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APPROXIMATION OF ALMOST PERIODIC FUNCTIONS

BY PERIODIC ONES

Alexander Fischer, Praha

(Received March 23, 1993)

Abstract. It is not the purpose of this paper to construct approximations but to establish a
class of almost periodic functions which can be approximated, with an arbitrarily prescribed
accuracy, by continuous periodic functions uniformly on � = (−∞;+∞).
Keywords: almost periodic function

1. Introduction

In many technical as well as purely theoretical domains an important role is played
by periodic functions representing periodic motions or periodic processes. The sum

of periodic functions need not be a periodic function, hence the space of periodic
functions is not linear. Therefore, some attempts to generalize the notion of the pe-

riodic function appeared already towards the end of the last century. This effort was
successfully completed in the twenties of this century when the Danish mathemati-

cian Harald Bohr published his theory of almost periodic functions the space of which
is linear and which generalize periodic functions. Since then this theory has been

developed by a number of outstanding mathematicians. In 1933 Salomon Bochner
presented his important work extending the theory of almost periodic functions to

abstract functions with range in a Banach space.
It is not the purpose of this paper to construct approximations but to establish

a class of almost periodic functions which can be approximated, with an arbitrarily
prescribed accuracy, by continuous periodic functions uniformly on � = (−∞; +∞).
This paper may be looked upon also as an argument against the controversial

opinion, namely, that the introduction of almost periodic functions is unnecessary

and that it suffices to consider only continuous periodic functions by means of which
any almost periodic function on any finite interval can be uniformly approximated
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with an arbitrary accuracy. Nowadays, however, there exist devices with everlasting

schedule; indeed, such an everlasting schedule can be exemplified by the motion of
celestial bodies. In view of this we must abandon the hypothesis about the uniform
approximation on finite intervals in favour of studying possibilities of the uniform

approximation on �.

This paper presents an original approach even though some reasoning against the

negative point of view on almost periodic functions may be found already in Bohr’s
and Bochner’s works.

2. Notation and definitions

We will use the following notation: �—the set of all positive integers, �—the set

of all integers, �—the set of all rational numbers, �—the set of all real numbers,
�—the set of all complex numbers. Further, X will stand for a Banach space (B-
space) with the norm |.|X, i.e. a complete linear normed space (such as � or � with
the norm given by the absolute value of the number).

Here we will deal only with (abstract) functions � → X, i.e. functions defined on
� with their ranges in a B-space X.
Let us denote by C(X) the set of all functions � → X that are continuous on

�. A functions f ∈ C(X) is said to be bounded if its range Rf = {f(t) : t ∈ �} is
a bounded set in X. In the space CB(X) of all bounded functions from C(X) we
introduce the norm ‖f‖ = sup{|f(t)|X : t ∈ �}, f ∈ CB(X), yielding the uniform
convergence on �. Under this norm, CB(X) becomes a B-space. The points from
X may be identified with constant functions from CB(X) and we can use the norm
‖.‖ for them which is equal in this case to the norm |.|X .

3. Periodic functions

We say that a real number ω is a period of a function f if f(t+ ω) = f(t) for all
t ∈ �.

A function f is said to be periodic if there exists its non-vanishing period. Let us
denote by CP (X) the class of all periodic functions from CB(X).
If f ∈ CP (X) then the infimum of the set of all positive periods of a function f

will be denoted by ωf . The number ωf is called the primitive period of the function
f and it is its period. If ωf = 0 then the function f is constant and vice versa if a

function f is constant then ωf = 0.
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4. Trigonometric polynomials and almost periodic functions

Besides the symbol eα for the value of the exponential function we will use also
the notation exp(α).

If a1, . . . , aN are elements from X and λ1, . . . , λN are (mutually different) real
numbers then the function

Q(t) =
N∑

k=1

ak exp(iλkt), t ∈ �,

is called an X-trigonometric polynomial or shortly a trigonometric polynomial. Ob-
viously, Q ∈ CB(X).
The class of all X-trigonometric polynomials is linear and its closure, which we

denote by AP (X), is a subspace of the space CB(X), that is, AP (X) is a B-space
with the norm ‖.‖. The elements of the space AP (X) are called X-almost periodic
functions or shortly almost periodic functions.
The inclusion CP (X) ⊂ AP (X) is valid, though, as we shall see later, CP (X) is

not dense in AP (X), i.e. its closure does not contain AP (X).

5. Properties of almost periodic functions

Almost periodic functions exhibit a number of properties similar to the periodic

ones. Before stating them we adopt two definitions.
A real number τ is said to be an ε-almost period of a function f : � → X, where

ε is a positive number, if

|f(t+ τ)− f(t)|X � ε for all t ∈ �.

The set of all ε-almost periods of a function f is denoted by T (ε, f).
A set Λ ⊂ � is said to be relatively dense (in �) if there exists a positive number

l, the so-called inclusive length of the relative density, such that the intersection of
Λ and any closed interval of length l is non-empty.

Now we are in position to state some of the basic properties of almost periodic
functions. If f ∈ AP (X) then
i) the function f is uniformly continuous on �;
ii) the range Rf of the function f is a relatively compact set, i.e. any sequence of

points from Rf contains a subsequence convergent in X;
iii) for any ε > 0 the set T (ε, f) of all ε-almost periods of the function f is relatively

dense.
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6. Harmonic analysis

If f ∈ AP (X) then the limit

M(f) =Mt{f(t)} = lim
T→+∞

1
T

∫ s+T

s

f(t) dt

exists uniformly with respect to the parameter s ∈ �, and it is called the mean value

of the function f . The function

a(λ) = a(λ, f) =Mt{f(t) exp(−iλt)}, λ ∈ �,

is called the Bohr transform of the function f . If a(λ) �= 0 then λ is called the Fourier

exponent and a(λ) the Fourier coefficient of the function f . The set of all Fourier
exponents of the function f will be denoted by Λf . This set is at most countable

(finite or can be arranged into a sequence).

From the harmonic analysis of periodic functions it is known that each Fourier

exponent of any non-constant function g ∈ CP (X) is equal to the product of the
number 2�/ωg by an integer.

Remark. Here and hereafter the symbol 0 denotes both zero and the zero element
in X. The meaning of the symbol 0 is always clear from the context.

The trigonometric series

∑

λ

a(λ) exp(iλt), λ ∈ Λf ,

is called the Fourier series of the function f . It is uniquely determined up to the

order of summation.

For any λ ∈ � the inequality |a(λ)|X = |a(λ, f)|X � ‖f‖ holds.
If f ∈ AP (X) and ε > 0 then it is possible to construct the so-called Bochner-Fejer

approximation (trigonometric) polynomial Qε such that ΛQε ⊂ Λf , ‖f − Qε‖ � ε

and for all λ ∈ Λf we have a(λ, Qε) = r(λ, ε)a(λ, f), where 0 � r(λ, ε) � 1 and
lim r(λ, ε) = 1 for ε → 0+.
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7. Kronecker’s theorem

(Congruent) equalities A = δ (mod 2�) and |A| = δ (mod 2�) mean that there ex-

ists an integerm such that A−2�m = δ and |A−2�m| = δ, respectively. (Congruent)
inequalities are defined in the analogous manner.

In the sequel we will use the following theorem.

Theorem 1 (Kronecker). If λ1, . . . , λN and Θ1, . . . ,ΘN are real numbers (N ∈
�) then a necessary and sufficient condition for the system of inequalities (for the
unknown t ∈ �)

(1) |λjt−Θj | � δ (mod 2�), j = 1, . . . , N,

to have a solution for any positive number δ is that each equality m1λ1 + . . . +
mNλN = 0, where m1, . . . , mN are integers, implies the equality m1Θ1 + . . . +

mNΘN = 0 (mod 2�).

The proof of this theorem may be found in [1], [4], [5].
Real numbers λ1, . . . , λN are said to be linearly dependent (over �) if there are

rational number r1, . . . , rN not all vanishing such that r1λ1 + . . . + rNλN = 0. If
λ1, . . . , λN are not linearly dependent we call them linearly independent.

The conditions of the Kronecker theorem are fulfilled, for instance, if λ1, . . . , λN

are linearly independent numbers.

8. Diameter of the range

If M ⊂ X is a non-empty set then the diameter of M is defined by d(M) =

sup{|x− y|X : x, y ∈M}.

Theorem 2. If f ∈ AP (X) is a non-constant function and its mean value van-
ishes, i.e. M(f) = O ∈ X, then the inequality

(2) d(Rf ) > ‖f‖

holds.

�����. The definition of the norm ‖f‖ yields the existence of a sequence
{tn} ⊂ � such that

(3) |f(tn)|X > ‖f‖ − 1
n

, n = 1, 2, . . .
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Owing to the relative compactness of the set Rf we can assume that the sequence

{f(tn)} ⊂ Rf is convergent in X (otherwise we would pass to a convergent sub-
sequence) and that z0 = lim f(tn). In view of inequalities (3), |z0|X = ‖f‖ must
hold.

Let us introduce an auxiliary quantity d1 = d1(f) = sup{|f(t)− z0|X : t ∈ �}. It
is evident that d1 � d(Rf ) so that it suffices to prove the inequality ‖f‖ < d1. We
will proceed by contradiction. Assume d1 � ‖f‖. On account of lim f(tn) = z0, for

any ε > 0 there exists a point s ∈ {tn} such that |f(s)−z0|X < ε. Further, for this ε

there exists an inclusive length l = l(ε) of the relative density of the set T (ε, f) and

there exists a positive number δ = δ(ε) such that |f(t)− f(t′)|X � ε for |t− t′| � δ

(the uniform continuity of the function f on �).

For any closed interval Jk = 〈kl, (k + 1)L〉, where k ∈ � and L = l + 2δ, there
exists an ε -almost period τk such that ∆k = 〈s+ τk − δ, s+ τk + δ〉 ⊂ Jk. Indeed,

it is sufficient to take τk ∈ 〈kL+ δ − s, kL+ δ − s+ l〉 ∩ T (ε, f) �= ∅. For any
k ∈ � we have |s + τk − t| � δ for all t ∈ ∆k so that for these t the inequality

|f(t) − z0|X � |f(t) − f(s + τk)|X + |f(s + τk) − f(s)|X + |f(s) − z0|X < 3ε holds,
which implies

1
L

∫

Jk

|f(t)− z0|X dt � 1
L

[∫

Jk−∆k

d1 dt+
∫

∆k

3ε dt

]

=
1
L
[(L− 2δ)d1 + 6εδ] = d1 −

2δ
L
(d1 − 3ε) < d1

for 0 < ε < (d1/3) (f is non-constant and thus d1 > 0). From these relations we

obtain the inequality

M(|f − z0|X) = lim
n→∞

1
nL

∫ nL

0
|f(t)− z0|X dt

= lim
n→∞

1
n

n−1∑

k=0

1
L

∫

Jk

|f(t)− z0|X dt

� lim
n→∞

1
n

n∑

k=0

[
d1 −

2δ
L
(d1 − 3ε)

]
= d1 −

2δ
L
(d1 − 3ε) < d1.

However this is a contradiction because

0 = |M(f)|X = |M(z0) +M(f − z0)|X = |z0 +M(f − z0)|X
� |z0|X − |M(f − z0)|X > |z0|X − d1 = ‖f‖ − d1 � 0.

One must therefore have ‖f‖ < d1 � d. �
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Corollary 3. If f ∈ AP (X) is a non-constant function then

(4) d(Rf ) > ‖f −M(f)‖.

�����. In virtue of |f(s)− f(t)|X = |(f(s)−M(f)) − (f(t) −M(t))|X, which
is valid for any real numbers s, t, we have d(Rf ) = d(Rf−M(f)). Further, the
function f −M(f) has a vanishing mean value and is non-constant. Thus, it fulfils

the conditions of Theorem 2 and consequently, using (4), we conclude d(Rf ) =
d(Rf−M(f)) > ‖f −M(f)‖. �

9. Approximation of almost periodic functions

In this section we determine a class of X-almost periodic functions which can be
uniformly approximated on � by functions from CP (X) with an arbitrary accuracy.

Theorem 4. Let f and g be functions from CP (X). If their primitive periods
ωf and ωg are linearly independent then the estimate

(5) ‖f − g‖ � 1
2
‖f −M(f)‖

holds.

�����. First, we assume M(f) = 0 and verify the validity of (5) by contradic-

tion.
Let ‖f − g‖ < 1

2‖f‖, which means that |f(t)− g(t)|X < 1
2‖f‖ for all t ∈ �. If we

choose ε = 1
4 (d(Rf )− ‖f‖) > 0, then d(Rf ) > ‖f‖+ 3ε, and there are real numbers

t1, t2 such that |f(t1)− f(t2)|X > ‖f‖+ 3ε.
By assumption the numbers ωf and ωg are linearly independent and so the num-

bers 2�/ωf , 2�/ωg are linearly independent as well. By virtue of the Kronecker

theorem, for any δ > 0 there exists a solution τ = τ(δ) of the system of inequalities

|(2�/ωf)t− (2�/ωf)(t2 − t1)| < (2�/ω)δ (mod 2�),

|(2�/ωg)t| < (2�/ω)δ (mod 2�),

(λ1 = 2�/ωf , λ2 = 2�/ωg, Θ1 = (t2 − t1)2�/ωf , Θ2 = 0),

where ω = max{ωf , ωg}. This means that there exists a real number τ and integer
numbers mf , mg such that the inequalities

|(2�/ωf)τ − (2�/ωf)(t2 − t1)− 2�mf | < (2�/ω)δ,

|(2�/ωg)τ − 2�mg| < (2�/ω)δ

are fulfilled.
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Multiplying the first inequality by the number ωf/2� and the second by the number

ωg/2� we get the system of inequalities

|t1 + τ − t2 −mfωf | < δωf/ω � δ,(6)

|t1 + τ − t1 −mgωg| < δωg/ω � δ.

The uniform continuity of the functions f and g on � yields the existence of a

positive constant δ = δ(ε) such that |f(t) − f(t′)|X � ε and |g(t) − g(t′)|X � ε for
|t− t′| � δ. From this and on account of (6) we obtain

|f(t2)− f(t1 + τ)|X = |f(t2 +mfωf)− f(t1 + τ)|X � ε,

|g(t1)− g(t1 + τ)|X = |g(t1 +mgωg)− g(t1 + τ)|X � ε.

This leads to a contradiction since

‖f‖/2 > ‖f − g‖ � |f(t1 + τ)− g(t1 + τ)|X
� |f(t2)− g(t1)|X − |f(t2)− f(t1 + τ)|X − |g(t1)− g(t1 + τ)|X
� |f(t2)− f(t1)|X − |f(t1)− g(t1)|X − 2ε
> ‖f‖+ 3ε− ‖f‖/2− 2ε = ‖f‖/2 + ε.

One must therefore have ‖f − g‖ � 1
2‖f‖.

Next, we turn to the case M(f) �= 0. Then the mean value of the function
f − M(f) vanishes and its primitive period is ωf , so that by the above ‖f − g‖ =
‖(f − M(f)) − (g − M(f))‖ � 1

2‖f − M(f)‖ (the primitive period of the function
g −M(f) is ωg). The proof is complete. �

A set Λ ⊂ � is said to have a one-point basis if there exists a real number β such
that Λ ⊂ β� = {βr : r ∈ �}. A function f ∈ AP (X) is said to have a one-point
basis if the set Λf has a one-point basis.

The validity of the following lemma is obvious.

Lemma 5. If an X-trigonometric polynomial has a one-point basis then it is a
periodic function.

Theorem 6. A necessary and sufficient condition that an X-almost periodic
function might be uniformly approximated on � by functions from CP (X) with an
arbitrary accuracy (i.e. that the distance dP (f) of f from CP (X) be zero, dP (f)

being defined by sup{‖f − g‖ : g ∈ CP (X)}) is that the function f have a one-point

basis.
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�����. The statement of Theorem 6 is immediate for a constant function f .

So, let us assume that f is a non-constant function and without restricting generality
we may assume that M(f) = 0.

Necessity. Let dP (f) = 0. We prove that Λf has a one-point basis. Choose
ε = ‖f‖/6 > 0. In view of dP (f) = 0 there exists a function g ∈ CP (X) such that
‖f − g‖ < ε. The function g satisfies the relations

‖M(g)‖ = |M(g)|X = |M(g)−M(f)|X = |M(g − f)|X � ‖g − f‖ < ε

so that

‖g −M(g)‖ � ‖f‖ − ‖f − g‖ − ‖M(f − g)‖ � ‖f‖ − 2‖f − g‖ = 4ε > 0.

Hence, the function g is non-constant and ωg > 0. Putting β = 2�/ωg, one has

Λg ⊂ β� (see Sec. 6).

If η is an arbitrary positive number less than ε then there exists a function h ∈
CP (X) such that ‖f−h‖ < η < ε. Such a function h exists thanks to dP (f) = 0. Let

us assume that the primitive periods ωg, ωh are linearly independent. By Theorem
4 the estimate (5) is then valid, so that 2ε > ‖f − g‖ + ‖f − h‖ � ‖g − h‖ �
‖g−M(g)‖/2 > 2ε. This is a contradiction. Hence ωf , ωg must be linearly dependent
and Λh ⊂ β�. For λ �∈ β� we have a(λ, h) = 0 so that |a(λ, f)|X = |a(λ, f − h)|X �
‖f − h‖ < η. Due to the arbitrariness of η ∈ (0, ε), a(λ, f) = 0 must hold, hence
Λf ⊂ β�, i.e. Λf has a one-point basis.

Sufficiency. Let a function f have a one-point basis, i.e. let there exist a real
number β such that Λf ⊂ β�. This means that each Bochner-Fejer polynomial of

the function f has a one-point basis and therefore it is periodic. Since the function
f is approximated uniformly on � with an arbitrary accuracy by these polynomials,

we have dP (f) = 0. �

The class of all X-almost periodic functions with a one-point basis forms the
closure of CP (X). Provided X �= {0} this closure does not contain AP (X) since
there exist X-almost periodic functions that have no one-point basis. For instance,
the numbers 1 and � are linearly independent so that for any non-zero element a ∈ X
the function f(t) = [exp (it) + exp (i�t)]a, t ∈ �, is X-almost periodic and has no
one-point basis.
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10. A one-to-one almost periodic function

Almost periodic functions enjoy similar properties as continuous periodic functions

but some properties can be altogether different. For example, any periodic function
assumes each function value infinitely many times whereas the almost periodic func-

tion f(t) = cos t + cos �t, t ∈ �, assumes the value 2 only at one point, namely at
t = 0. Indeed, provided f(t) = 2 for t �= 0 then t = 2�k, �t = 2�l, where k, l are

integer non-vanishing numbers, so that � = �t/t = 2�l/2�k = l/k, which leads to
a contradiction with the fact that � is an irrational number. The function indeed
assumes the value 2 only for t = 0.

Moreover, there exist one-to-one almost periodic functions, that is M functions
which assign different values to different arguments. These functions are invertible.

In what follows we will construct such a one-to-one almost periodic function.
Let λ and µ be two linearly independent real numbers and let a be a positive

number less than 1. We define a function f ∈ AP (� ) by

(7) f(t) = f(t, λ, µ) = exp(iλt) + a exp(iµt), t ∈ �.

Denote ω = µ−λ. If there exist real numbers s, τ such that s �= τ and f(s) = f(τ)
then

|f(s)|2 = |1 + a exp(iωs)|2 = 1 + a2 + 2a cosωs

= |f(τ)|2 = |1 + a exp(iωτ)|2 = 1 + a2 + 2a cosωτ,

that is,

cosωs− cosωτ = −2 sin ω(s− τ)
2

sin
ω(s+ τ)
2

= 0.

This means that either ω(s− τ) or ω(s+ τ) is an integer multiple of the number 2�.

First, assume that ω(s−τ) = 2�k, where k is a non-vanishing integer since µ−λ �=
0, s− τ �= 0. It follows that ωs = ωτ + 2�k and exp(iωs) = exp(iωτ) and, moreover,

f(s) = exp(iλs)(1 + a exp(iωs)) = exp(iλs)(1 + a exp(iωτ)) = f(τ) = exp(iλτ)(1 +
a exp(iωτ)).

Since 1 + a exp(iωt) �= 0 for all t ∈ � (0 < a < 1), exp(iλs) = exp(iλτ) must
hold. Hence there exists an integer l such that λ(s− τ) = 2�l. But then µ(s− τ) =

λ(s− τ) + 2�k = 2�(k + l), lµ(s− τ)− (k + l)λ(s− τ) = 2�(l(k + l)− (k + l)l) = 0.
Since s− τ �= 0 we have lµ− (k+ l)λ = 0. Due to the fact that the numbers λ and µ

are linearly independent we get l = k + l = 0, hence k = 0, which is a contradiction
with k �= 0. The number ω(s− τ) cannot be an integer multiple of 2� and

(8) sin
ω(s− τ)
2

�= 0

must hold.
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The remaining case is ω(s + τ) = 2�k, where k is an integer (possibly zero).

Then we get ωs = −ωτ + 2�k, exp (iωs) = exp (−iωτ) and f(s) = exp (iλs)(1 +
a exp (−iωτ)) = exp (iλτ)(1 + a exp (iωτ)) = f(τ). Taking the real and imaginary
parts of the latter relation we obtain a system of equalities

(1 + a cosωτ) cosλs+ a sinλs sinωτ(9)

= (1 + a cosωτ) cosλτ − a sinλτ sinωτ

(1 + a cosωτ) sinλs− a cosλs sinωτ

= (1 + a cosωτ) sinλτ + a cosλτ sinωτ.

If sinωτ = 0 then there exists a non-vanishing integer l such that ωτ = �l,which

yields ω(s− τ) = ω(s+ τ)− 2ωτ = 2�(k − l), and this contradicts (8). Hence

(10) sinωτ �= 0

must hold. Now, the system (9) can be arranged to the form

(1 + a cosωτ) sin
λ(s− τ)
2

sin
λ(s+ τ)
2

(11)

= a cos
λ(s− τ)
2

sin
λ(s+ τ)
2

sinωτ,

(1 + a cosωτ) sin
λ(s− τ)
2

cos
λ(s+ τ)
2

= a cos
λ(s− τ)
2

cos
λ(s+ τ)
2

sinωτ.

If sin 12λ(s − τ) = 0 then | cos 12λ(s − τ)| = 1 and the first equality implies that
sin 12λ(s+ τ) = 0, | cos 12λ(s+ τ)| = 1. But this leads to a contradiction in the second
equality from (11): 0 = a cos 12λ(s− τ) cos 12λ(s+ τ) sinωτ �= 0. Consequently,

(12) sin
λ(s− τ)
2

�= 0.

As | sin 12λ(s+ τ)| + | cos 12λ(s+ τ)| > 0, either of the equalities (11) implies the

equality

(13)
1 + a cosωτ

a sinωτ
=
cos 12λ(s− τ)

sin 12λ(s− τ)
�= 0.

Now, let us return to the function g(t) = f(t, µ, λ), t ∈ �, see (7). If there are real
numbers s, τ such that g(s) = g(τ) and s �= τ then by the above considerations ω(s+
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τ) is an integer multiple of 2� and the equality (obtained from (13) by interchanging

λ and µ)

(14)
1 + a cosωτ

−a sinωτ
=
cos 12µ(s− τ)

sin 12µ(s− τ)
�= 0

holds.
We define a function F ∈ (AP (� 2 ) by the formula F (t) = (f(t), g(t)), t ∈ �. If

there are real numbers s, τ such that F (s) = F (τ) and s �= τ then ω(s + τ) is an
integer multiple of 2�, the equalities (13) and (14) are valid and thus also the equality

cos 12λ(s− τ)

sin 12λ(s − τ)
= −cos

1
2µ(s− τ)

sin 12µ(s− τ)
,

holds and enables us to conclude

cos
λ(s− τ)
2

sin
µ(s− τ)
2

+ cos
µ(s− τ)
2

sin
λ(s− τ)
2

= sin
(λ+ µ)(s− τ)

2
= 0.

This means that in addition to (µ − λ)(s + τ), (µ + λ)(s − τ) must be an integer
multiple of 2� as well.

The functionG ∈ AP (� 2 ), defined by the formulaG(t) = (f(t,−λ, µ), f(t, µ,−λ)),
t ∈ �, possesses the following property which is a consequence of the preceding

considerations on substituting −λ instead of λ: the equality G(s) = G(τ) while
s �= τ implies that both (µ+ λ)(s + τ), (µ − λ)(s− τ) are integer multiples of 2�.

Eventually, we define a function Φ ∈ CP (� 4 ) by the formula Φ(t) = (F (t), G(t)),
t ∈ �. The equality Φ(s) = Φ(τ) and s �= τ then implies that

(µ− λ)(s + τ) = 2�k,(15)

(µ+ λ)(s + τ) = 2�l,

(µ− λ)(s − τ) = 2�m,

(µ+ λ)(s − τ) = 2�n,

where k, l, m, n are integers. Since λ, µ are linearly independent and s �= τ we

get that m, n are non-vanishing numbers. The latter two equalities in (15) yield the
equality µ−λ

µ+λ = m/n, i.e., (m+n)λ+(m−n)µ = 0. The fact that λ and µ are linearly

independent implies m + n = 0 and m− n = 0 which gives m = n = 0, and this is
a contradiction. Thus, there do not exist real numbers s, τ such that Φ(s) = Φ(τ)

and s �= τ . The function Φ assigns different values to different arguments, that is, Φ
is a one-to-one function and the inverse function to Φ exists.
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11. Conclusion

The crux of the paper lies in Sections 8 and 9 where the original assertions of

Theorems 2, 4 and 6 and Corollary 3 state that the class of almost periodic functions
which can be approximated uniformly on � by continuous periodic functions with an

arbitrary accuracy forms a relatively narrow class of almost periodic functions with
a one-point basis.

The idea of existence and construction of an invertible almost periodic function
occurs in the theory of almost periodic function for the first time and suggests the
wealth and diversity of the space of almost periodic functions.

For background material concerning the theory of almost periodic functions and
the proof of the Kronecker theorem we refer the reader to the publications listed in

the References.
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