁB(n,r)
< 2nr / g| (n%, grad hy) | d\; = 2nrv?(n).
&G
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We thus arrive at
#?(B(n,r)) < ul(n) + 2nrv(n)

which yields (31) in case v?(n) < oo. O

Proof of the assertion (W) in Theorem 2. Combine Lemma 2
and Theorem 3 in [11]. a

Combining Lemma 2 with Theorem 2 in [11] we obtain

Theorem 3. Suppose that S; C R? \ A are connected sets such that

necS;NoA, lim ——
== |2 =]
2€S;

Hj (.7 = 172)

If the vectors 01, 6, are linearly independent, then (12) is necessary for the existence
of the finite limits

lim Wf(z) (j=1,2)
z—n
z€S;

for all f € C(8A,q); if, besides that,

contg(9A,n) N contg( J,n) 0 (G=12),

then (12) is also sufficient.
Lemma 3. Let S C R? \ 94, n € c1 SN JA. Then the finite limit

(33) lim PAf(z)
%es

exists for each f € C(0A,q) iff

(34 sup [ 4(0| (@i =) (@ < o=

G

Proof. We shall first show that validity of

limsup |P4 f(2)| < oo
z—
z€S
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for all f € Co(OA, q) implies (34). Observe that, for any fixed z € R? \ 94, the norm
of the linear functional

L £ PAG) = 5o [ 10(n0(€iE=F5) an(®)
G
on Cp(0A,q) is given by
sup { / TGN |>d/\1( <0 f €Col0A,0)

ol( i) ne).

BG

If the values attained by the functionals {L,}.es at any f € Co(8A4,q) remain
bounded, then the Banach—Steinhaus principle of uniform boundedness guarantees
(34). Conversely, assume (34). Fatou's lemma yields

(35) [0l @ig ) me <
5G
where
(36) = [ a©)(n%©1i =) an o)
oG

so that we may define for any f € C(94,q)

PAf() = / [£(6) = £ (n (), i) (@)
We shall show that
(37) 31_137 PAf(2) = PAf(n), feC(84,q).
z€S

It will suffice to verify (37) for f € Co(9A4,q) only, because PAf(z) =0 (z € S) for
constant f by (20). Fix an arbitrary f € Co(9A,q) and € > 0; choose § > 0 such
that

£ € AN B(n,0) = |f(§)] < eq(§).
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Then
PI@) -Pra < [ 1RO [(n@ie =27 an(©
8GNB(n,6)

+ [ e |(nerig) e

8GnB(n,8)

e [ @ [(re i — i) [ ane

8G\B(n,6)

ss/q(£)|(n( i |2>‘dz\1(€)
a¢
ve [ a@|(m@nigg =iz an© + 5562,
G

where
= [ 1@ |(nenig e - i) an .
8G\B(n;5)

Using the notation from (36) we have

|Pf(z) — Pf(n)| < 2es + Jsf(2).

Noting that il&——zzl — i]‘f__ﬁj uniformly w.r. to £ € 4G \B(n,6) as z = n (z € S),
we conclude that
limsup |[Pf(z) — Pf(n)| < 2es
z—n

z€S
which proves (37), because € > 0 was arbitrary. O

Lemma 4. Let S C R? \ A be a connected set, n € c1S N JA and assume (10).
Then (34) implies validity of the following relations (38)—(40):

(38) Je0l(re@ i) e <o
5G
(39) supr~'p?(B(n,r)) < oo,
>0
_ £-n
(40) supr 1A / Q(ﬁ)Kn(E) Ig_n|>‘d/\1(§) < oo.
8GNB(n,r)

610



Proof. Assume (34). In view of (35), (36) we have then

[ a0](n @i e <o

G

and (38) is checked. Next we shall use reasoning similar to that in the proof of
Proposition 3 in [11]. It follows from (10) that there are constants § € ]0,n/4[ and
o € 10,00 such that, for £ € G N [B(n,0) \ {n}] and z € SN B(n, o), the angle
enclosed by the vectors

§—n z—-n
l€=nl" |z—mnl
exceeds 26 and the same holds of the vectors
§-n _z-nm
[€=nl" |z—n

Since 7 € clS and S is connected we may assume that ¢ > 0 has been fixed small
enough to guarantee that

0<r<po=SNaB(n,r) #0.

Fixr €]0,¢[, £ € 8Gn B(n,r) and choose z € SN &B(n,r). If the vector inC (&)
encloses with one of the vectors

z—n z2—1n
41 -
(41) P Te=u]

the angle not exceeding 3n — 4, then

[(in®(€), € = m)| + [(in®(€),& — 2)| > [(in®(€), 2 )]
1
> rcos (in - 6).

If both vectors (41) enclose with in®(¢) the angle exceeding 1n — 4§, then one at least
of the vectors
§—n §—n

lE=nl" "~ 1E—nl

encloses with in® () the angle which is less than

1 1
§K—25+6—§1{—5,

whence

[(inC(€),& ~ m)| > [€ ~ nl cos (57~ 6)-
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Since [€ — z| < |€ —n| + |n — z| < 2r, we have in any case

(in®(©).€ )| | [in@.6-2) 1 (%n_a).

=T

1§ —nl? [E—22 4

Hence

- -1 (1 §-n
1,49 < 1 (- _
r~'u?(B(n,r)) < 4cos (2Tt 6) [A / {)Km TE—nE >|d/\1(§)
0GNB(n,r)
1
G —-1(1 5.
+ / g)Km @ I2>|d,\1(§)] < 4cos (2n 5) 2s.
a’aﬁB('q,r)

If r > p, then r~1p?(B(n,7)) < 07 'p9(R?) < oo and (39) is verified. Clearly, (39)
= (40) and the proof is complete. O

Lemma 5. Assume (38), (40). If S C R\ 94, n € 1SN JA and

(42) contg(S,n) N contg(dG,n) = 0,
then
L E—z
(43) imsup [ a(©](n(©) g = )| M (© < .
2€S 3G

Proof. We shall first show that (39) is a consequence of (38) and (40). Note

that
[ a0l ane

8GNB(n,r)

> [ ao|(noenig

8GNB(n,r)

=1 aneo

for any 7 > 0. Using this together with (32) and (18) we get

rut(B(n,r)) <1 / 1©)[| (= (©).1 é ZI>|

5(\?03(1] r)

+|(n |>H ()
/ q(s)K G(s), >| an (@)
aa
+7r7! / E)K

8GNB(n,r)
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We see that

k:=supr~'u?(B(n,r))
>0

is majorized by the sum of the expressions occurring in (38) and (40). The assump-
tion (42) guarantees the existence of constants a, € € ]0, oo[ such that

(44) z € SN B(n,¢) = dist(z,8G) > a|z —

(cf. (0.1) in [3]); we may clearly suppose that 0 < a < 2. According to formula (45)
from [11] there is a constant c € ]0, co[ such that

(45) z € SN B(n,e) = supr~'p?(B(z,r1)) < ck.
>0

Fix now z € SN B(n,¢) and put F = G N B(z,2|z — n|), E = G \ B(z,2|z — n}),

so that
[aelee. =)o
FTe;
- ( F/ N E/ )a(@)|(n°©.ig==7)| an(©)
Clearly,

[ a@(n @i @ < [l == ane
F F

0o (2lz=n])"? 0

= /uq(B(z,t‘l)nF) dt = / pi(F)dt + / i (B(z,t™1)) dt
0 0 (2]z—=nl)—*
19 (B(z,2|z — 77|)

ST o 0/ "B

In view of (44) we have p?(B(z,r)) = 0 for 0 < r < a|z — n|. Employing (45) we
arrive at

2)z—7|
/q(§)| 5 l2>}d,\1(g) ck + ck /nr"ldrzck(1+ln§-).

F alz—n|
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We proceed to estimate the integral

Jat@|(e izt |2>|dxl<s>
E

< [a@(n° i) am (e ! | =2~ | @

E

< [a0l( @ ig=im) @ +h+n,
5G

where we have put

h= [ a©l -l [ = ~ =5 | M ©,
E

L=z / 9(E)1€ — 2|2 d (6).
FE

| 1€ —nl* — |¢ - 2|?]
11\/ 0O |£ Han

1
z‘”'!“) For e e

Observe that
1 1
£€E=>I£—n|>|£—zl—lz—n|>|€—z|—§|€—z|=§|§—2|,
whence

ol / a6 g (6,

I + 1, < 41,.
Note that, for any ¢ > 0,

(E€Ble—2"2> )= da—nl <l 2l <t =t <2z )2

Hence
(2lz—n|)~2 oo
nele-nl [ w(BEeh)d=2-al [ u(Ben)dr
0 2|z—n|

<2z—mn|-ck- / r~2dr = ck.

2|z—n|
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Summarizing we have for z € SN B(n,¢)

[ a0 @it =5 ) | ane < / o

Fre F E
2 G
<ck(1+1n3) + /q(§)|< (©) 12| 4O + dek
5G
which completes the proof of (43). O

Lemma 6. The functions (8) of the variable 6 € dB(0, 1) defined by (6) and (7)
(where r > 0 is fixed) are \;-measurable on 0B(0,1) and

@ [ venane= [«ol(o ¢ n|2)|dxl(s)
8B(0,1) EYel

@ [ vemane = [ a|(nC@ =5 ane.
9B(0,1) 8GNnB(n,r)

Proof. We shall use the following assertion:

Let g: RZ — [0, o[ be lower semicontinuous and suppose that G has locally finite
perimeter in R? \ {n}. Define v7(6,7) by (6) for any § € B(0,1). Then 8 ~ v9(8,n)
is A\;-measurable on 8B(0, 1) and

3 | OO = [ 40, madm©) lan (.

0B(0,1) 5G

This assertion was proved in Lemma 3 in [11] (dealing with R™ for general m > 2)
under the additional assumptions that ¢ is bounded and strictly positive off {n}. An
easy inspection of the proof reveals that these additional assumptions are superfluous.

This gives us the formula (46) and permits us to replace q by the function Q defined
by

0, §€R?\ B(n,r).
Applying (46) to Q instead of ¢ we obtain that

Q(f) — {Q(£)|€ —77|, 66 B(ﬂﬂ‘),

6= v?(8,m) = Vi(6,n)
is A\;-measurable on dB(0,1) and (47) holds. a
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Now we are in position to prove the rest of Theorem 2.

Proof of the assertion (P) in Theorem 2. It follows from Lemmas
3, 4, 5 that the existence of the finite limit (33) for each f € C(8A,q) is equivalent
with simultaneous validity of (38) and (40) which by Lemma 1 and Lemma 6 amounts
the same as (11). 0O

Proof of the assertion (K) in Theorem 2. It follows from (P)
and (W) that the existence of the limit (13) for each f € C(8A4, q) is equivalent with
simultaneous validity of (11) and (12) which, in view of the inequalities

UL (n) = Ui (n) = r~ ud(n),
vi(n) 2 Vi) (r>0)
amounts the same as (14).
Thus the proof of Theorem 2 is complete. a

This theorem establishes the conjecture presented by J. Kral in [6] (see 10.3,
pp. 415-417 in Part 1) where, however, in the assertion concerning W f the quantity
U2 should be replaced by u@ as defined by (5).

Remark 2. The method of defining the Cauchy type integral with a smooth
density on the boundary of a general domain G C C based on the transformation of
the integral with help of the divergence theorem into the two-dimensional integral
extended over G was employed in [1]; the same method was used in [2], [8] (cf. also
[7], [15], [18]) for defining double layer potentials on boundaries of general domains
G C R™. Additional references concerning angular limits of double layer potentials
may be found in [11]. Related investigations of Cauchy’s integrals on rectifiable
curves appeared in [9], [12], [13], [14].
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