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Czechoslovak Mathematical Journal, 48 (123) (1998), 419–432

AN ASYMPTOTIC THEOREM FOR A CLASS OF NONLINEAR

NEUTRAL DIFFERENTIAL EQUATIONS

Manabu Naito, Matsuyama

(Received November 13, 1995)

Abstract. The neutral differential equation

(1.1)
dn

dtn
[x(t) + x(t− τ )] + σF (t, x(g(t))) = 0,

is considered under the following conditions: n � 2, τ > 0, σ = ±1, F (t, u) is nonnegative
on [t0,∞) × (0,∞) and is nondecreasing in u ∈ (0,∞), and lim g(t) = ∞ as t → ∞. It is
shown that equation (1.1) has a solution x(t) such that

lim
t→∞

x(t)
tk
exists and is a positive finite value if and only if(1.2)

∫ ∞

t0

tn−k−1F (t, c[g(t)]k) dt <∞ for some c > 0.

Here, k is an integer with 0 � k � n−1. To prove the existence of a solution x(t) satisfying
(1.2), the Schauder-Tychonoff fixed point theorem is used.

1. Introduction

In this paper we consider nonlinear neutral differential equations of the form

(1.1)
dn

dtn
[x(t) + x(t − τ)] + σF (t, x(g(t))) = 0,

where the following conditions are assumed: n � 2; τ > 0 is a positive constant; σ =
+1 or σ = −1; F : [t0,∞)×(0,∞)→ � is continuous, F (t, u) � 0 on [t0,∞)×(0,∞)
and F (t, u) is nondecreasing in u ∈ (0,∞) for each fixed t ∈ [t0,∞); g : [t0,∞)→ �

is continuous and lim g(t) = ∞ as t → ∞. These conditions are always assumed
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throughout the paper. By a solution of (1.1) we mean a function x(t) which is

continuous and satisfies (1.1) on [tx,∞) for some tx � t0. This implies that if x(t)
is a solution of (1.1), then x(t) + x(t − τ) is n-times continuously differentiable on
[tx,∞), whereas x(t) is not required to be n-times continuously differentiable. Our
interest here is the problem of the existence of a solution x(t) of (1.1) satisfying the
asymptotic condition

(1.2) lim
t→∞

x(t)
tk

exists and is a positive finite value.

Here, k is an integer with 0 � k � n− 1.
Now consider the equation

(1.3)
dn

dtn
[x(t) + λx(t − τ)] + σF (t, x(g(t))) = 0,

where n, τ , σ, F and g are as above, and λ is a real number. If λ = +1, then (1.3)
becomes (1.1). As is easily seen, αtk (α ∈ �, α �= 0, k ∈ �, 0 � k � n − 1) is a
nontrivial solution of the unperturbed equation ( dn/ dtn)[x(t) + λx(t− τ)] = 0, and
so it is natural to expect that, if F is small enough in some sense, equation (1.3) has
a solution x(t) satisfying (1.2). For the case |λ| < 1, the smallness condition on F is
characterized by the integral condition

(1.4)
∫ ∞

t0

tn−k−1F (t, c[g(t)]k) dt <∞ for some c > 0.

In fact, it is known ([5, 6, 14, 15]) that equation (1.3) with |λ| < 1 has a solution x(t)
satisfying (1.2) if and only if (1.4) holds. This result is regarded as an extension of

the well-known result for the non-neutral case (i.e., the case λ = 0). However, it has
been recently observed that there is a slight difference between the case λ = −1 and
the case |λ| < 1. For the details, see the papers of Kitamura and Kusano [9], and
Y. Naito [16]. In this paper, to complete the theory from the mathematical point of
view, we discuss the case λ = +1. It is shown that, for the case λ = +1, the same

result as the case |λ| < 1 holds. More precisely, we have the following theorem.

Theorem. Let k be an integer with 0 � k � n − 1. Then equation (1.1) has a
solution x(t) satisfying (1.2) if and only if (1.4) holds.

The proof of “only if” part of Theorem is given in Section 2. The proof of “if”

part of Theorem is divided into the two cases k �= 0 and k = 0. The cases k �= 0 and
k = 0 are considered in Sections 2 and 3, respectively. In both cases, we make use

of the Schauder-Tychonoff fixed point theorem to prove the existence of a solution
x(t) satisfying (1.2).
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Recently there have been several papers concerning the oscillatory and asymptotic

properties of solutions of neutral differential equations. See, for instance, the papers
[1–17]. However, little is known for the neutral differential equations of the form (1.1).

2. Proof of Theorem

In this section we prove the “only if” part and the “if” part for the case k �= 0.
The proof of the “if” part for the case k = 0 is given in Section 3.

Proof of “only if” part. Let k ∈ {0, 1, . . . , n − 1} and suppose that x(t) is an
eventually positive solution of (1.1) which satisfies the asymptotic condition (1.2).

Put � = lim
t→∞

x(t)/tk. We have 0 < � < ∞. Define the function y(t) by y(t) =
x(t) + x(t − τ). It follows from (1.1) that

(2.1) y(n)(t) = −σF (t, x(g(t)))

for all large t, and so y(n)(t) is eventually of constant sign. Then we see that
y(i)(t), i = 0, 1, . . . , n−1, are eventually monotonic and that the limits lim

t→∞
y(i)(t), i =

0, 1, . . . , n − 1, exist in the extended real line �. Since lim
t→∞

y(t)/tk = 2� ∈ (0,∞),
we find that lim

t→∞
y(i)(t) = 0 for i = k + 1, . . . , n − 1, lim

t→∞
y(k)(t) = 2�k! and

lim
t→∞

y(i)(t) =∞ for i = 0, 1, . . . , k − 1. Then, integrating (2.1), we get

y(i)(t) = (−1)n−i−1σ
∫ ∞

t

(s− t)n−i−1

(n− i− 1)! F (s, x(g(s))) ds, i = k + 1, . . . , n− 1,

y(k)(t) = 2�k! + (−1)n−k−1σ
∫ ∞

t

(s− t)n−k−1

(n− k − 1)! F (s, x(g(s))) ds,

and

y(i)(t) =
k−i−1∑

j=0

y(i+j)(T )
(t− T )j

j!
+ 2�k!

(t− T )k−i

(k − i)!

+ (−1)n−k−1σ
∫ t

T

(t− s)k−i−1

(k − i− 1)

∫ ∞

s

(r − s)n−k−1

(n− k − 1)! F (r, x(g(r))) dr ds,

i = 0, 1, . . . , k − 1,

for t � T , where T (� t0) is taken sufficiently large. As an immediate consequence

we have ∫ ∞

T

(s− T )n−k−1

(n− k − 1)! F (s, x(g(s))) ds <∞.

421



Then, in view of lim
t→∞

x(g(t))/[g(t)]k = � ∈ (0,∞), we conclude that (1.4) holds.
In the proof of “if” part of Theorem for the case k �= 0, the following Φ[ϕ] plays

an important role. Let τ > 0 and t1 � t2. Then, for each ϕ ∈ C[t1,∞) with
ϕ(t) = 0(t1 � t � t2), we define the function Φ[ϕ] on the interval [t1,∞) by

(2.2) Φ[ϕ](t) =




0, t1 � t � t2,
m∑

j=0
(−1)jϕ(t− jτ), t2 +mτ < t � t2 + (m+ 1)τ (m = 0, 1, . . .).

It is easily seen that Φ[ϕ] ∈ C[t1,∞) and

(2.3) Φ[ϕ](t) + Φ[ϕ](t − τ) = ϕ(t), t � t2 + τ.

Proof of “if” part (k �= 0). Let k ∈ {1, 2, . . . , n − 1} and suppose that (1.4) is
satisfied. We can take a number t2(� t0) such that

(2.4) inf{min{t, g(t)} : t � t2} � max{t0, 0}

and

(2.5)
∫ ∞

t2

sn−k−1F (s, c[g(s)]k) ds � k!(n− k − 1)!
2

c.

Put t1 = inf{min{t, g(t)} : t � t2}. Then it is clear that 0 � t1 � t2 and g(t) � t1

for t � t2.
We regard the set C[t1,∞) as a Fréchet space equipped with the topology of

uniform convergence on every compact subinterval of [t1,∞), and consider the subset
X of C[t1,∞) defined by

X = {x ∈ C[t1,∞) : 12ctk � x(t) � ctk, t � t1}.

Then, for each x ∈ X , we assign the function I[x] on [t1,∞) as follows:

(2.6) I[x](t) =





∫ t

t2

(t− s)k−1

(k − 1)!

∫ ∞

s

(r − s)n−k−1

(n− k − 1)! F (r, x(g(r))) dr ds, t � t2,

0, t1 � t � t2.

Notice that I[x] is well defined and belongs to C[t1,∞).
Let us now put

k(c) =

{
1
2c if (−1)n−k−1σ = +1,

c if (−1)n−k−1σ = −1,
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and define the mapping M : X → C[t1,∞) by

(2.7) (Mx)(t) = k(c)tk + (−1)n−k−1σΦ[I[x]](t), t � t1.

We will show that the Schauder-Tychonoff theorem ensures the existence of a fixed

element x = Mx ∈ X , and that this x is a solution of (1.1) satisfying the desired
asymptotic condition (1.2). To see that the Schauder-Tychonoff fixed point theorem

can be applied to the mapping M , it is enough to verify that (a) M maps X into X ;
(b) M is continuous on X ; and (c) M(X) is relatively compact.

(a) M maps X into X . Let x ∈ X . We first claim that

(2.8) 0 � Φ[I[x]](t) � I[x](t)

for t � t1. If t ∈ [t1, t2], then (2.8) is clear. Let t ∈ (t2,∞). There is an m ∈ �,

m � 0, such that t ∈ (t2 +mτ, t2 + (m+ 1)τ ]. Then, Φ[I[x]](t) is given by

Φ[I[x]](t) =
m∑

j=0

(−1)jI[x](t− jτ).

If m is even, we can rewrite Φ[I[x]](t) as

(2.9) Φ[I[x]](t) = I[x](t) −
m/2∑

j=1

{I[x](t− (2j − 1)τ)− I[x](t− 2jτ)}

and

(2.10) Φ[I[x]](t) =
m/2∑

j=1

{I[x](t− (2j − 2)τ)− I[x](t− (2j − 1)τ)}+ I[x](t −mτ).

If m is odd, we can rewrite Φ[I[x]](t) as

(2.11) Φ[I[x]](t) =
(m−1)/2∑

j=0

{I[x](t− 2jτ)− I[x](t − (2j + 1)τ)}

and

(2.12) Φ[I[x]](t) = I[x](t)−
(m−1)/2∑

j=1

{I[x](t−(2j−1)τ)−I[x](t−2jτ)}−I[x](t−mτ).
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Note here that I[x](t) is nonnegative and nondecreasing on [t1,∞). Then we see that
(2.10) and (2.11) imply Φ[I[x]](t) � 0, and that (2.9) and (2.12) imply Φ[I[x]](t) �
I[x](t). Thus (2.8) is satisfied for t � t1.
From (2.5) and (2.6) it follows that

I[x](t) � tk

k!(n− k − 1)!

∫ ∞

t2

rn−k−1F (r, c[g(r)]k) dr

� c

2
tk, t � t1.

This inequality combined with (2.8) yields 0 � Φ[I[x]](t) � (c/2)tk for t � t1. Then
it is a matter of simple computation to verify that (Mx)(t), which is given by (2.7),

satisfies
c

2
tk � (Mx)(t) � ctk, t � t1.

This proves that M maps X into X .
(b) M is continuous on X . Let x, xi ∈ X(i = 1, 2, . . .) and xi → x as i → ∞

in the space C[t1,∞). This means that xi(t) → x(t) as i → ∞ uniformly on any
compact subinterval of [t1,∞). Since (Mxi)(t) = (Mx)(t) = k(c)tk(i = 1, 2, . . .) on

[t1, t2], it is trivial that (Mxi)(t) → (Mx)(t)(i → ∞) uniformly on [t1, t2]. Let us
consider the convergence {(Mxi)(t)} on the interval [t2+mτ, t2+(m+1)τ ], m ∈ �,
m � 0. As a routine computation, we can show that I[xi](t) → I[x](t) as i → ∞
uniformly on every compact subinterval of [t1,∞). Then we see that

(Mxi)(t) = k(c)tk + (−1)n−k−1σ
m∑

j=0

(−1)jI[xi](t− jτ)

converges to

(Mx)(t) = k(c)tk + (−1)n−k−1σ
m∑

j=0

(−1)jI[x](t− jτ)

as i → ∞ uniformly on [t2 + mτ, t2 + (m + 1)τ ]. Consequently we conclude that

(Mxi)(t) → (Mx)(t) as i → ∞ uniformly on [t2 + mτ, t2 + (m + 1)τ ]. Thus,
(Mxi)(t) → (Mx)(t) as i → ∞ uniformly on any compact subinterval of [t1,∞),
and hence Mxi →Mx as i→∞ in C[t1,∞).
(c) M(X) is relatively compact. By the Arzela-Ascoli theorem, it is sufficient to

prove thatM(X) is uniformly bounded and equicontinuous at every point t ∈ [t1,∞).
The uniform boundedness of M(X) is clear since (c/2)tk � (Mx)(t) � ctk (t � t1)

for any x ∈ X . To prove the equicontinuity of M(X) on every compact subinterval
of [t2,∞), we first consider the case k > 1. In this case, (d/dt)I[x](t) is nonnegative
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and nondecreasing on [t2,∞). Note that (d/dt)Φ[I[x]] = Φ[(d/dt)I[x]]. Then, as in
the proof of (2.8), we can verify that

(2.13) 0 � d
dt
Φ[I[x]](t) � d

dt
I[x](t), t � t2.

Therefore, if [a, b] ⊂ [t2,∞), then

|Φ[I[x]](T2)− Φ[I[x]](T1)| �
d
dt
I[x](b) · |T2 − T1|

for all T1, T2 ∈ [a, b]. Notice that

d
dt
I[x](b) �

∫ b

t2

(b − s)k−2

(k − 2)!

∫ ∞

s

(r − s)n−k−1

(n− k − 1)! F (r, c[g(r)]
k) dr ds

for any x ∈ X and that the right-hand side of the above inequality is independent of
x ∈ X . Then we find that M(X) is equicontinuous on [a, b] ⊂ [t2,∞).
Next consider the case k = 1. In this case, (d/dt)I[x](t) is nonnegative and

nonincreasing on [t2,∞). Let t ∈ (t2 +mτ, t2 + (m + 1)τ) for some m = 0, 1, 2, . . ..
We estimate

d
dt
Φ[I[x]](t) =

m∑

j=0

(−1)j d
dt
I[x](t− jτ)

by using the expressions which are analogous to (2.9) – (2.12). Then we see that if
m is even, then

0 � d
dt
Φ[I[x]](t) � d

dt
I[x](t−mτ);

and that if m is odd, then

− d
dt
I[x](t−mτ) � d

dt
Φ[I[x]](t) � 0.

In either case we have

(2.14)
∣∣∣ d
dt
Φ[I[x]](t)

∣∣∣ � d
dt
I[x](t2).

It is to be noted that (2.14) is valid for t ∈ (t2 +mτ, t2 + (m+ 1)τ), m = 0, 1, 2, . . .,
and, in general, (d/dt)Φ[I[x]](t) does not exist at t = t2 +mτ , m = 0, 1, 2, . . .. Let

[a, b] be any compact subinterval of [t2,∞), and suppose that T1, T2 ∈ [a, b], T1 < T2.
There are m1,m2 ∈ �, 0 � m1 � m2, such that T1 ∈ [t2 +m1τ, t2 + (m1 + 1)τ) and
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T2 ∈ [t2 +m2τ, t2 + (m2 + 1)τ). Then, using (2.14), we have

|Φ[I[x]](T2)− Φ[I[x]](T1)| � |Φ[I[x]](T2)− Φ[I[x]](t2 +m2τ)|

+
m2−1∑

i=m1+1

|Φ[I[x]](t2 + (i+ 1)τ)− Φ[I[x]](t2 + iτ)|

+ |Φ[I[x]](t2 + (m1 + 1)τ)− Φ[I[x]](T1)|

� d
dt
I[x](t2)

[
T2 − (t2 +m2τ)

+
m2−1∑

i=m1+1

{(t2 + (i+ 1)τ)− (t2 + iτ)} + (t2 + (m1 + 1)τ) − T1

]

=
d
dt
I[x](t2)|T2 − T1|.

Note that
d
dt
I[x](t2) �

∫ ∞

t2

(r − t2)n−2

(n− 2)! F (r, cg(r)) dr

for any x ∈ X and that the right-hand side of the above does not depend on x ∈ X .
Then we see that M(X) is equicontinuous on [a, b] ⊂ [t2,∞). In both of the cases
k > 1 and k = 1, the equicontinuity of M(X) on [t1, t2] is obvious. Thus we can
conclude that M(X) is equicontinuous on every compact subinterval of [t1,∞).
From the above observation we can apply the Schauder-Tychonoff fixed point

theorem to the mapping M : X → X . Let x ∈ X be a fixed point of M . We have

(2.15) x(t) = k(c)tk + (−1)n−k−1σΦ[I[x]](t), t � t1.

Then, using (2.3), we obtain

x(t) + x(t− τ) = k(c)(tk + (t− τ)k) + (−1)n−k−1σI[x](t), t � t2 + τ,

from which it follows that x(t) is a solution of (1.1). It is easy to see that I[x](t)/tk

tends to 0 as t→∞, and hence (2.8) and (2.15) yield

lim
t→∞

x(t)
tk
= k(c).

This completes the proof of Theorem for the case k �= 0.
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3. Proof of Theorem (continued)

In this section we give the proof of “if” part of Theorem for the case k = 0.

Let ψ ∈ C[t1,∞) be nonincreasing on [t1,∞) and limψ(t) = 0 as t → ∞. Then
we define the function Ψ[ψ] by

(3.1) Ψ[ψ](t) =
∞∑

j=1

(−1)jψ(t+ jτ), t � t1 − τ.

For each t ∈ [t1 − τ,∞), the sequence of real numbers {ψ(t + jτ)}∞j=1 is a nonin-
creasing sequence. Furthermore, the sequence of continuous functions {ψ(·+ jτ)}∞j=1
converges to 0 uniformly on the interval [t1 − τ,∞) since

sup{|ψ(t+ jτ)| : t � t1 − τ} = ψ(t1 − τ + jτ)

→ 0 as j →∞.

Therefore, by Dirichlet’s test, we see that
∞∑

j=1
(−1)jψ(t+ jτ) converges uniformly on

[t1 − τ,∞), and in particular, Ψ[ψ] is well defined and is a continuous function on
[t1 − τ,∞). It is easy to see that

(3.2) Ψ[ψ](t) + Ψ[ψ](t− τ) = −ψ(t), t � t1.

In the proof of “if” part of Theorem with k = 0, Ψ[ψ] plays a crucial role.

Proof of “if” part (k = 0). Let k = 0 and suppose that (1.4) is satisfied:

(3.3)
∫ ∞

t0

tn−1F (t, c) dt <∞ for some c > 0.

We choose a number t2(� t0) satisfying

(3.4) inf{min{t, g(t)} : t � t2} � max{t0, 0}

and

(3.5)
∫ ∞

t2

tn−1F (t, c) dt � c

4

{ 1
(n− 1)! +

1
(n− 2)!

}−1
.

Put t1 = inf{min{t, g(t)} : t � t2}. We have 0 � t1 � t2 and g(t) � t1 for t � t2.
Define the subset X of the Fréchet space C[t1,∞) as follows:

X =
{
x ∈ C[t1,∞) :

c

2
� x(t) � c, t � t1

}
,
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where c > 0 is a constant in (3.3). Moreover, for x ∈ X , we define the function I[x]
on [t1,∞) by

I[x](t) =
∫ ∞

t

(s− t)n−1

(n− 1)! F (s, x(g(s))) ds, t � t2,

and

I[x](t) =
∫ ∞

t2

(s− t2)n−1

(n− 1)! F (s, x(g(s))) ds

+ (t2 − t)
∫ ∞

t2

(s− t2)n−2

(n− 2)! F (s, x(g(s))) ds, t1 � t � t2.

It is easily seen that, for each x ∈ X , I[x] has the following properties: I[x] ∈
C1[t1,∞), I[x](t) � 0 and (d/dt)I[x](t) � 0(t � t1), and lim

t→∞
I[x](t) = 0. Notice

here that if x ∈ X , then Ψ[I[x]](t) is well defined for t � t1. Thus we can consider

the mapping M : X → C[t1,∞) which is defined by

(3.6) (Mx)(t) =
3
4
c+ (−1)n−1σΨ[I[x]](t1)− (−1)n−1σΨ[I[x]](t), t � t1.

Making use of the Schauder-Tychonoff theorem, we will show that the mapping
M has a fixed point x ∈ X .
(a) M maps X into X . Let x ∈ X . We claim that

(3.7) −I[x](t+ τ) �
m∑

j=1

(−1)jI[x](t+ jτ) � 0

for t � t1,m ∈ �,m � 1. If m is even, then we have

(3.8)
m∑

j=1

(−1)jI[x](t + jτ) = −
m/2∑

j=1

{I[x](t+ (2j − 1)τ)− I[x](t+ 2jτ)}

and
m∑

j=1

(− 1)jI[x](t + jτ) = −I[x](t+ τ)(3.9)

+
m/2∑

j=2

{I[x](t+ (2j − 2)τ)− I[x](t+ (2j − 1)τ)} + I[x](t+mτ).

If m is odd, then

m∑

j=1

(−1)jI[x](t + jτ)(3.10)

= −
(m−1)/2∑

j=1

{I[x](t+ (2j − 1)τ)− I[x](t + 2jτ)} − I[x](t+mτ)
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and

m∑

j=1

(− 1)jI[x](t+ jτ) = −I[x](t+ τ)(3.11)

+
(m−1)/2∑

j=1

{I[x](t+ 2jτ)− I[x](t+ (2j + 1)τ)}.

Then, by virtue of the nonnegativity and the nonincreasing property of I[x], we easily

see that (3.8) and (3.10) yield the right-hand side inequality of (3.7), and that (3.9)
and (3.11) yield the left-hand side inequality of (3.7).

Letting m→∞ in (3.7), we obtain

(3.12) −I[x](t+ τ) � Ψ[I[x]](t) � 0, t � t1.

Since (3.5) implies

0 � I[x](t) � I[x](t1) �
∫ ∞

t2

sn−1

(n− 1)!F (s, c) ds+ t2
∫ ∞

t2

sn−2

(n− 2)!F (s, c) ds � c

4

for t � t1, it follows from (3.12) that

− c
4

� Ψ[I[x]](t) � 0, t � t1.

Then we easily see that
c

2
� (Mx)(t) � c, t � t1,

which implies M(X) ⊂ X .

(b) M is continuous on X . Before proving the continuity of M , we show that, for
each x ∈ X , Ψ[I[x]] ∈ C1[t1,∞) and (d/dt)Ψ[I[x]](t) can be obtained by termwise
differentiation:

(3.13)
d
dt
Ψ[I[x]](t) =

∞∑

j=1

(−1)j d
dt
I[x](t+ jτ), t � t1.

To see this, it is enough to verify that
∞∑

j=1
(−1)j(d/dt)I[x](t+jτ) converges uniformly

on any compact subinterval [a, b] of [t1,∞). Let [a, b] ⊂ [t1,∞). There is a j0 ∈ �

such that t+ jτ � t2 for t ∈ [a, b] and j � j0. Then, for t ∈ [a, b] and j � j0, we have

∣∣∣ d
dt
I[x](t+jτ)

∣∣∣ =
∫ ∞

t+jτ

(s− (t+ jτ))n−2
(n− 2)! F (s, x(g(s))) ds �

∫ ∞

a+jτ

sn−2

(n− 2)!F (s, c) ds.
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As is easily seen, condition (3.3) implies

∫ ∞

j0

( ∫ ∞

a+uτ

sn−2

(n− 2)!F (s, c) ds
)
du <∞

and hence we can apply Cauchy’s integral test to obtain

∞∑

j=j0

∫ ∞

a+jτ

sn−2

(n− 2)!F (s, c) ds < +∞.

Then the Weierstrass M -test ensures the uniform (and absolute) convergence of
∞∑

j=j0

(−1)j(d/dt)I[x](t + jτ) on [a, b]. Thus we have (3.13).

Now, to prove the continuity of M , suppose that x, xi ∈ X (i = 1, 2, . . .) and that
lim

i→∞
xi(t) = x(t) uniformly on any compact subinterval of [t1,∞). In view of (3.13),

we have

d
dt
{Ψ[I[xi]](t)−Ψ[I[x]](t)} =

∞∑

j=1

(−1)j d
dt
{I[xi](t+ jτ)− I[x](t+ jτ)}

for t � t1. Let [a, b] be an arbitrary compact subinterval of [t1,∞). Choose a positive
integer j0 ∈ � satisfying t+ jτ � t2 for t ∈ [a, b] and j � j0. Then, for t ∈ [a, b],

∣∣∣∣
j0∑

j=1

(− 1)j d
dt
{I[xi](t+ jτ) − I[x](t+ jτ)}

∣∣∣∣

� j0

∫ ∞

t2

(s− t2)n−2

(n− 2)! |F (s, xi(g(s))) − F (s, x(g(s)))| ds→ 0 as i→∞.

Moreover, for [a, b] and j � j0,

∣∣∣ d
dt
{I[xi](t+ jτ)− I[x](t + jτ)}

∣∣∣

�
∫ ∞

t+jτ

(s− (t+ jτ))n−2
(n− 2)! |F (s, xi(g(s))) − F (s, x(g(s)))| ds

�
∫ ∞

a+jτ

sn−2

(n− 2)! |F (s, xi(g(s)))− F (s, x(g(s)))| ds,
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and consequently, for t ∈ [a, b],

∣∣∣∣
∞∑

j=j0+1

(−1)j d
dt
{I[xi](t+ jτ)− I[x](t + jτ)}

∣∣∣∣

�
∞∑

j=j0+1

∫ ∞

a+jτ

sn−2

(n− 2)! |F (s, xi(g(s))) − F (s, x(g(s)))| ds

�
∫ ∞

j0

( ∫ ∞

a+uτ

sn−2

(n− 2)! |F (s, xi(g(s))) − F (s, x(g(s)))| ds
)
du

=
1
τ

∫ ∞

a+j0τ

( ∫ ∞

w

sn−2

(n− 2)! |F (s, xi(g(s))) − F (s, x(g(s)))| ds
)
dw

� 1
τ

∫ ∞

a+j0τ

sn−1

(n− 2)! |F (s, xi(g(s))) − F (s, x(g(s)))| ds→ 0 as i→∞.

From these observation we find that {(d/dt)Ψ[I[xi]](t)} converges to (d/dt)Ψ[I[x]](t)
as i → ∞ uniformly on [a, b], and, therefore, {(d/dt)(Mxi)(t)} converges to
(d/dt)(Mx)(t) as i→∞ uniformly on any compact subinterval of [t1,∞). Then, in
view of (Mxi)(t1) = 3

4c (i = 1, 2, . . .), we see that limi→∞
(Mxi)(t) = (Mx)(t) uniformly

on any compact subinterval of [t1,∞).
(c) M(X) is relatively compact. Let x ∈ X and [a, b] ⊂ [t1,∞). As in the above

discussion, we have

∣∣∣ d
dt
Ψ[I[x]](t)

∣∣∣ � j0

∫ ∞

t2

(s− t2)n−2

(n− 2)! F (s, c) ds+
1
τ

∫ ∞

a+j0τ

sn−1

(n− 2)!F (s, c) ds

for t ∈ [a, b], where j0 ∈ � and a + j0τ � t2. This implies that M(X) is equicon-

tinuous on [a, b]. The uniform boundedness of M(X) on [a, b] is evident since
c/2 � (Mx)(t) � c for t � t1. Hence, by the Arzela-Ascoli theorem, we find that

M(X) is relatively compact.

All the conditions for the Schauder-Tychonoff fixed point theorem are satisfied,

and so there is an x ∈ X such that x = Mx, i.e., x(t) = (Mx)(t) for t � t1. Then,
in view of (3.12), we see that lim

t→∞
Ψ[I[x]](t) = 0, and consequently, we find that

limx(t) = lim(Mx)(t) = (3/4)c+(−1)n−1σΨ[I[x]](t1) as t→∞. Since c/2 � x(t) �
c for t � t1, we have c/2 � lim

t→∞
x(t) � c. Applying the formula (3.2), we see that

x(t) is a solution of (1.1). This finishes the proof of “if” part of Theorem for the case

k = 0.
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