
Czechoslovak Mathematical Journal

Danica Jakubíková-Studenovská
Retract varieties of monounary algebras

Czechoslovak Mathematical Journal, Vol. 47 (1997), No. 4, 701–716

Persistent URL: http://dml.cz/dmlcz/127388

Terms of use:
© Institute of Mathematics AS CR, 1997

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents
strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz

http://dml.cz/dmlcz/127388
http://dml.cz


Czechoslovak Mathematical Journal, 47 (122) (1997), Praha 

RETRACT VARIETIES OF MONOUNARY ALGEBRAS 

D A N I C A J A K U B Í K O V Á - S T U D E N O V S K Á , K o š i c e 

( R e c e i v e d M a y 1 5 , 1 9 9 5 ) 

In [1] the notion of order variety was defined as follows: an order variety is a 
class X of ordered sets which contains all retracts of members of X and all direct 
products of nonempty families of members of X. 

Analogously to [1], a class <# of monounary algebras will be said to be a retract 
variety if it is closed with respect to isomorphisms and if it contains all retracts of 
members of X and all direct products of nonempty families of members of X'. 

Retracts of monounary algebras were studied in [2] and [3]. 

We denote by £H the collection of all retract varieties of monounary algebras. This 
collection is considered to be partially ordered by the class-theoretical inclusion. 

The aim of the present paper is to investigate the properties of the partially ordered 
collection *R. The main results are Theorems 2.5', 2.1V and 3.10. 

1. RETRACT VARIETY GENERATED BY J f 

Let (A, f) be a monounary algebra. A nonempty subset M of A is said to be a 
retract of (A, / ) if there is a mapping h of A onto M such that h is an endomorphism 
of (-4,/) and h(x) — x for each x G M. The mapping h is then called a retraction 
endomorphism corresponding to the retract M. 

The symbol <%/ will denote the class of all monounary algebras. It is obvious that 
0 and ^ are the least and the greatest element of 9 ,̂ respectively. 

A class ^ of monounary algebras is said to be retract (product) closed if it is 
closed with respect to isomorphisms and if it contains all retracts (direct products) 
of members of ^. Let <%* be a class of monounary algebras. We denote by R(Jtf) 
(P(<Xr)) the class of monounary algebras whose elements are only all retracts (direct 
products) of members of JV and their isomorphic images. It is easy to see that R(J(f) 
(P(J€r)) is retract (product) closed. 

Further, = means an isomorphism between algebraic structures. 
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1.1. Lemma. Let X C %. Then 

(i) R2(X) = R(X), 

(h) P2(X) = P(X), 

(iii) PR(X)CRP(X). 

P r o o f . The properties (i) and (ii) are obvious. Assume that (-4,/) G PR(X). 

Then there are I 7- 0 and (4*, / ) G R(X) for each i G I such that (.A, / ) = I I (^> / ) • 
-G1 

Thus, if i G I, then there are (Hi, f) £ X and a retraction #; of (B{, f) onto (A;, / ) . 
Define a mapping g: Yl B{ -> Yl Ai by putting, whenever b G f] -̂ *> 

iG1 iG1 tG / 

(g(b))(i) = gi(b(i)) for each i G I. 

Obviously, y is a homomorphism. Further, if a G [ ] A{, then 
*G1 

(g(a))(0 =gi(a(i)) = a(i) 

by the properties of gi, i.e., 
p(o) = a. 

Therefore g is a retraction of Yl(Bi,f) o n t o 11 (Ai,f) and hence (-4,/) = 

II ( - W ) eRP(X). tG l € n 
i€I 

A class ^ of monounary algebras is said to be a retract variety if it is retract 
closed and product closed. Let X be a class of monounary algebras. We denote by 
V(X) the class of all monounary algebras such that any of them is a member of 
every retract variety ^ such that ^ D X. It is easy to see that V(X) is a retract 
variety. 

1.2. Definition. Under the above notation, if X C ^ , then V(X) will be 

called a retract variety generated by X. 

1.3. Proposition. If X C <2r, then V(X) = RP(X). 

P r o o f . According to 1.1 (i) we have 

(1) R(RP(X)) = R2(P(X)) = RP(X). 

Further, 1.1 (iii) and (ii) yield 

(2) P(RP(X)) = PR(P(X)) C RP(P(X)) = R(P2(X)) = RP(X). 
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Thus RP(jXf) is a retract variety by (1) and (2). Suppose that Y C <ft is a retract 
variety such that X C V. Then 

RP(X) c I?p(r) = r . 

• 
1.4. Notation. Let N be the set of all positive integers, Z the set of all integers. 

For n G N let Zn be the set of all integers modulo n and consider the following 
monounary algebras: 

2 = (Z, / ) , where f(i) = i + 1 for each i G Z; 

N = (N, / ) , where / ( i ) = i + 1 for each i G N; 

n = (Zn , / ) , where f(i) = z -f-1 (mod n) for each z G Zn . 

1.5. Notation. Let X = {s^{ = (Au f): i G I} C ^ . The symbol 

iei 

will denote the disjoint sum of the algebras ^ . 

Let us remark that by constructing retract varieties each monounary algebra srfi 

can be replaced by a monounary algebra ^ with 38i = srfi. 

Next, by applying this convention, we denote (for any srf G 9/ and any cardinal x) 

by the symbol x • stf the monounary algebra Yl &?%•> where card I = x and srf = srf{ 

for each i G I. 

1.6. Lemma, (i) V(l) = 1. 
(ii) IfneN- {1}, then V(n) = {x • n: x G Card, x ^ 0}. 

P r o o f . The assertion (i) is obvious. Let n eN — {1}. In view of 1.3, V(n) = 
RP(n). Consider nA, where A G Card—{0}. If x G nA, then x(i) will be the natural 
i-th projection of x\ we obtain 

{/n{x)){i) = r{x{i)) = x{i), 

i.e., 

/n(a0 = x. 

Therefore each element of nx belongs to some n-element cycle. Thus if A is finite 
then nx consists of ^ • nx cycles. If A is an infinite cardinal, then nx consists of 
2A cycles. Hence for each S G Card there is A G Card such that nx consists of at 
least 8 n-element cycles. By retraction we can get an arbitrary non-zero number of 
n-element cycles, thus (ii) is valid. • 
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1.7. Corollary. For each n e N there exists a monounary algebra 3Sn such 
that, whenever n,m eN, n ^ m, then V(&n) <£. V(38m). 

P r o o f . Take a system {V(n)\ n G N}. From 1.6 it follows that V(n) <£ V(m) 

for any n,m G N, n^m. • 

1.8. Corollary. For each n eN there exists a monounary algebra s/n such that, 

whenever n,m GN, n < m, then V(j2/n) § V(s/m). 

P r o o f . Let &/n = 2 + 4 + 8 + . . . + T\ Since s/n G R(j2/n+i) for each n G N, we 
obtain 

(1) V(*/n) C V(^n+i). 

Further, s/n+\ £ V(j2/n), thus 

(2) V(s/n) ? V(fi/n+i). 

In Section 2 stronger results than 1.7 and 1.8 will be proved. 

1.9. Lemma. Let V = V(a-Z+/3-M+ E *n -n) , where {a, /?} U {xn: n G 
nGN 

N} c C a r d . Then there are {a', (3'} U { < : n G N - {1}} C {0,1} a n d ^ G {0,1,2} 

such that y = V(a' -l + (3' -N+ £ < - n ) . 
n€N 

P r o o f . Put 
, f x i i f x x G { 0 , l } , 

[ 2 otherwise . 

If 7 is some of the symbols a , / 3 , x n ( n G ^ - { l } ) , then we denote 

7 = 0, 
/= í° "• 

[ 1 otl 

Further let 

7 , 
otherwise . 

л/ = (A, /) = a • 1 + /? • N + Y2 Xn ' њ 

nЄN 

*/' = (A',f) = a' -1+ ß' -ђà+ J2 *'n-?í-
n£h 

704 



These definitions imply that srf' G R(srf), thus 

(1) V(srf') C V{s/). 

Further, there exists a set I with card I ^ 7 for each 7 G {a, /?} U {xn : n 6 N } . Put 
i = card I and 

. ? = ( £ > , / ) = (•*")'• 

If (£ , / ) is a connected component of (_D, / ) , then (B, f) is a connected component 
of a product Y[(Bi,f), where (-#;,/) is a connected component of .#"; for (B{, f) 

iei 
there are the following possibilities: 

(Bi,f) = l ( i fa ' = l ) , 

( £ . , / ) = N (if/?' = l ) , 

(Si, / ) = n for some n € N (if x^ = 1). 

Thus (B, / ) satisfies one of the following conditions: 

( 2 . 1 ) ( B , / ) = I , 
(2.2) ( £ , / ) = • & 

(2.3) (B,f) = d, where d = l.c.m.(ni,...,nfe),fc e N, ni, . . . ,nfc 6 N and 

< = • . . = < = ! • 
Let a / 0 , i.e., a ' 7-. 0 and consider (!?»,/) = 1 for each z G / . Then EK-^t,/) 

t6 I 

consists of connected components isomorphic to Z; since i ^ a, we obtain 

(3.1) there are at least a connected components (B,f) with the property 2.1. 

Analogously, if /? ^ 0, i.e., /?' 7-: 0, then 

(3.2) there are at least 0 connected components (B,f) with the property 2.2, 

and if n G N — {1} with xn 7- 0, i.e., xf
n 7-= 0, then 

(3.3) there are at least xn connected components (.B, / ) isomorphic to n . 

Further, if x\ = 1, i.e., x!x = 1, then (-O,/) contains only one connected component 
isomorphic to 1. If x\ > 1, i.e., xi = 2, then there are at least 2L connected 
components isomorphic to 1, thus 1 ^ x\ implies 

(3.4) there are at least x\ connected components (£ , / ) isomorphic to 1. 
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Prom (3.1)-(3.4) we obtain 

(4) (.A, / ) is isomorphic to a subalgebra (E, f) of (D, / ) . 

Then (E,f) G R(D,f) in view of [2], 1.3 and (2.1)-(2.3). Hence (A, f) G R(D,f), 
thus 

(5) si G R($) C RP(sf') = V(si'). 

Therefore (1) and (5) imply 
V(si) = V(si'). 

1.10. Lemma. Let 0 7-= I C f\J and suppose that i does not divide j for each 

i,jel,i^j. If @ e V(Yli) an^ k £ I> then there is a connected component SB of 
iei 

& such that ffl^k. 

P r o o f . Let the assumption be valid, Sf G V(X)i) a n d k G I. We have 
iei 

@ e RP(J2i), thus ® G R(sf) and si = ( E i)A f o r s o m e cardinal A 7- 0. Let 
iei iei 

(C, f) be a connected component of si. Then either 

(i-i) (c,/) = i 

or 

(1.2) (C, f) =* d, where d = l . c m . ^ , . . . , lm), {lu ..., lm} C I. 

Further, there exists a connected component (B,f) of si such that (B,f) = k. We 
have 31 G R(si), i.e., there is (D',f) = &' = $ such that f̂ ' is a subalgebra of ^ 
and D' is a retract of si. Suppose that no connected component of S> is isomorphic 
to k. Then B C A- D'. Since D' is a retract of si, (B,f) = k, we obtain according 
to [2], 1.3 that there exists a connected component of (D', f) isomorphic to some d± 

such that d\ divides k. In view of (1.2) 

di = l .cm.( l i , . . . , / m ) , 

thus li divides k,..., lm divides k. Then the assumption of the lemma yields 
lx = . . . = lm = k and d\ = k, which is a contradiction. • 
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2. LARGE CHAINS AND ANTICHAINS 

If P is a poset, x,y G P, then the symbol x \\ y will mean that x and y are 
incomparable. 

The aim of this section is to describe monounary algebras g/a and 8Sa for each 
a G Ord such that if a, /3 G Ord, a < (3, then 

(i) V(*a) || V(^), 

(ii) V{3Ba) § V(&0). 

In this part we will use the notion of the degree of an element x G A, where 
(A, f) G W; for this notion cf. e.g. [4], [2]. The degree of x G A is an ordinal or the 
symbol co; it is denoted by Sf(x). The following two assertions are consequences of 
the definition of Sf(x). 

2.1. Lemma. Let {(D{,f): i G / } C <%, d G fl A - Then 
iei 

(i) Sf(d) ^ Sf(d(i)) for each i G I, 
(ii) if 7 G Ord, Sf(d(i)) G {7, 00} for each i G I and Sf(d(j)) = 7 for some j G I, 

then 5/(d) = 7. 

2.2 Lemma. For each a G Ord there exists a connected monounary algebra 

£?a = (Aa,f) and distinct elements ca,aa G Aa with the following properties: 

(a) f(aa) = ca = f(ca), 
(b) sf(aa) = a, 
(c) if x e Aa — {ca}, then fn(x) = aa for some n G f̂J U {0}. 

2.3. Lemma. Let a G Ord and (D,f) G P(srfa). Then 

(i) ifx G D,f2(x) = f(x) 7-= x, then Sf(x) = a. 

P r o o f . If (D, f) G P(^a), then there is I 7- 0 such that (L>, / ) = ^ a r d 7 . Let 
i G I. Then 

(f(x))(i) = (/(*))(*), i.e., /20r(z)) = /(*(*)), 

f(x(i)) G ̂ 4 is an element of a one-element cycle, hence f(x(i)) = ca. From 2.2(a) 
and (c) we obtain 

(1) x(i) G {ca,aa}. 

Suppose 

(2) x(i) = ca for each i G N. 
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Then 

(f(x))(i) = f(x(i)) = f(ca)=ca = x(i), 

f(x) = X, 

a contradiction. Therefore 

(3) there is j E I with x(j) = aa. 

According to 2.1(h) we have sf(x) = a. • 

2.4. Lemma. If a e Ord and (DJ) e V(Aa), then (i) of 2.3 is vaiid. 

P r o o f . Let a G Ord, (DJ)eR(EJ), (EJ)eP(#/a). By 2.3, 

(1) if e £ E, /2(e) = /(e) ^ e, then 5/(e) = a. 

Assume that x e D, f2(x) = f(x) ?- rr. We can suppose that (DJ) is a subalgebra 
of (EJ); instead of (DJ) we will write now (D,g). Since (D,g) is a subalgebra of 
(EJ), we have sg(t) ^ 5/(0 for each t e D. By (1), 5/(x) = a ^ 5^(.r). We want 
to show that sg(x) = a. Let us prove the assertion 

(2) if te D, then 5/(0 = sg(t) 

by induction with respect to sf(t). 

(a) If 5/(0 = 0, then sg(t) ^ 5/(0 = 0. 
(b) Let t e D,sf(t) = f3,sg(t) = 7. According to [2], 1.3, for each y e / - 1 ( 0 

there exists z e / - 1 ( 0 n -9 s u c n that sf(y) ^ s/(^)^ hence the induction hypothesis 
implies sf(y) ^ Sf(z) = sg(z) < 7. Therefore 

(3) ifyef-^t), t h e n 5 / ( y ) < 7 

and (3) yields 
(3 = sf(t)^y = sg(t)^Sf(t)=p. 

By (2), sg(x) = a and (i) holds. • 

2.5. Proposition. V(*/a) \\ V(s/p) for each a, (5 e Ord, Q / / 3 . 

P r o o f . Let a,/3 e Ord, a^ 13. Then s/$ e V(s/p) and 

(1) f(a(3) = f(a(3)=af3, 
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hence 2.4 (for (3 instead of a) and (1) yield Sf(ap) = (3. Then sz/p £ V(s2/a), because 
in the opposite case Sf(ap) = a in view of 2.4. Hence 

(2) V(J*P) g V(rfa). 

Analogously, 

(3) V(s/a) £ V(sz/p), 

thus V(*/a) || V(s/&). D 

2.5'. Theorem. For each a G Ord there exists a monounary algebra s2/a such 

that, whenever a,/3 € Ord, a ^ (3, then V(s/a) \\ V(s/$). 

2.6. Notation. If a G Ord, then put 

PeOrd, P^a 

2.7. Lemma. If a, (3 G Ord, a < /3, then V(3Sa) C V(SSp). 

P r o o f . Let a < (3. Then 0 < a and AQ C Ha, A0 = {cn,ao}. Consider the 
mapping h: Bp —•> Ba defined as follows: 

{ x if x G Ba, 

Co otherwise . 
Obviously, h is the retraction endomorphism of 38p onto 3Sa, thus 3Sa G R(3Bp), 

which implies V ( ^ a ) C V(3Sp). D 

2.8. Lemma. Let a G Ord and (D,f) G F(^a). Then 
(i) if x G D,f(x) / x, then s/(:r) -̂  a. 

P r o o f . Suppose that a G Ord and that (D,f) = 38c*TdI for some nonempty 
set I. Let x G D,f(x) ^ x. Then there is i G I such that x(i) £ {cp: (3 G Ord, 
(3 ^ a). According to the definition of Sf(x) we get 

(1) Sf(x(i)) ^ sf(f
k(x(i))) for each k G N U {0}, 

thus s/(x(i)) ^ a by 2.2. Then 2.1(i) implies 

sf(x) ^ a. 

• 
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2.9. Lemma. If a G Ord and (D,f) G V(8Sa), then (i) of 2.8 is valid. 

P r o o f . Let the assumption hold. By 1.3, (D,f) G RP(SSa). The assertion is a 
consequence of 2.8 and of the definition of a retract. D 

2.10. Lemma. If a,/3 G Ord, a < /?, then V(3Sa) ^ V(gSp). 

P r o o f . Let a, (3 G Ord, a < /3. According to 2.9 we have 

(1) {sf(x) :xG(D,f)e V(8Sa)} C {7 G Ord : 7 < a} U {oo}. 

Since &&$ G V(3Sp) and since there is y G Bp with Sf(y) = (3, we obtain with respect 
to (1) that V(£Sa) 7- V(SS&). D 

2.11. Proposition. If a, 0 G Ord, a < 0, then V(SSa) £ V(3Sp). 

P r o o f . Immediately from 2.7 and 2.10. D 

2.11'. Theorem. For each a G Ord there exists a monounary algebra 3Sa such 

that, whenever a, (3 G Ord, a < /3, then V(SSa) § V(&Sp). 

3. ATOMIC RETRACT VARIETIES 

Retract variety V will be called atomic if V ^ 0 and, whenever V is a retract 
variety with l / f C f , then V = V. 

It is obvious that atomic retract varieties must be of the form V({s/}), where 
si = (A,f) G <%\ we will write V(A,f) = V(si) instead of V ({*/}). 

In the following lemmas 3.1-3.4 suppose that s/ = (A, f) G %. 

3.1 . Lemma. Assume that there is n G N and a connected component (K,f) 
of (A,f) with an n-element cycle and such that card K > n. Then V(s/) is not 
atomic. 

P r o o f . Let B be the set-theoretical union of all cycles of srf'. According to the 
definition of a retract, (B, f) G R(A, / ) , therefore 

M V ( B , / ) C V ( A , / ) . 

Let (D,f) G V(B,f). In view of 1.3, (D,f) G R(E,f), where (E,f) G (B,f) c a r d / 

for some I 7-= 0. We have 

(1) if e G E, then card/ _ 1 (e) = 1. 
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Since (D,f) G R(E,f), (1) implies 

(2) if d G D, then card f~1(d) = 1. 

From the assumption we obtain that there is a G K C A such that card / - 1 ( a ) ^ 2, 
hence we get (in view of (2)) 

(3) (A,f)iV(B,f). 

Therefore 

%CV(B,f)cV(A,f) 

and V(A, f) is not atomic. D 

3.2. Lemma. Assume that there is a connected component (K,f) of (A,f) 

such that 

(a) I =" (C, / ) for some subalgebra (C, f) of (K, f), 

(b) C^K. 

Then V(A, f) is not atomic. 

P r o o f . By way of contradiction, assume that V(A,f) is atomic Then in 
view of 3.1, each connected component of (A, f) containing a cycle consists of the 
cycle. Let B = C U B\, where B\ is the set of all cyclic elements of A. Obviously, 
(B,f)eR(A,f), thus 

<b^V(B,f)CV(A,f). 

By the same method as in the proof of 3.1 we obtain 

(AJ)iV(BJ), 

<DcV(B,f)cV(A,f), 

which is a contradiction. D 

3.3. Lemma. If there is x G A with card f~l(x) ^ 2. then V(A,f) is not 
atomic. 

P r o o f . Suppose that V(A, f) is atomic. In view of 3.1 and 3.2, we obtain that 
the following assertion is valid: 

(1) if (K, f) is a connected component of (A, f) and (K, f) contains a subalgebra 
isomorphic to Z or to n for some n eN, then card f~l(x) = 1 for each x G K. 
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Consider the set L consisting of all a G A such that (i) f~1(a) = 0, and (ii) there is 
b belonging to the same connected component as a with card / _ 1 (6) ^ 2. 

Assume that there is x0 G A with card f~1(x0) ^ 2. Then, by (1), the connected 
component (K, f) containing x0 contains no subalgebra isomorphic to 1 or to n for 
some n G N, thus there is ao G K with f~l(a0) = 0. Further, the fact that ao and x0 

belong to the same connected component and the relation card f~1(x0) ^ 2 imply 
that a0 G L. Therefore L 7-= 0. If a G L, then 

put 

Further let 

{keN: c a r d / " 1 ( / / c ( a ) ) ^ 2 } ^ 0 ; 

*(a) = min{fc G N: cardf~l(fk(a)) > 2}. 

m = min {k(a) : a e L } , 

J --- {a G L: k(a) = ra}, 

W = {fm(a):aeJ}. 

For each v G TV such that f~m(v) C J we choose a fixed element of the set f~m(v) 

and denote this fixed element by v. Then we define 

I={aeJ:f~m(fm(a))£j}U 

U {a G J: rm(fm(a)) C J,a # / ^ H } , 

B / = { a , / ( a ) , . . . , / m - 1 ( a ) : a G / } , 

B = . A - B ' . 

Further we will proceed by presenting some lemmas and after proving them, we 
will return to the proof of 3.3. D 

3.3.1. Lemma. (B, f) is a subalgebra of (A, / ) . 

P r o o f . It follows from the definition of B and B'. (It can be shown analogously 

as in 5.1, [2].) D 

3.3.2. Lemma. (B,f) G R(A,f). 

P r o o f . [2], Thm. 1.3. implies that it suffices to prove the following assertion: 

(a) If y G f~l(B) - H, then there is z G B such that f(y) = f(z) and sf(y) < 
sf(z). 
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Let y G f~1(B) - B. Then there is a G I with y = fm~1(a). We get 

(1) sf(y)=m-l. 

Consider two cases (one of them occurs): 

(2-1) rm(frn(a)) <£ J; 
(2.2) / - m ( / m ( a ) ) C J , a ^ / - ( a ) . 

Denote v = fm(a). If (2.2) is valid, then obviously 

Let (2.1) hold. If card f~m(v) = 1, then f~m(v) = {a} and the relation 
card f~l(v) ^ 2 yields that there is a' G L with 

k(a') < k(a) = m, 

which is a contradiction. Hence card f~m(v) > 1, a ^ v G £ . We have shown 

(3) r»n5^. 

Take u G f~m(v) - {a}, /m _ 1(?i) = z. Then z G 5 a n d 

(4) s / ( z ) ^ m - l . 

By (1) we obtain that (a) is valid. D 

3.3.3. Corollary. V(BJ) C V(AJ). 

3.3.4. Lemma. If (D, f) G V(£, / ) and x G F>, then k(x) > m. 

P r o o f . In view of the definition of (B, / ) , 

(1) k(x) > m for each x G B. 

Let (DJ) G # ( £ , / ) , (EJ) = ( £ , / ) c a r d / for some I ?- 0. Take e G £ Then 

(2) &(e(0) > m f° r e a c n * £ I, 

which implies 

(3) k(e) > m. 

Since (DJ) G R(EJ), the definition of a retract and (3) yield that k(x) > m for 
each x e D. D 
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3.3.5. Corollary. (A, f) <£ V(B,f). 

Let us return to the p r o o f of 3.3. There it was assumed that V(A, f) is 

atomic. Now the assertion that V(ST/) is not atomic is a consequence of 3.3.3 and 

3.3.5, because 

®$V(B,f)CV(A,f). 

We have got a contradiction, which completes the proof of 3.3. • 

3.4. Corollary. If Y is atomic, then there are cardinals a, f3 and xn for each 
n eN such that 

^ nЄN ' 

3.5. Corollary. If Y is atomic, then there are {a,/3} U {xn: n e N - {1}} C 

{0,1} and X! G {0,1,2} such that {a, 0} U {xn: n G N} ^ {0} and 

(i) Y = V(a-l + (3-N + £ xn-n). 
nGN 

P r o o f . The assertion follows from 3.4 and 1.9. • 

3.6. Lemma. If Y is atomic, then Y = V(s/) for some srf G % satisfying one 

of the following conditions: 

(a) S2/ = Yl h where 0 7- I C N and i does not divide j for each i,j G I, i ^ j ; 
iei 

(b) */ = 1; 
( c ) S2/ = N. 

P r o o f . Let Y be atomic Then Y satisfies (i) of 3.5. First let xx ^ 0. Then 

SS = 1 G R(s/) by [2], 1.3, thus 0 7- V(SS) C V(s/), which implies V(SS) = V(s/). 

Suppose that x\ = 0 and that there is io G I with xio ^ 0. Then SS = ^T xn. 
n6N 

Now n G #(.<-/) according to [2], 1.3, hence V(SS) C V(^), and therefore V(SB) = 

V(sz/). If «^ is not in the form required in (a), then there are nonempty sets J, I 

and ^ G ̂  as follows: 

J = {j G N: Xj = 1 & (3n G N - {j})(xn = 1 & n divides j ) } , 

I = N - {j e N: XJ = 0} - J, 

# = j ^ x» • £ = 5^ 2. 
iG1 i € 1 

Then <*f G I?(^) according to [2], 1.3, thus, 0 7- V(<*f) C V(^). Hence V(V) = V(s/) 

and z does not divide j for each i,j £ I, i ^ j . 

Now let x n = 0 for each n G N. If a = 1, then Z G -R(^), thus V(l) C V(^) 
and V(l) = V(s2/), i.e., (b) is valid. If a = 0, then we have (c). • 
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3.7. Lemma. If si fulfils (b) or (c) of 3.6, then V(si) is atomic. 

P r o o f . Suppose that 0 7- W C V(si) and that 8& G W. Consider the case 
si = 1; the other case is analogous. Then 

@ e V(si) = {A • Z: A G Card -{0}} . 

This implies that J ^ G .R(#), V(si) C V(38) C W. Hence V(si) is atomic. D 

3.8. Lemma. If si fulfils (a) of 3.6, then V(si) is atomic. 

P r o o f . Let the assumption be valid and suppose that 0 7-= W C V(si), SB G W. 

If 1 G J, then si = 1 and W = V(si). Assume that 1 $ I. By 1.10 for each i G J 

there is a connected component ^ of 3& such that ^ = i. Therefore si G R(SS), 

which implies V(^) C V ( # ) C W. D 

3.9. Theorem, y is atomic if and only if there is si G ̂  such that ^ = V(^) 
and ^ fulfiis one of the conditions (a)-(c) of 3.6. 

P r o o f . The assertion is a consequence of 3.6-3.8. D 

3.10. Theorem. There are exactly 2**° atomic retract varieties of monounary 

algebras. 

P r o o f . In view of 3.9 the number of atomic retract varieties is less than or equal 
to 2**°. Hence we have to verify that the number of those atomic retract varieties 
V(si) of <K for which si has the form described in the condition (a) of 3.6 is at least 
2*o. 

Let 5? be the set of all monounary algebras si satisfying (a) of 3.6. Then it is 

clear that card 5? = 2K°. Thus we have to show that if si and si' are distinct 

elements of 5?, then V(si) ^ V(si'). 

To this aim, let us suppose that si = £} i, &i' = J2 0- a n ^ t n a t 0 7̂  J Q N, 
iei vei' 

0 7-1' C W, where 

(1) i does not divide j for each i, j G J, i 7-= j , 

(I') i' does not divide j ' for each i',j' G I',i' 7- / , 

(2) E^E -̂
»'€/ «'€/' 

In way of contradiction, assume that 

(3) V ( *0 = V(«f")-
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By (2), there is k G I with k £ V. Let 2 G V(st). In view of 1.10 there exists a 
connected component S8 of 3f such that 38 = k. Then, since $ G V ( ^ ' ) , we obtain 
9 G RP(srf'), 9 G R((^')x) for some 0 ?- A G Card, thus 

k = l .c .m.( i i , . . . ,C) , { i i , . . . , i ' m } C P . 

We have 

(4) ii divides k. 

Further, ii G V and 9> G V(&/'), hence by applying 1.10 again we get that there is 
a connected component 8P of Of such that @P = i\. Now the relation 9> G V(&/) 

implies 

ii = l .c .m.( i i , . . . , i / ) , { i i , . . . , i / } C I. 

Then 

(5) ii divides i[, . . . , i/ divides i[. 

By (4), (5) and (1) 

t\ — AC, . . . , */ —- AC, 

i ' l = fc, 

hence k G I', which is a contradiction. Therefore (3) fails to hold. This completes 
the proof. • 
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