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Abstract. This paper generalizes the results of papers which deal with the Kurzweil-
Henstock construction of an integral in ordered spaces. The definition is given and some
limit theorems for the integral of ordered group valued functions defined on a Hausdorff
compact topological space T with respect to an ordered group valued measure are proved
in this paper.
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Introduction

Let us recall the definition of the Kurzweil integral of a real function.

A function f : 〈a, b〉 → � is integrable in the Kurzweil sense if there is c ∈ � such
that for every ε > 0 there exists a function δ : 〈a, b〉 → (0,∞) such that

∣∣∣∣
n∑

i=1

f(ti)m(Ei)− c

∣∣∣∣ < ε

for every partition D = {(Ei, ti), i = 1, 2, . . . , n}, where E1, E2, . . . , En are nonover-

lapping closed intervals with
n⋃

i=1
Ei = 〈a, b〉 and ti ∈ Ei, Ei ⊂ (ti − δ(ti), ti + δ(ti))

for i = 1, 2, . . . , n.
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We say that δ is a gauge on 〈a, b〉 and the partition D is δ-fine. The set of all

δ-fine partitions we denote by A (δ).

When the range X of the function f is only partially ordered, the ε-technique is
replaced by the double sequence technique working in the weak σ-distributive vector
lattices.

A conditionally σ-complete vector lattice (lattice ordered group) X (that is, every

bounded sequence (ai)i ⊂ X has the supremum
∨
i

ai) is called weakly σ-distributive,

if for every bounded double sequence (aij)i,j ⊂ X such that aij ↓ 0 (j → ∞,
i = 1, 2, . . .) we have ∧

ϕ∈NN

∨

i

aiϕ(i) = 0.

The equality |x| = x ∨ 0 + (−x) ∨ 0 holds for x in a lattice ordered group X .

The definition of the Kurzweil integral of a function f : 〈a, b〉 → X was introduced

and some properties of the integral were proved by Riečan in [7]. A limit theorem for
uniformly convergent sequences of Kurzweil integrable functions is proved in [8] and

the limit theorem for monotone and with a common regulating sequence convergent
sequences is obtained in [11].

The Kurzweil integral of a function f : T → �, where T is a Hausdorff compact

topological space was defined in [6]. Now, the gauge is a function δ : T → 2T , where
δ(t) is a neighbourhood of t. A partition D = {(Ei, ti), i = 1, 2, . . . , n} is a δ-fine

P-partition of T , if Ei and Ej have no common interior points for i 	= j,
n⋃

i=1
Ei = T ,

Ei ⊂ δ(ti), ti ∈ Ei and Ei ∈ P for i = 1, 2, . . . , n, where P is a family of Borel

subsets of T .

If U (T ) is the set of all neighbourhood gauges, P is the σ-algebra generated by
the family of all compact subsets of T and A (δ/E, P) is the set of all δ-fine P-

partitions D of E ∈ P, then A (δ/E, P) 	= ∅ for every δ ∈ U (T ) or δ ∈ U (E)
and every E ∈ P (see [9], Lemma 1 and Remark 2). In general we do not need all

neighbourhood gauges and all Borel subsets. (Haluška has written about it in [3].)

In the case when f : T → X and L(X, Y ) is the set of all linear continuous or
regular operators from X to Y (X, Y are some vector lattices), the Kurzweil integral

of f with respect to L(X, Y )-valued measure can be found in [9] and [3].

The Kurzweil integral of f : T → X with respect to a Y -valued measure was
applied by Száz in [10]. Száz supposes that X, Y and Z are normed spaces which are

equipped with a bilinear map (x, y) �→ xy from X × Y into Z. Now, the Riesz space
will take the place of the normed spaces. We will define the Kurzweil type integral of

lattice ordered group valued functions defined on T with respect to a lattice ordered
group valued measure.
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Definition and elementary properties of the Kurzweil type integral

First we shall list assumptions concerning the range spaces X , Y , Z, the domain
T and a given measure µ : S → Y .

Assumptions 1. X , Y , Z are assumed to be Abelian lattice ordered groups,
moreover Z being conditionally σ-complete and weakly σ-distributive. Further, a

mapping b : X × Y → Z is given satisfying the following conditions:
(i) b(x1 + x2, y) = b(x1, y) + b(x2, y) for every x1, x2 ∈ X , y ∈ Y .

(ii) b(x, y1 + y2) = b(x, y1) + b(x, y2) for every x ∈ X , y1, y2 ∈ Y .
(iii) If x ∈ X , y ∈ Y , x � 0, y � 0, then b(x, y) � 0.
(iv) If xn ∈ X (n = 1, 2, . . .), y ∈ Y , y � 0 and xn ↓ 0, then b(xn, y) ↓ 0.
(v) If xn ∈ X , yn ∈ Y , xn � 0, yn � 0 (n = 1, 2, . . .) and

∞∨
n=1

xn,
∞∨

n=1
yn exist, then

∨

n

b(xn, y1) = b

(∨

n

xn, y1

)
,
∨

n

b(x1, yn) = b

(
x1,

∨

n

yn

)
.

In the sequel we will write x · y or xy instead of b(x, y).

Examples. 1. Let X, Z be Riesz spaces, Y = L(X, Z) the space of linear
positive mappings from X to Z. Then the mapping b : X × Y → Z defined by

b(x, y) = y(x) is a biadditive map.
2. Let X be a Riesz space, Y = �, Z = X , b(x, y) = x · y (scalar multiplication).
3. Let Y be a Riesz space, X = �, Z = Y , b(x, y) = x · y (scalar multiplication).

Assumptions 2. We consider a Hausdorff compact topological space T , a

subfamily P of Borel subsets of T and a subfamily U (T ) of neighbourhood gauges
η on T such that A (η/E, P) 	= ∅ for every η ∈ U (T ) and every E ∈ P. Finally a

measure µ : S → Y is given, i.e., such a mapping that the following conditions are
satisfied:

(i) S is the σ-algebra of Borel subsets of T , i.e., the σ-algebra generated by the
family of all compact subsets of T .

(ii) µ(E) � 0 for every E ∈ S .

(iii) µ
( k⋃

n=1
En

)
=

k∑
n=1

µ(En) whenever E1, . . . , Ek ∈ S , Ei and Ej have no com-

mon interior points (i 	= j).

(iv) µ is regular in the following sense: For every E ∈ S there exists a bounded
sequence (ank)n,k ⊂ Y , ank ↓ 0 (k →∞, n = 1, 2, . . .) such that for every ϕ : N → N

there exist a compact set F and an open set U such that F ⊂ E ⊂ U and

µ(U\F ) <
∨

i

aiϕ(i).
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Definition 3. Let f : T → X be any mapping, µ : S → Y a regular measure,

D = {(E1, t1) . . . , (En, tn)} a partition, E1, . . . , En ∈ P. Then we define

S(f, D) =
n∑

i=1

f(ti)µ(Ei).

The function f is integrable (with respect to µ), if there exists z ∈ Z and a bounded

double sequence (ank)n,k ⊂ Z, ank ↓ 0 (k → ∞, n = 1, 2, . . .) such that for every
ϕ : N → N there exists η ∈ U (T ) such that

|S(f, D)− z| <
∞∨

i=1

aiϕ(i)

for any D ∈ A (η) (= A (η, P)).

The element z from Definition 3 is determined uniquely (for the proof see [9],
Lemma 6) and z will be denoted by

∫
f dµ. It is no problem to prove the following

elementary properties of the integral (see [9], Theorem 7, Theorem 8):

(i) If f, g : T → X are integrable, then f + g, f − g are integrable and

∫
(f + g) dµ =

∫
f dµ+

∫
g dµ,

∫
(f − g) dµ =

∫
f dµ−

∫
g dµ.

(ii) If f : T → X is integrable and f(t) � 0 for every t ∈ T , then
∫

f dµ � 0.

Definition 4. A mapping f : T → X is integrable on a set E ∈ P, if there
exist z ∈ Z and a bounded sequence ank ↓ 0 (k → ∞, n = 1, 2, . . .) and for every

ϕ : N → N there exists η ∈ U (T ) such that

|SE(f, D)− z| <
∨

i

aiϕ(i)

whenever D ∈ A (η/E), where SE(f, D) =
n∑

i=1
f(ti)µ(Ei). The element z will be

denoted by
∫

E
f dµ.

The proofs of the following propositions are the same as the proof of Lemma 11,

Theorem 12 and Theorem 13 of [9]. From now on the space Z is assumed to be
conditionally complete (i.e., every bounded subset of Z has the supremum).

Proposition 5. (Cauchy-Bolzano condition.) A mapping f : T → X is inte-

grable on E ∈ P if and only if the following condition is satisfied:
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There exists a bounded sequence (ank)n,k ⊂ Z, ank ↓ 0 (k →∞, n = 1, 2, . . .) and

for every ϕ : N → N there is η ∈ U (T ) such that

|SE(f, D1)− SE(f, D2)| <
∨

i

aiϕ(i)

for all D1, D2 ∈ A (η/E).

Proposition 6. If E, F, G ∈ P, E = F ∪G, F and G have no common interior

points and f : T → X is integrable on E, then f is integrable on both F and G, and

∫

E

f dµ =
∫

F

f dµ+
∫

G

f dµ.

Proposition 7. If f : T → X is a simple measurable function f =
n∑

i=1
χEixi,

Ei ∈ S (i = 1, 2, . . . , n), Ei ∩ Ej = ∅ (i 	= j), then f is integrable and

∫
f dµ =

n∑

i=1

xiµ(Ei).

Limit theorems

Theorem 8. (Henstock lemma.) Let g : T → X be an integrable function. Let

(aij)i,j be such a bounded sequence with aij ↓ 0 (j →∞, i = 1, 2, . . .) that for every
ϕ : N → N there exists η ∈ U (T ) such that

∣∣∣∣
∫

g dµ− S(g, D)

∣∣∣∣ <
∨

i

aiϕ(i)

for every D ∈ A (η). Then for every D ∈ A (η), D = {(Ei, ti), i = 1, 2, . . . , n} and
every α 	= ∅, α ⊂ {1, 2, . . . , n} we have

∣∣∣∣
∑

i∈α

∫

Ei

g dµ−
∑

i∈α

g(ti)µ(Ei)

∣∣∣∣ �
∨

i

aiϕ(i).

�����. It is the same as the proof of Lemma 2 of [11]. �

569



Definition 9. We say that fn → f converges with a common regulating se-

quence (w.c.r.s.), if there exists a bounded (aij)i,j with aij ↓ 0(j → ∞, i = 1, 2, . . .)
such that for every ϕ : N → N and every t ∈ T there exists p = p(t) such that

|fn(t)− f(t)| <
∨

i

aiϕ(i)

for any n � p.

Theorem 10. Let (fn)n be a sequence of integrable functions. Let one of the
following assumptions (A or B) be satisfied:

(A) The sequence (fn)n has uniformly regulated integrals, i.e., there exists a triple
sequence (anij) satisfying the following properties:

(i) (anij)i,j is bounded for every n and anij ↓ 0 (j →∞).
(ii)

m∑
n=1

∞∨
i=1

aniϕ(i+n+1) is bounded for every ϕ : N → N .

(iii) For every ϕ : N → N and every n there is ηn ∈ U (T ) such that
∣∣∣∣
∫

fn dµ− S(fn, D)

∣∣∣∣ <
∨

i

aniϕ(i+n+1)

for every D ∈ A (ηn).

(B) There is a ∈ Z such that |S(fk, D)−
∫

fk dµ| � a for every k ∈ N and every

partition D.

If fn → f converges with a common regulating sequence, then there is a bounded

sequence (bij)i,j with bij ↓ 0 such that for every ϕ : N → N there is η ∈ U (T ) such

that ∣∣∣∣
∫

fn dµ− S(fn, D)

∣∣∣∣ <
∨

i

biϕ(i) +
n−1∑

m=l

∣∣∣∣
∫

Fm

(fm − fn) dµ

∣∣∣∣

for every D = {(Ek, tk), k = 1, 2, . . . , n} ∈ A (η), every l ∈ N and every n ∈ N ,

n > l, where Fm =
⋃

p(tk)=m

Ek.

�����. By the w.c.r.s. convergence there is a bounded sequence (aij)i,j with

aij ↓ 0 (j → ∞, i = 1, 2, . . .) such that for every ϕ : N → N and every t ∈ T there
is p(t) ∈ N such that

|fn(t)− fm(t)| <
∨

i

aiϕ(i)

for every n, m � p(t). Since fn is integrable, there is anij ↓ 0 (j → ∞, i = 1, 2, . . .)
such that for every ϕ : N → N there is ηn ∈ U (T ) such that

∣∣∣∣
∫

fn dµ− S(fn, D)

∣∣∣∣ <
∨

i

aniϕ(i+n+1)
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for every D ∈ A (ηn). Put

η(t) = η1(t) ∩ . . . ∩ ηp(t)(t).

Then η ∈ U (T ). Let D ∈ A (η), D = {(E1, t1), . . . , (Es, ts)}. For an arbitrary
l ∈ N , fix n > l. By the Henstock lemma (Theorem 8)

(∗)
∣∣∣∣

∑

p(tk)�n

fn(tk)µ(Ek)−
∑

p(tk)�n

∫

Ek

fn dµ

∣∣∣∣ �
∨

i

aniϕ(i+n+1).

By the same lemma

∣∣∣∣
∑

p(tk)=m

fm(tk)µ(Ek)−
∑

p(tk)=m

∫

Ek

fm dµ

∣∣∣∣ �
∨

i

amiϕ(i+m+1).

Therefore
∣∣∣∣

∑

p(tk)<n

fn(tk)µ(Ek)−
∑

p(tk)<n

∫

Ek

fn dµ

∣∣∣∣

�
∣∣∣∣

∑

p(tk)<n

fn(tk)µ(Ek)−
∑

p(tk)<n

fp(tk)(tk)µ(Ek)

∣∣∣∣

+
n−1∑

m=l

∣∣∣∣
∑

p(tk)=m

fm(tk)µ(Ek)−
∑

p(tk)=m

∫

Ek

fm dµ

∣∣∣∣+
n−1∑

m=l

∣∣∣∣
∫

Fm

(fm − fn) dµ

∣∣∣∣

�
∑

p(tk)<n

|fn(tk)− fp(tk)(tk)|µ(Ek) +
n−1∑

m=1

∨

i

amiϕ(i+m+1)

+
n−1∑

m=l

∣∣∣∣
∫

Fm

(fm − fn) dµ

∣∣∣∣

�
∨

i

aiϕ(i)µ(T ) +
n−1∑

m=1

∨

i

amiϕ(i+m+1) +
n−1∑

m=l

∣∣∣∣
∫

Fm

(fm − fn) dµ

∣∣∣∣.(∗∗)

Put b1ij = aijµ(T ), bnij = an−1ij (n = 2, 3, . . .). By (∗) and (∗∗) we obtain
∣∣∣∣S(fn, D)−

∫
fn dµ

∣∣∣∣ �
n∑

m=l

∨

i

bmiϕ(i+m+1) +
n−1∑

m=l

∣∣∣∣
∫

Fm

(fm − fn) dµ

∣∣∣∣.

Moreover, by the assumptions (A) or (B) there is c ∈ Z such that

∣∣∣∣S(fn, D)−
∫

fn dµ

∣∣∣∣ � c
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for every n ∈ N and every D ∈ A (η). Now by the Fremlin lemma ([11], Lemma 1),

there is a bounded sequence (bij)ij with bij ↓ 0 (j →∞, i = 1, 2, . . .) such that

c ∧
∞∑

m=1

∨

i

bmiϕ(i+m+1) �
∨

i

biϕ(i).

�

Theorem 11. Let (fn)n be a sequence of integrable functions. Let (fn)n have

uniformly approximable integrals, i.e. there is a bounded (bij) with bij ↓ 0 (j →
∞, i = 1, 2, . . .) such that for every ϕ : N → N there is η ∈ U (T ) such that

|
∫

fn dµ− S(fn, D)| <
∨
i

biϕ(i) for every D ∈ A (η) and n ∈ N . Let fn → f with a

common regulating sequence. Then f is integrable and
∫

fn dµ →
∫

f dµ.

�����. The proof is similar to the proof of Lemma 3 of [11]. It is proved
there that

∫
fn dµ →

∫
f dµ with respect to a double sequence, but this convergence

implies the o-convergence in weakly σ-distributive groups (see [2], Proposition 1).

�

Theorem 12. (Levi.) Let (fn)n be a sequence of integrable functions, let
(
∫

fn dµ)n be bounded, fn � fn+1 (n = 1, 2, . . .), fn → f with a common regulating

sequence. Let (fn)n have uniformly regulated integrals (condition A in Theorem 10).
Then f is integrable and ∫

f dµ =
∞∨

n=1

∫
fn dµ.

�����. By Theorem 10
∣∣∣∣
∫

fn dµ− S(fnD)

∣∣∣∣ �
∨

i

biϕ(i) +

∣∣∣∣
∫

Fm

(fm − fn) dµ

∣∣∣∣

for n � l, l ∈ N . Since fl � fm � fn, we obtain

∣∣∣∣
n−1∑

m=l

∫

Fm

(fm − fn) dµ

∣∣∣∣ �
n−1∑

m=l

∫

Fm

(fn − fl) dµ �
∫
(fn − fl) dµ

=

∣∣∣∣
∫

fn dµ−
∫

fl dµ

∣∣∣∣,

where Fm =
⋃

p(tk)=m

Ek.

Since (
∫

fn dµ)n is bounded and increasing and Z is σ-complete (evenly complete),
∞∨

n=1

∫
fn dµ exists. Therefore

∫
fn dµ −

∫
fl dµ → 0 as n, l → ∞. It follows that

Theorem 11 is applicable. �
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Theorem 13. (Levi). Let (fn)n be a sequence of integrable functions, fn � fn+1

(n = 1, 2, . . .), fn → f with a common regulating sequence. Let f and f1 be bounded.

Then f is integrable and
∫

f dµ =
∞∨

n=1

∫
fn dµ.

�����. The same as in Theorem 12, only the assumption B in Theorem 11
must be used instead of the assumption A. �

Theorem 14. (Lebesgue.) Let (fn)n be a sequence of integrable functions, h a
bounded integrable function such that |fn| � h for all n. Let fn → f with a common

regulating sequence. Then f is integrable and
∫

fn dµ →
∫

f dµ.

�����. Again we use Theorem 11. Put (for j � k)gj,k =
∨

j�m�n�k

|fn − fm|.

Then gj,k ↑ gj (k →∞). By Theorem 13, gj is integrable and
∫

gj dµ =
∨
k

∫
gj,k dµ.

Since gj ↓ 0, using again Theorem 13 we obtain
∫

gj dµ ↓ 0. Therefore

n−1∑

m=l

∫

Fm

(fm − fn) dµ �
∣∣∣∣
n−1∑

m=l

∫

Fm

gl dµ

∣∣∣∣ �
∫

gl dµ.

Again Theorems 10 and 11 are applicable. �

Theorem 15. (Uniform convergence.) Let (fn)n be a sequence of integrable

functions converging uniformly to f , i.e., there exists a sequence (an)n ⊂ Z, an ↓ 0
such that |fn(t) − f(t)| � an for all n ∈ N and all t ∈ T . Let f be bounded. Then

f is integrable and ∫
fn dµ →

∫
f dµ.

�����. Let c be an upper bound of |f |. Then |fn(t)| � |fn(t)− f(t)|+ |f(t)| �
a1 + c. Moreover,

|S(fn, D)| �
∑

k

|f(tk)|µ(Ek) � cµ(T ).

Therefore Theorems 10 and 11 are applicable. �
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