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GENERALIZED VARIATIONAL INEQUALITIES AND

ASSOCIATED NONLINEAR EQUATIONS

Ram U. Verma, Orlando

(Received October 10, 1995)

Abstract. Here we consider the solvability based on iterative algorithms of the generalized
variational inequalities and associated nonlinear equations.

1. Introduction

The theory of nonlinear variational inequalities [1] has turned out to be a powerful
tool in providing us a unified framework in dealing with a wide class of problems

in physics, economics, and engineering sciences. The study of associated nonlinear
equations is equally important in the sense that a class of variational inequalities

are equivalent to some associated equations involving strongly monotone operators
and other combinations leading to the strongly monotone operators. The strongly

monotone operators and their variant forms are widely applied in variational inequal-
ities as well as in hemivariational inequalities [2]. For a selected detail on nonlinear

equations, we refer to [3–6].

We consider the solvability of a generalized variational inequality involving
strongly monotone and relaxed Lipschitz operators. Among the special cases of

the obtained result is the variational inequality problem of Yao [7].
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2. Preliminaries

Let H be a real Hilbert space with inner product 〈·, ·〉 and norm ‖ · ‖. Let K be a

nonempty closed convex subset of H and PK be the projection of H onto K.

We consider for given operators f, T : H → H , the generalized variational inequal-

ity (GVI) problem: Find an element x in H such that f(x) is in K and

(1) 〈f(x) − T (x), v − f(x)〉 � 0 for all v in K.

Next, we need recall some necessary definitions for our problem at hand.

Definition 2.1. An operator T : H → H is said to be a relaxed Lipschitz oper-
ator if for a given constant k � 0,

(2) 〈T (u)− T (v), u− v〉 � −k‖u− v‖2 for all u, v in H.

The operator T is called Lipschitz continuous if for a constant m > 0,

(3) ‖T (u)− T (v)‖ � m‖u− v‖ for all u, v in H.

When m = 1 in (3), the operator T is said to be nonexpansive, that is,

(4) ‖T (u)− T (v)‖ � ‖u− v‖ for all u, v in H.

Definition 2.2. An operator f : H → H is said to be strongly monotone if for

all u, v in H and for a constant r > 0,

(5) 〈f(u)− f(v), u − v〉 � r‖u− v‖2.

Inequality (5) implies that

(6) ‖f(u)− f(v)‖ � r‖u− v‖.

The operator f satisfying (6) is called r-expanding, and when r = 1, f is called
just expanding.
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3. Nonlinear equations and variational inequalities

In this section we first give some lemmas on the equivalence of variational inequal-
ities to some sort of nonlinear Wiener-Hopf equations. Then we consider the main

result on the solvability of the GVI problems.

Lemma 3.1 [1]. For a given element z in H , an element x in K satisfies

(7) 〈x− z, v − x〉 � 0 for all v in K,

iff x = PKz.

Lemma 3.2. An element x in H such that f(x) is in K is a solution of the GVI

(1) iff x in H with f(x) in K satisfies the equation

(8) f(x) = PK [(1 − λ)f(x) + λT (x)],

where λ � 0 is arbitrary.

�����. The proof follows from an application of Lemma 3.1. �

Based on (8) we generate an iterative algorithm

Algorithm 3.1. For n = 0, 1, 2, . . . ,

(9) f(xn+1) = PK [(1− λ)f(xn) + λT (xn)].

Theorem 3.1. Let K be a nonempty closed convex subset of a real Hilbert

space H and let f : H → H be strongly monotone and Lipschitz continuous with

corresponding constants 1 and s � 1. Let T : H → H be relaxed Lipschitz and

Lipschitz continuous with corresponding constants k � 0 and m � 1. Then the
sequences {xn} and {f(xn)}, as generated by Algorithm 3.1 with x0 in H , f(x0) in

K, and

∣∣∣λ− 1 + k + p(1− p)
1 + 2k +m2 − p2

∣∣∣

<

√
[1 + k + p(1− p)]2 − (1 + 2k +m2 − p2)[1 − (1− p)2]

1 + 2k +m2 − p2
,

where 1 + k > p(p− 1) +
√
(1 + 2k +m2 − p2)[1− (1− p)2], 1 + 2k +m2 − p2 > 0,

k < m, and p =
√

s2 − 1 < 1, converge to x and f(x), respectively, the solution of
the equation (8).
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�����. Since operator PK is nonexpansive, we obtain

‖f(xn+1)− f(xn)‖(10)

� ‖(1− λ)f(xn) + λT (xn)− (1− λ)f(xn−1)− λT (xn−1)‖
= ‖(1− λ)[f(xn)− f(xn−1)] + λ[T (xn)− T (xn−1)]‖
� ‖(1− λ){xn − xn−1 − [f(xn)− f(xn−1)]}‖
+ ‖(1− λ)(xn − xn−1) + λ[T (xn)− T (xn−1)]‖.

Since

(1− λ)2‖xn − xn−1 − [f(xn)− f(xn−1)]‖2(11)

= (1− λ)2{‖xn − xn−1‖2 − 2〈f(xn)− f(xn−1), xn − xn−1〉
+ ‖f(xn − f(xn−1)‖2}

� (1− λ)2(s2 − 1)‖xn − xn−1‖2,

and

‖(1− λ)(xn − xn−1) + λ[T (xn)− T (xn−1)]‖2(12)

= (1− λ)2‖xn − xn−1‖2 + 2λ(1− λ)〈T (xn)− T (xn−1), xn − xn−1〉
+ λ2‖T (xn)− T (xn−1)‖2

� {(1− λ)2 − 2λ(1− λ)k + λ2m2}‖xn − xn−1‖2,

this implies that

‖f(xn+1)− f(xn)‖ �
(
(1 − λ)

√
s2 − 1(13)

+
√
(1− λ)2 − 2λ(1− λ)k + λ2m2

)
‖xn − xn−1‖.

Since f is strongly monotone with constant 1 (and hence expanding), it follows that

‖xn+1 − xn‖ � ‖f(xn+1)− f(xn)‖(14)

� {(1− λ)p+
√
(1− λ)2 − 2λ(1 − λ)k + λ2m2}‖xn − xn−1‖,

where p =
√

s2 − 1. Therefore,

(15) ‖xn+1 − xn‖ � θ‖xn − xn−1‖,

where θ = (1−λ)p+
√
(1− λ)2 − 2λ(1− λ)k + λ2m2. Now, it follows that 0 < θ < 1

for all λ such that
∣∣∣λ− 1 + k + p(1− p)

1 + 2k +m2 − p2

∣∣∣

<

√
[1 + k + p(1− p)]2 − (1 + 2k +m2 − p2)[1 − (1− p)2]

1 + 2k +m2 − p2
,
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where 1 + k > p(p− 1) +
√
(1 + 2k +m2 − p2)[1− (1− p)2], 1 + 2k +m2 − p2 > 0,

k < m, and p =
√

s2 − 1 < 1.

Consequently, for all q in N ,

(16) ‖xn+q − xn‖ � θn

1− θ
‖x1 − x0‖.

This implies that {xn} is a Cauchy sequence, and since H is complete, there exists

an element x in H such that xn → x. Now the Lipschitz continuity of the operators
f and T implies the solvability of (8). Therefore, it leads to the solvability of the

GVI (1). �

Corollary 3.1. Let T : H → H be relaxed Lipschitz and Lipschitz continuous

with respective constants k � 0 andm � 1, and let f : H → H be strongly monotone

(with constant 1) and nonexpansive. Then the sequence {xn} and {f(xn)}, as gener-
ated by Algorithm 3.1 for x0 inH , and f(x0) inK and, 0 < λ < 2(1+k)/(1+2k+m2),
converge, respectively, to x and f(x), the solution of (8).

Corollary 3.2. When f is the identity, Theorem 3.1 reduces to [7, Theorem 3.6].

����� �� ��������� 3.1. Since under the assumptions using (11) and (12),

(1− λ)2‖xn − xn−1 − [f(xn)− f(xn−1)]‖2

� (1− λ)2(1− 1)‖xn − xn−1‖2 = 0,

and

‖(1− λ)(xn − xn−1) + λ[T (xn)− T (xn−1)]‖2

� {(1− λ)2 − 2λ(1− λ)k + λ2m2}‖xn − xn−1‖2,

it follows that

(17) ‖xn+1 − xn‖ � θ‖xn − xn−1‖,

where θ =
√
(1− λ)2 − 2λ(1− λ)k + λ2m2. Now the rest of the proof is similar to

that of Theorem 3.1. �
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