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Abstract. In this paper we first prove some coincidence and fixed point theorems for
nonlinear hybrid generalized contractions on metric spaces. Secondly, using the concept of
an asymptotically regular sequence, we give some fixed point theorems for Kannan type
multi-valued mappings on metric spaces. Our main results improve and extend several
known results proved by other authors.
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1. Introduction and preliminaries

Let (X, d) be a metric space and let f and g be mappings from X into itself. In
[19], Sessa defined f and g to be weakly commuting if d(gfx, fgx) � d(gx, fx) for

all x in X . It can be seen that commuting mappings are weakly commuting, but the
converse is false as shown by Example in [21].

Recently, Jungck [6] extended the concept of weak commutativity in the following
way:

Definition 1.1. Let f and g be mappings from a metric space (X, d) into itself.
The mappings f and g are said to be compatible if

lim
n→∞

d(fgxn, gfxn) = 0

whenever {xn} is a sequence in X such that lim
n→∞

fxn = lim
n→∞

gxn = z for some z

in X .
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It is obvious that weakly commuting mappings are compatible, but the converse

is not true. Some examples of this fact can be found in [6].

Recently, Kaneko [9] and Singh et al. [24] extended the concepts of weak commu-
tativity and compatibility for single-valued mappings to the setting of single-valued

and multi-valued mappings, respectively.

Let (X, d) be a metric space and let CB(X) denote the family of all nonempty
closed and bounded subsets of X . Let H be the Hausdorff metric on CB(X) induced

by the metric d, i.e.,

H(A, B) = max
{
sup
x∈A

d(x, B), sup
y∈B

d(y, A)
}

for all A, B ∈ CB(X), where d(x, A) = inf
y∈A

d(x, y).

It is well-known that (CB(X), H) is a metric space, and if a metric space (X, d)

is complete, then (CB(X), H) is complete.

Lemma 1.1. [19] Let A, B ∈ CB(X) and k > 1. Then for each a ∈ A, there

exists a point b ∈ B such that d(a, b) � kH(A, B).

Let (X, d) be a metric space and let f : X → X and T : X → CB(X) be single-

valued and multi-valued mappings, respectively.

Definition 1.2. The mappings f and T are said to be weakly commuting if, for
all x ∈ X , fTx ∈ CB(X) and H(Tfx, fTx) � d(fx, Tx), where H is the Hausdorff

metric defined on CB(X).

Definition 1.3. The mappings f and T are said to be compatible if and only

if fTx ∈ CB(X) for all x ∈ X and H(Tfxn, fTxn) → 0 as n → ∞ whenever
{xn} ⊂ X such that Txn → M ∈ CB(X) and fxn → t ∈ M as n →∞.

Remark 1.1. In [10], Kaneko and Sessa gave an example that weak commuta-

tivity implies compatibility, but the converse is not true.

Recently, Pathak [16] introduced the concept of weak compatible mappings for
single-valued and multi-valued mappings on a metric space as follows:

Definition 1.4. The mappings f and T are said to be f -weak compatible if
fTx ∈ CB(X) for all x ∈ X and the following limits exist and satisfy the relevant
inequalities:

lim
n→∞

H(fTxn, T fxn) � lim
n→∞

H(Tfxn, Txn),(i)

lim
n→∞

d(fTxn, fxn) � lim
n→∞

H(Tfxn, Txn),(ii)
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whenever {xn} is a sequence in X such that Txn → M ∈ CB(X) and fxn → t ∈ M

as n →∞.

It can be seen that compatible mappings f and T are weak compatible, but the
converse is not true. Example in [16] and Example 2.1 of this paper support this

fact.

Note that if T is a single-valued mapping in Definitions 1.2, 1.3 and 1.4, we obtain

the concepts of weak commutativity [21], compatibility [6] and weak compatibility
[15], [17], [18] for single-valued mappings.

Remark 1.2. We have only f -weak compatibility for single-valued and multi-
valued mappings in contrast to single-valued mappings for which we can define f -

weak as well as T -weak compatibility.

On the other hand, in [20], Rhoades et al. introduced the concept of asymptoti-
cally regular sequences in metric spaces and proved a fixed point theorem using this

concept.

Let T : X → CB(X) be a multi-valued mapping and {xn} a sequence in X .

Let f : X → X be a mapping such that T (X) ⊂ f(X). Then {xn} is said to be
asymtotically T -regular with respect to f if d(fxn, Txn) → 0 as n → ∞. In the
case when f is the identity mapping on X , we simply say that the sequence {xn} is
asymptotically T -reqular [18]. A point x is said to be a fixed point of a single-valued

mapping f (a multi-valued mapping T ) if x = fx (x ∈ Tx). The point x is called a
coincidence point of f and T if fx ∈ Tx.

In this paper we give some concidence and fixed point theorems for nonlinear
hybrid generalized contractions, i.e., the generalized contractive conditions including

single-valued and multi-valued mappings on metric spaces. Our main results improve
and generalize many results proved by many authors, Kaneko [8], [9], Kaneko and
Sessa [10], Kubiak [13], Pathak [16], Nadler [19] and Singh et al. [24].

Finally, we prove some fixed point theorems for Kannan type multi-valued map-

pings by using the concept of asymptotically regular sequences in metric spaces.

2. Coincidence theorems and fixed point theorems

In this section we give some coincidence and fixed point theorems for nonlinear

hybrid generalized contractions.

Theorem 2.1. Let (X, d) be a complete metric space, let f : X → X and

T : X → CB(X) be f -weak compatible continuous mappings such that T (X) ⊂
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f(X) and

(2.1) H(Tx, T y) � h · [a · L(x, y) + (1− a) ·N(x, y)]

for all x, y in X , where 0 � h < 1, 0 � a � 1,

L(x, y) = max{d(fx, fy), d(fx, Tx), d(fy, T y), 12 [d(fx, T y) + d(fy, Tx)]}

and

N(x, y) = [max{d2(fx, fy), d(fx, Tx) · d(fy, T y), d(fx, T y) · d(fy, Tx),
1
2d(fx, Tx) · d(fy, Tx), 12d(fx, T y) · d(fy, T y)}]1/2.

Then there exists a point t ∈ X such that ft ∈ T t, i.e., the point t is a coincidence

point of f and T .

�����. Pick x0 in X and choose x1 ∈ X such that fx1 ∈ Tx0. This is possible
since Tx0 ⊂ f(X). If h = 0, we obtain d(fx1, Tx1) � k · H(Tx0, Tx1) = 0, i.e.,
fx1 ∈ Tx1 since Tx1 is closed. Assume that 0 < h < 1 and set k = 1/

√
h. By the

definition ofH , there exists a point y1 ∈ Tx1 such that d(y1, fx1) � k·Hd(Tx1, Tx0).
Observe that this inequality may be in the reversed direction if k � 1 by Lemma
1.1. Since Tx1 ⊂ f(X), let x2 ∈ X be such that y1 = fx2. In general, having chosen
xn ∈ X , we may choose xn+1 ∈ X such that

yn = fxn+1 ∈ Txn and d(yn, fxn) � k ·H(Txn, Txn−1)

for each n � 1. Using (2.1), we have

d(fxn, fxn+1) � k ·H(Txn−1, Txn)

�
√

h · [a · L(xn−1, xn) + (1− a) ·N(xn−1, xn)],

where

L(xn−1, xn) � max{d(fxn−1, fxn), d(fxn−1, fxn), d(fxn, fxn+1),
1
2 [d(fxn−1, fxn+1) + 0]}

� max{d(fxn−1, fxn), d(fxn, fxn+1), 12 [d(fxn−1, fxn)

+ d(fxn, fxn+1)]}
� max{d(fxn−1, fxn), d(fxn, fxn+1)}
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and

N(xn−1, xn) � [max{d2(fxn−1, fxn), d(fxn−1, fxn) · d(fxn, fxn+1), 0, 0,
1
2d(fxn−1, fxn+1) · d(fxn, fxn+1)}]1/2

� [max{d2(fxn−1, fxn), d(fxn−1, fxn) · d(fxn, fxn+1),
1
2 [d(fxn−1, fxn) + d(fxn, fxn+1)] · d(fxn, fxn+1)}]1/2

� [max{d2(fxn−1, fxn), d(fxn−1, fxn) · d(fxn, fxn+1),

d2(fxn, fxn+1)}]1/2.

Suppose that d(fxn, fxn+1) >
√

h·d(fxn−1, fxn) for some n ∈ �. Then we obtain

d(fxn, fxn+1) < d(fxn, fxn+1), which is a contradiction, and so

(2.2) d(fxn, fxn+1) �
√

h · d(fxn−1, fxn)

for all n ∈ �. Since
√

h < 1 and X is complete, it follows from (2.2) that {fxn} is a
Cauchy sequence converging to a point t ∈ X . Also, the fact that H(Txn−1, Txn) �
h · d(fxn−1, fxn) and {fxn} is a Cauchy sequence in X implies that {Txn} is a
Cauchy sequence in the complete metric space (CB(X), H). So, letting Txn → M ∈
CB(X), we have

d(t, M) � d(t, fxn) + d(fxn, M)

� d(t, fxn) +H(Txn−1, M)

→ 0 as n →∞.

Thus, since M is closed, we have t ∈ M . Also, the f -weak compatibility of f and T

implies that

lim
n→∞

H(fTxn, T fxn) � lim
n→∞

H(Tfxn, Txn)

and

lim
n→∞

d(fTxn, fxn) � lim
n→∞

H(Tfxn, Txn).

Using the above second inequality, we obtain

lim
n→∞

d(ffxn, fxn) � lim
n→∞

d(ffxn, fTxn) + lim
n→∞

d(fTxn, fxn)

� lim
n→∞

d(ffxn, fTxn) + lim
n→∞

H(Tfxn, Txn).

Since f and T are continuous, we have

(2.3) H(f(M), T t) � H(T t, M) and d(ft, t) � H(T t, M).
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On the other hand, we have

(2.4)

d(ft, T t) � d(ft, f2xn+1) + d(f2xn+1, T t)

� d(ft, f2xn+1) +H(fTxn, T t)

� d(ft, f2xn+1) +H(fTxn, T fxn) +H(Tfxn, T t)

� d(ft, f2xn+1) +H(Tfxn, Txn) + εn,

where εn → 0 as n → ∞. Thus, letting n → ∞ in (2.4), we have d(ft, T t) �
H(T t, M). Now using (2.1), we have

(2.5) H(Txn, T t) � h · [a · L(xn, t) + (1− a) ·N(xn, t)],

where

(2.6)

L(xn, t) = max{d(fxn, f t), d(fxn, Txn), d(ft, T t),
1
2 [d(fxn, T t) + d(ft, Txn]}

� max{d(fxn, f t), d(fxn, Txn), d(ft, T t),
1
2 [d(fxn, T t) + d(ft, fxn) + d(fxn, Txn)]}

and

(2.7)

N(xn, t) � [max{d2(fxn, f t), d(fxn, Txn) · d(ft, T t),

d(fxn, T t) · [d(ft, fxn) + d(fxn, Txn)],
1
2d(fxn, Txn) · [d(ft, fxn) + d(fxn, Txn)],
1
2d(fxn, T t) · d(ft, T t)}]1/2.

Passing to the limits in (2.6) and (2.7) as n →∞, we have

(2.8)

lim
n→∞

L(xn, t) � max{d(t, ft), d(t, M), d(ft, T t),

1
2 [d(t, T t) + d(ft, t) + d(t, M)]}

� max{H(T t, M), 0, H(T t, M), 12 [H(M, T t) +H(T t, M)]}
= H(M, T t)

and

(2.9)

lim
n→∞

N(xn, t) � [max{d2(t, ft), d(t, M) · d(ft, T t),

d(t, T t) · [d(ft, t) + d(t, M)],
1
2d(t, M) · [d(ft, t) + d(t, M)],
1
2d(t, T t) · d(ft, T t)}]1/2

� [max{H2(T t, M), 0, H(T t, M)[H(T t, M)+ 0], 0,
1
2H

2(T t, M)}]1/2

= H(M, T t),
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respectively. Thus, we have, from (2.5), (2.8) and (2.9),

H(M, T t) � h · [a ·H(M, T t) + (1 − a) ·H(M, T t)] = h ·H(M, T t),

which implies that H(M, T t) = 0. Therefore, d(ft, T t) = 0 and so ft ∈ T t since T t

is closed. This completes the proof. �

Remark 2.1. We recall that a non-empty subset S of X is proximinal if for
each x ∈ X, there exists a point y ∈ S such that d(x, y) = d(x, S). Let PB(X) be

the family of all bounded proximinal subsets of X . If T : X → PB(X) and we have
chosen xn ∈ X, let xn+1 ∈ X be such that

yn = fxn+1 ∈ Txn and d(fxn, y) = d(fxn, Txn).

We include here an iteration scheme of Smithson [23], where T (X) is compact and
hence proximinal. Since a proximinal set is closed, we have PB(X) ⊂ CB(X), and

it can be observed that the results of [8] and [9] follow as corollaries.

Corollary 2.2. Let (X, d) be a complete metric space, let f : X → X and T :
X → PB(X) be continuous mappings such that fTx ∈ PB(X) and H(Tfx, fTx) �
h · d(fx, Tx) for all x, y in X . If T (X) ⊂ f(X) and (2.1) is satisfied for all x, y in X ,

where 0 � h < 1, then there exists t ∈ X such that ft ∈ T t.

Corollary 2.3. Let (X, d) be a complete metric space, T : X → CB(X) and let

f be a continuous self-mapping of X such that H(Tx, T y) � h · d(fx, fy) for all x, y

in X , where 0 � h < 1 and Tfx = fTx. If T (X) ⊂ f(X), then there exists t ∈ X

such that ft ∈ T t.

Remark 2.2. In Corollary 2.3, the continuity of f implies the continuity of T .

Corollary 2.4. [16] Let (X, d) be a complete metric space, let f : X → X

and T : X → CB(X) be f -weak compatible continuous mappings such that T (X) ⊂
f(X) and

(2.10) H(Tx, T y) � h · L(x, y)

for all x, y in X , where 0 � h < 1. Then there exists a point t ∈ X such that ft ∈ T t.

Corollary 2.5. Let (X, d) be a complete metric space, let f : X → X and

T : X → CB(X) be f -weak compatible continuous mappings such that T (X) ⊂
f(X) and

(2.11) H(Tx, T y) � h ·N(x, y)
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for all x, y in X , where 0 � h < 1. Then there exists a point t ∈ X such that ft ∈ T t.

The following example shows that Theorem 2.1 is indeed a proper generalization

of Theorem 2 in [10], Corollaries 2.2 and 2.3.

Example 2.1. Let X = [0,∞) be endowed with the Euclidean metric d(x, y) =

|x − y|. Let f(x) = 3
2 (x

2 + x) and Tx = [0, x2 + 2] for each x � 0. Then T

and f are clearly continuous and T (X) = f(X) = X. Since Txn → [0, 3] and

fxn = 3
2 (x

2
n + xn)→ 3 ∈ [0, 3] if xn → 1, we easily conclude that

d(fTxn, fxn)→ 0, H(fTxn, T fxn)→ 7, H(Tfxn, Txn)→ 8

if xn → 1 and therefore f and T are f -weak compatible, but they are not compatible.
Thus, Theorem 2 in [10] is not applicable. Corollaries 2.2 and 2.3 are not applicable
either since f and T are not weakly commuting (for x = 3) and hence they are not

commuting. Again, since

H(Tx, T y) = |x2 − y2|

=
2(x+ y)
3(x+ y + 1)

(
3
2
|x− y|(x+ y + 1)

)

=
2(x+ y)
3(x+ y + 1)

(
3
2
|x2 − y2 + x− y|

)

� 2
3
d(fx, fy)

� h · [a · L(x, y) + (1− a) ·N(x, y)]

for all x, y ∈ X, where h ∈
[
2
3 , 1

)
and 0 � a � 1, all conditions of Theorem 2.1 are

satisfied and for each t ∈ [0, 1], we have ft ∈ T t.

In the sequel, we use the following lemma for our main theorem, which is a gen-

eralization of lemmas from [10] and [16].

Lemma 2.6. Let T : X → CB(X) and f : X → X be f -weak compatible

mappings. If fw ∈ Tw for some w ∈ X and (2.1) holds for all x, y in X , then

fTw = Tfw.

�����. Let xn = w for all n ∈ �. Then fxn = fw → fw and Txn → M = Tw

as n →∞. Hence, if fw ∈ Tw, then, by the f -weak compatibility of f and T ,

(2.12)
H(fTw, Tfw) � H(Tfw, Tw),

d(f2w, fw) � d(f2w, fTw) + d(fTw, fw) � H(Tfw, Tw).
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By (2.1) we obtain

(2.13) H(Tfw, Tw) � h · [a · L(fw, w) + (1− a) ·N(fw, w)],

where
L(fw, w) = max{d(f2w, fw), d(fw, T fw), d(fw, Tw),

1
2 [d(f

2w, Tw) + d(fw, T fw)]}
� max{H(Tfw, Tw), H(Tfw, Tw), 0,

1
2 [d(f

2w, fw) + d(fw, Tw) +H(Tw, Tfw)]}
� max{H(Tfw, Tw), H(Tfw, Tw), 0, H(Tfw, Tw)}
= H(Tfw, Tw)

and

N(fw, w) = [max{d2(f2w, fw), d(f2w, Tfw) · d(fw, Tw),

d(f2w, Tw) · d(fw, T fw), 12d(f
2w, Tfw) · d(fw, T fw),

1
2d(f

2w, Tw) · d(fw, Tw)}]1/2

� [max{H2(Tfw, Tw), 0, H2(Tfw, Tw), 12H
2(Tfw, Tw), 0}]1/2

= H(Tfw, Tw).

Hence, (2.13) implies that

H(Tfw, Tw) � h · [a ·H(Tfw, Tw) + (1 − a) ·H(Tfw, Tw)]

= h ·H(Tfw, Tw),

which is a contradiction. Therefore, we have Tfw = Tw and hence (2.12) implies
Tfw = fTw. This completes the proof. �

To obtain a fixed point theorem, we need additional assumptions as those given
in [6], [9] and [10]. In the sequel, by applying the proof technique of [10] and using

the above lemma, we have the following theorem:

Theorem 2.7. Let f and T have the same meanings as in Theorem 2.1. Assume

also that for each x ∈ X either (i) fx �= f2x implies fx ∈ Tx or (ii) fx ∈ Tx implies

fnx → z for some z ∈ X. Then f and T have a common fixed point in X .

Remark 2.3. It is not yet known whether the continuity of both f and T is

necessary or not in Corollary 2.4. However, simple examples prove that the conditions
f(X) ⊂ T (X) and the f -weak compatibility of f and T are necessary in Corollary 2.4.

Nevertheless, by weakening the inequality (2.10) for single-valued mappings f and
T using the continuity of at least one of them, we can extend Theorem 2.1 of [3].
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Theorem 2.8. Let (X, d) be a complete metric space and let f, T : X → X be

f -weak compatible mappings such that T (X) ⊂ f(X) and

(2.14) d(Tx, T y) � h · [a · L(x, y) + (1− a) ·N(x, y)]

for all x, y in X , where 0 � h < 1, 0 � a � 1,

L(x, y) = max{d(fx, fy), d(fx, Tx), d(fy, T y), d(fx, T y), d(fy, Tx)}

and

N(x, y) = [max{d2(fx, fy), d(fx, Tx) · d(fy, T y), d(fx, T y) · d(fy, Tx),

d(fx, Tx) · d(fy, Tx), d(fy, T y) · d(fx, T y)}]1/2.

If one of f or T is continuous, then there exists a unique common fixed point of f

and T .

�����. Following the technique of Das and Naik [3], it can easily be seen that

the sequence {Txn}, where Txn = fxn+1 for all n ∈ �, is a Cauchy sequence in
X and, since X is complete, it follows that {Txn} converges to some point z ∈ X.

Assume that T is continuous. Then T 2xn → Tz and Tfxn → Tz as n →∞. By the
f -weak compatibility of f and T , we have

(2.15)
lim

n→∞
d(fTxn, T fxn) � lim

n→∞
d(Tfxn, Txn),

lim
n→∞

d(fTxn, fxn) � lim
n→∞

d(Tfxn, Txn).

Now using (2.14), (2,15) and the continuity of T , we have

(2.16) d(T 2xn, Txn) � h · [a · L(Txn, xn) + (1− a) ·N(Txn, xn)],

where

L(Txn, xn) = max{d(fTxn, fxn), d(fTxn, T 2xn), d(fxn, Txn),

d(fTxn, Txn), d(fxn, T 2xn)}
� max{d(fTxn, fxn), d(fTxn, T fxn) + d(Tfxn, T 2xn),

d(fxn, Txn), d(fTxn, fxn) + d(fxn, Txn), d(fxn, T 2xn)}
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and

N(Txn, xn) � [max{d2(fTxn, fxn), d(fTxn, T 2xn) · d(fxn, Txn),

d(fTxn, Txn) · d(fxn, T 2xn), d(fTxn, T 2xn) · d(fxn, T 2xn),

d(fTxn, Txn) · d(fxn, Txn)}]1/2,
� [max{d2(fTxn, fxn), [d(fTxn, T fxn) + d(Tfxn, T 2xn)]

· d(fxn, Txn), d(fTxn, Txn) · d(fxn, T 2xn),

[d(fTxn, T fxn) + d(Tfxn, T 2xn)] · d(fxn, T 2xn),

[d(fTxn, T fxn) + d(Tfxn, Txn)] · d(fxn, Txn)}]1/2.

Thus, we have

(2.17)
lim

n→∞
L(Txn, xn) � max{d(Tz, z), d(Tz, z), 0, d(Tz, z), d(z, Tz)}

= d(Tz, z)

and

(2.18)
lim

n→∞
N(Txn, xn) � [max{d2(Tz, z), 0, d2(Tz, z), d2(Tz, z), 0}]1/2

= d(Tz, z).

Hence from (2.16)∼(2.18) we obtain

d(Tz, z) � h · [a · d(Tz, z) + (1 − a) · d(Tz, z)],

i.e., d(Tz, z) � h · d(Tz, z), which implies that Tz = z. Since T (X) ⊂ f(X), there
exists a point z′ such that z = Tz = Tz′ and, using (2.11) again, we obtain

(2.19)

d(T 2xn, T z′) � h ·
[
a ·max{d(fTxn, z), d(fTxn, T 2xn),

d(z, T z′), d(fTxn, T z′), d(z, T 2xn)}
+ (1− a) · [max{d2(fTxn, z), d(fTxn, T 2xn) · d(z, T z′),

d(fTxn, T z′) · d(z, T 2xn), d(fTxn, T 2xn) · d(z, T 2xn),

d(z, T z′) · d(fTxn, T z′)}]1/2
]
.

Passing to the limit in (2.19) as n → ∞, we deduce that d(z, T z′) � h · d(z, T z′),

i.e., z = Tz′ = fz′ and, by Lemma 2.6, fz = fT z′ = Tfz′ = Tz = z.

Now, assume that f is continuous. Then f2xn → fz and fTxn → fz. By the

f -weak compatibility of f and T and the continuity of f we have

(2.20)
lim

n→∞
d(fz, T fxn) � lim

n→∞
d(Tfxn, z),

d(fz, z) � lim
n→∞

d(Tfxn, z).
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Using (2.14), (2.20) and the continuity of f , we have

d(Tfxn, Txn) � h · [a ·max{d(f2xn, fxn), d(f2xn, T fxn), d(fxn, Txn),

d(f2xn, Txn), d(fxn, T fxn)}+ (1− a) ·max[{d2(f2xn, fxn),

d(f2xn, T fxn) · d(fxn, Txn), d(f2xn, Txn) · d(fxn, T fxn),

d(f2xn, T fxn) · d(fxn, T fxn), d(fxn, Txn) · d(f2xn, Txn)}]1/2],

i.e., as n →∞,

d(fz, z) � d(Tfxn, z)

� h · [a ·max{d(fz, z), d(fz, T fxn), 0, d(fz, z), d(z, T fxn)}
+ (1− a) · [max{d2(fz, z), 0, d(fz, z) · d(z, T fxn),

d(fz, T fxn) · d(z, T fxn), 0}]1/2],

i.e., as n →∞,

d(fz, z) � d(Tfxn, z)

� h · [a ·max{d(fz, z), d(Tfxn, z), 0, d(Tfxn, z),

d(z, T fxn)}+ (1 − a) · [max{d2(fz, z), 0, d2(Tfxn, z),

d2(Tfxn, z), 0}]1/2].

Thus, Tfxn → z as n →∞ and so fz = z.
Again using (2.14) and (2.20), we obtain, as n →∞,

d(Tz, T fxn) � h · [a ·max{d(fz, f2xn), d(fz, T z), d(f2xn, T fxn),

d(fz, T fxn), d(f2xn, T z)}+ (1− a) · [max{d2(fz, f2xn),

d(fz, fz) · d(f2xn, T fxn), d(fz, T fxn) · d(f2xn, T z),

d(fz, fz)d(f2xn, T z), d(f2xn, T fxn) · d(fz, T fxn)}]1/2],

i.e.,
d(Tz, z) � h · [a ·max{0, d(z, T z), 0, 0, d(z, T z)}

+ (1− a) · [max{0, 0, 0, d2(z, T z), 0}]1/2].
Thus, we have

d(Tz, z) � h · d(z, T z),

which is a contradiction. Therefore, z is a common fixed point of f and T . From

(2.14), the uniqueness of z follows easily. This completes the proof. �

Next, we give an example to discuss the validity of Theorem 2.8.
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Example 2.2. Let X = [0,∞) with the usual metric. Let f and T : X → X

be mappings defined by fx = 1
2 (x

2+x) and Tx = 1
3 (x

2+x) for x in X , respectively.
Then T and f are continuous and T (X) = f(X) = X . Since fx = Tx if and only
if x → 1, we can and do choose a sequence {xn} in X such that xn → 1. Then we
have

lim
n→∞

d(Tfxn, fTxn) = lim
n→∞

∣∣∣∣
1
36

x4n +
1
6
x3n −

11
36

x2n +
1
9

∣∣∣∣ = 0.

Therefore, f and T are compatible and so f and T are f -weak compatible. Since

d(Tx, T y) =
1
3
|x2 − y2|

=
2(x+ y)
3(x+ y + 1)

{
1
2 |x2 − y2 + x− y|

}

� 2
3
d(fx, fy),

i.e.,
d(Tx, T y) � h · [a · d(fx, fy) + (1− a) · [d2(fx, fy)]1/2],

i.e.,
d(Tx, T y) � h · [a · L(x, y) + (1− a) ·N(x, y)]

for all x, y ∈ X , all conditions of Theorem 2.8 are fulfilled with h ∈
[
2
3 , 1

)
, 0 � a � 1

and the point 1 is the unique common fixed point of f and T .

3. Fixed point theorems for Kannan type multi-valued mappings

Kannan [11] established a fixed point theorem for a single-valued mapping T

defined on a complete metric space (X, d) satisfying

d(Tx, T y) � α[d(x, Tx) + d(y, T y)]

for all x, y ∈ X , where 0 < α < 1
2 . The range of α is crucial even to the existence

part of this result in the setting of a complete metric space. However, in a more

restrictive yet quite natural setting, elaborate fixed point theorems exist for the case
α = 1

2 . This wider class of mappings were studied by Kannan in [12]. Recently, Beg

and Azam [1], [2], Shiu, Tan and Wong [22] and Wong [26] have also studied such
mappings.

In this section, we consider a mapping T : X → CB(X) satisfying the following
condition:

(3.1) Hr(Tx, T y) � α1(d(x, Tx))dr(x, Tx) + α2(d(y, T y))dr(x, Tx)
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for all x, y ∈ X , where αi : R → [0, 1) (i = 1, 2) and r is a fixed positive real number.

If there exists a sequence {xn} in X such that lim
n→∞

d(xn, Txn) = 0, then {xn} is
said to be asymptotically T -regular. In fact, we establish the following:

Theorem 3.1. Let (X, d) be a complete metric space and let T : X → CB(X)
be a multi-valued mapping satisfying (3.1) for all x, y ∈ X , where αi : R → [0, 1)
(i = 1, 2) and r is a fixed positive real number. If there exists an asymptotically T -

regular sequence {xn} in X , then T has a fixed point x∗ in X . Moreover, Txn → Tx∗

as n →∞.

�����. By hypothesis, we have

Hr(Txn, Txm) � α1(d(xn, Txn))dr(xn, Txn) + α2(d(xm, Txm))dr(xm, Txm)

→ 0 as n, m →∞.

This shows that {Txn} is a Cauchy sequence in (CB(X), H). Since (CB(X), H) is

complete, there exists K∗ ∈ CB(X) such that H(Txn, K∗)→ 0 as n →∞. Suppose
x∗ ∈ K∗. Then by (3.1) we have

dr(x∗, Tx∗) � Hr(K∗, Tx∗)

� lim
n→∞

Hr(Txn, Tx∗)

� lim
n→∞

[α1(d(xn, Txn))dr(xn, Txn) + α2(d(x∗, Tx∗))dr(x∗, Tx∗)]

� α2(d(x∗, Tx∗))dr(x∗, Tx∗),

which implies that

(1− α2(d(x∗, Tx∗)))dr(x∗, Tx∗) � 0,

i.e., d(x∗, Tx∗) = 0, and so x∗ ∈ Tx∗. Now

Hr(K∗, Tx∗) = lim
n→∞

Hr(Txn, Tx∗)

� α2(d(x
∗, Tx∗))dr(x∗, Tx∗)

� dr(x∗, Tx∗) = 0.

Therefore, we obtain Tx∗ = K∗ = lim
n→∞

Txn. This completes the proof. �

Theorem 3.2. Let (X, d) be a complete metric space and let T : X → CB(X) be
a multi-valued mapping satisfying (3.1). If there exists an asymptotically T -regular

sequence {xn} in X and Txn is compact for all n ∈ �, then each cluster point of

{xn} is a fixed point of T .
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�����. Let yn ∈ Txn be such that d(xn, yn) = d(xn, Txn). It is obvious that

a cluster point of {xn} is a cluster point of {yn}. Suppose that y∗ is such a cluster
point of {xn} and {yn}. Then as in Theorem 3.1, we have

dr(x∗, Tx∗) � Hr(Tx∗n, Tx∗)

� α1(d(xn, Txn))d
r(xn, Txn) + α2(d(x

∗, Tx∗))dr(x∗, Tx∗)

� α1(d(xn, Txn))dr(xn, Txn),

which implies that y∗ ∈ Tx∗. By (3.1) again,

dr(y∗, T y∗) � Hr(Tx∗, T y∗)

� α1(d(x
∗, Tx∗))dr(x∗, Tx∗) + α2(d(y

∗, T y∗))dr(y∗, T y∗),

i.e.,

(1 − α2(d(y
∗, T y∗)))dr(y∗, T y∗) � 0.

Therefore, we have y∗ ∈ Ty∗. This completes the proof. �

Theorem 3.3. Let (X, d) be a complete metric space and let T : X → CB(X)

be a multi-valued mapping satisfying (3.1) with α1(d(x, Tx)) + α2(d(y, T y)) � 1. If
inf{d(x, Tx) : x ∈ X} = 0, then T has a fixed point in X .

�����. In view of Theorem 3.2 it suffices to show that there exists an asymp-
totically T -regular sequence {xn} in X .

Pick x0 in X and consider a sequence {xn} in X such that xn ∈ Txn−1 for all

n ∈ �. Then the inequality (3.1) implies

(3.2)

dr(xn, Txn) � Hr(Txn−1, Txn)

� α1(d(xn−1, Txn−1))dr(xn−1, Txn−1)

+ α2(d(xn, Txn))d
r(xn, Txn)

� α1(d(xn−1, Txn−1))
1− α2(d(xn, Txn))

dr(xn−1, Txn−1)

� dr(xn−1, Txn−1).

It follows from (3.2) that the sequence {d(xn, Txn)} is decreasing. Therefore, we
have

d(xn, Txn)→ inf{d(xn, Txn) : n ∈ �}

and so d(xn, Txn)→ 0. Therefore, {xn} is asymptotically T -regular. This completes
the proof. �
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Theorems 3.1, 3.2 and 3.3 generalize the results of Shiau, Tan and Wong [22] and

Beg and Azam [2]. In these theorems we have not only dropped the hypothesis of
compactness of Tx (cf. Theorem 1 in [22]) but also emphasized to the fact that the
mapping T belongs to a wider class of mappings.
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