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A GRADIENT ESTIMATE FOR SOLUTIONS

OF THE HEAT EQUATION

Charles S. Kahane, Nashville

(Received November 20, 1995)

1. Introduction

Consider a solution u(x, t) of the following boundary-initial value problem for the
heat equation:

(1.1)





ut(x, t) = uxx(x, t) in (a, b)× (0,∞),
u(a, t) = u(b, t) = 0 for t > 0,

u(x, 0) = f(x) for a < x < b,

with f(x) assumed, to begin with, to be in C[a, b]. Suppose further that f(x) ∈
C1[a, b] and vanishes at the endpoints, then by noting that v = ux is a solution of
the problem

(1.2)





vt(x, t) = vxx(x, t) in (a, b)× (0,∞),
vx(a, t) = vx(b, t) = 0 for t > 0,

v(x, 0) = f ′(x) for a < x < b,

we obtain the estimate

(1.3) |ux(x, t)| � max
[a,b]

|f ′(x)| for (x, t) ∈ (a, b)× (0,∞)

as a consequence of the maximum principle.

The goal of this paper is to derive estimates of the same type as (1.3) for gradients
of solutions u of the higher dimensional version of (1.1); that is, for solutions u(x, t)

with (x, t) ∈ Ω× (0,∞), Ω being a bounded domain in �n , n � 2, of the problem

(1.4)





ut = ∆u in Ω× (0,∞),
u = 0 on ∂Ω× (0,∞),
u(x, 0) = f(x) for x ∈ Ω.
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Assuming that f(x) ∈ C1(Ω) and vanishes on ∂Ω, we shall be able to obtain esti-
mates of the form (1.3), provided that ∂Ω is sufficiently smooth and most importantly
satisfies the following mean curvature condition:

Let p be a typical point on ∂Ω and suppose that after suitable rotation and trans-
lation of our coordinate system placing p at the origin of the system, the portion of

∂Ω lying in a neighborhood of p is the surface described by the function

(1.5) xn = g(x1, . . . , xn−1)

where (x1, . . . , xn−1) varies over a neighborhood of (x1 = 0, . . . , xn−1 = 0) with

g(0, . . . , 0) = 0 and with the positive xn direction corresponding to the outward
normal direction from ∂Ω at p. Then the mean curvature condition that we shall

assume ∂Ω to satisfy is that

(1.6)
n−1∑

j=1

∂2g

∂x2j

∣∣∣
xj=0,j=1,...,n−1

� 0.

The precise statement of our result is

Theorem 1.1. Assume u(x, t) to be a solution of (1.4) with f(x) ∈ C1(Ω) and

vanishing on ∂Ω. Suppose further that ∂Ω is C3 and satisfies the mean curvature
condition (1.6). Then for ( ∂u

∂x1
, ∂u

∂x2
, . . . , ∂u

∂xn
), the spatial gradient of u, hereinafter

denoted by gradu(x, t), we have the estimate

(1.7) |gradu(x, t)| � max
Ω

|grad f(x)| , (x, t) ∈ Ω× (0,∞).

The estimate depends crucially on ∂Ω satisfying the curvature condition (1.6).
And we shall give an example showing that it fails when this condition does not

hold.

We should point out that without this condition, but assuming only that ∂Ω is
sufficiently smooth, Ladyzenskaja et al. in [2] have derived bounds for gradu(x, t)

depending on max
Ω

| gradf(x))|, max
Ω

|f(x))|, as well as ∂Ω (see [2] Theorem 4.1, p. 443
and Lemma 6.1, p. 589).

The plan of the paper is as follows: The proof of Theorem 1.1 will be described
in Sections 2, 3, and 4. In Section 5 we will explain the construction of an example

showing that (1.7) may fail when (1.6) does not hold.
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Section 2

In this section we will begin the proof of Theorem 1.1. We shall do this by
endeavoring to apply a suitable version of the maximum principle to |gradu(x, t)|2
from which an estimate of the form (1.7) will then follow.
To this end we will first show that

|gradu(x, t)|2 =
n∑

j=1

( ∂u

∂xj

)2

is sub-parabolic in Ω× (0,∞) meaning that

(2.1)
[
∆− ∂

∂t

]
| gradu(x, t)|2 � 0 in Ω× (0,∞).

Since sums of sub-parabolic functions are sub-parabolic, to establish (2.1) it suf-

fices to prove that ( ∂u
∂xj
)2 is sub-parabolic for j = 1, . . . , n. But as each derivative

∂u
∂xj
is a solution of the heat equation, the sub-parabolicity of ( ∂u

∂xj
)2 is an immediate

consequence of the following general result.

Proposition 2.1. Suppose that w(x, t) is a solution of the heat equation in
Ω×(0,∞), and assume that h(s) is a C2 function on the real axis satisfying h′′(s) � 0
for s ∈ (−∞,+∞), then the function h(w(x, t)) is sub-parabolic in Ω× (0,∞).

�����. A straightforward calculation yields

[
∆− ∂

∂t

]
h(w(x, t)) = h′′(w(x, t))

n∑

j=1

( ∂w
∂xj

)2

� 0 in Ω× (0,∞),

due to the assumption h′′ � 0.
Applying this proposition with h(s) = s2 it follows that |gradu|2 is sub-parabolic.

We can then obtain the estimate (1.7) on the basis of the maximum principle, by

showing that the exterior normal derivative of |gradu|2 at any point on the lateral
boundary ∂Ω× (0,∞) in non-positive:

(2.2)
∂

∂n
| gradu|2

∣∣∣
∂Ω×(0,∞)

� 0;

and we will devote the next two sections to establishing this as a result of the as-
sumption (1.6).

For the sake of completeness we include a proof of the relevant version of the
maximum principle that we are using. �
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Theorem 2.2. Let v(x, t) be a non-negative sub-parabolic function in Ω× (0, T ]
which is continuous in Ω × [0, T ], with x and t derivatives continuous in Ω × (0, T ]
and with ∂Ω assumed to be C1. Then if

(2.3)
∂v

∂n
� 0 along ∂Ω× (0, T ],

we have

(2.4) v(x, t) � max
Ω

v(x, 0) in Ω× (0, T ].

�����. Multiplying both sides of the inequality

∂v

∂t
� ∆v in Ω× (0, T ]

by vp, p � 1, integrating over Ω and then integrating by parts, we obtain
∫

Ω
vp ∂v

∂t
dx �

∫

Ω
vp∆v dx

= −
∫

Ω
pvp−1 |gradv|2 dx+

∫

∂Ω
vp ∂v

∂n
dσ � 0

for t ∈ (0, T ], in view of (2.3). Since the integral on the left is identical with

d
dt

( ∫

Ω

vp+1

p+ 1
dx

)
,

we conclude that
∫
Ω v

p+1 dx is a decreasing function of t:

∫

Ω
vp+1(x, t) dx �

∫

Ω
vp+1(x, s) dx, 0 < s < t � T.

Taking p+ 1 roots and passing to the limit as p→∞, this leads to

max
Ω

v(x, t) � max
Ω

v(x, s), 0 < s < t � T.

Finally, by letting s ↓ 0, we arrive at the desired result (2.4). �
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Section 3

In this section we will introduce a coordinate transformation on which we will base
the proof of (2.2), the non-positivity of the exterior normal derivative of |gradu|2 on
∂Ω.
Our starting point for defining this transformation is the function

(3.1) xn = g(x1, . . . , xn−1)

introduced in Section 1 and which describes the surface constituting that portion of
∂Ω lying in a sufficiently small neighborhood of the point p ∈ ∂Ω, with p placed at
the origin of our coordinate system. Our assumptions regarding g, were that it was
a C3 function for (x1, . . . , xn−1) in a neighborhood of (x1 = 0, . . . , xn−1 = 0) with

(3.2) g(0, . . . , 0) = 0.

We further assumed the positive xn direction to correspond to the outward normal
direction on ∂Ω at p. This means that the plane xn = 0 is tangent to the surface

described by (3.1) at the origin; and so

(3.3)
( ∂

∂xj

)
g(x1, . . . , xn−1)

∣∣∣
x1=0,...,xn−1=0

= 0, j = 1, . . . , n− 1.

We now define a coordinate change from ξ = (ξ1, . . . , ξn) to x = (x1, . . . , xn)

in accordance with the following scheme: Starting from a point (ξ1, . . . , ξn−1,
g(ξ1, . . . , ξn−1)) on the surface describing ∂Ω, we proceed ξn units in the direc-

tion of the outward normal to the surface thereby arriving at the point with
the coordinates (x1, . . . , xn) in �

n . The connection between the original point

(ξ1, . . . , ξn−1, g(ξ1, . . . , ξn−1)) and (x1, . . . , xn) is given by
(3.4)




xj = ξj − gξj (ξ1, . . . , ξn−1)
(
1 +

n−1∑
k=1

g2ξk
(ξ1, . . . , ξn−1)

)− 12
ξn, j = 1, . . . , n− 1,

and

xn = g(ξ1, . . . , ξn−1) +
(
1 +

n−1∑
k=1

g2ξk
(ξ1, . . . , ξn−1)

)− 12
ξn.

We may view these equations as defining either a coordinate change from ξ =
(ξ1, . . . , ξn) to x = (x1, . . . , xn) or the other way around. For short we will write

equations (3.4) as x = x(ξ) and componentwise as xj = xj(ξ) = xj(ξ1, . . . , ξn), j =
1, . . . , n. Similarly, the inverse transformation, which we will show in a moment, ex-

ists, will be denoted by ξ = ξ(x) and componentwise by ξj = ξj(x) = ξj(x1, . . . , xn),
j = 1, . . . , n.
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For our purposes, the essential point about this transformation is that differen-

tiation in the outward normal direction on ∂Ω corresponds to differentiation with
respect to ξn when ξn = 0. More precisely, if ϕ(x) represents a function in the x
coordinates and ψ(ξ) represents the corresponding function in the ξ coordinates, i.e.,

ψ(ξ) = ϕ(x(ξ)), then

(3.5)
∂ϕ(x)
∂n

∣∣∣
∂Ω
=
∂ψ(ξ)
∂ξn

∣∣∣
ξn=0

.

In the two propositions which follow we describe the main analytic properties of
this transformation. For the first of these, which concerns the existence of the inverse

transformation, we need only to assume that g is C2.

Proposition 3.1. Assume that g(ξ1, . . . , ξn−1) is a C2 function of (ξ1, . . . , ξn−1)
in some neighborhood of (ξ1 = 0, . . . , ξn−1 = 0), satisfying the conditions (3.2) and
(3.3). Then the equations (3.4) define a non-singular C1 transformation x = x(ξ) in

a neighborhood of ξ = 0, which sends ξ = 0 into x = 0 and whose Jacobian at the
origin is the identity matrix:

(3.6)
∂x

∂ξ

∣∣∣
ξ=0
= I.

Consequently, the inverse transformation ξ = ξ(x) exists in a neighborhood of x = 0,
is C1 there, sends x = 0 into ξ = 0, and its Jacobian at the origin is also the identity

matrix:

(3.7)
∂ξ

∂x

∣∣∣
x=0
= I.

�����. In view of (3.2), x = x(ξ) sends ξ = 0 into x = 0. By the inverse

function theorem all the other assertions made in the proposition will follow the
moment (3.6) is established. A straightforward calculation using (3.3), show that

(3.8)
∂xj

∂ξk

∣∣∣
ξ=0
= δjk j, k = 1, . . . , n,

δjk denoting the Kronecker delta; which proves (3.6).

The reason we assumed g to be C3 rather than just C2 is because we will need to

take second derivatives of x(ξ) and ξ(x). The relevant facts concerning these second
derivatives are contained in �
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Proposition 3.2. Under the assumption that g(ξ1, . . . , ξn−1) is C3 in a neigh-
borhood of (ξ1 = 0, . . . , ξn−1 = 0), the transformation x = x(ξ) and its inverse
ξ = ξ(x) referred to in Proposition 3.1 are C2 in neighborhoods of x = 0 and ξ = 0,
respectively.

Furthermore, the second derivatives of these transformations at the origin are

related in the following way:

(3.9)
∂

∂ξm

(∂ξj
∂xl

)∣∣∣
0
= − ∂

∂ξm

(∂xj

∂ξl

)∣∣∣
0
,

and

(3.10)
∂

∂xm

(∂ξj
∂xl

)∣∣∣
0
= − ∂

∂ξm

(∂xj

∂ξl

)∣∣∣
0
,

j, l,m = 1, . . . , n, and where the evaluation notation here means that we evaluate

these derivatives at ξ = 0 or, equivalently, at x = 0.
In particular, we have

(3.11)
∂2ξn
∂x2i

∣∣∣
0
= −∂

2xn

∂ξ2i

∣∣∣
0
= −gξiξi(0, . . . , 0), i = i, . . . , n− 1,

and

(3.12)
∂2ξn
∂x2n

∣∣∣
0
= −∂

2xn

∂ξ2n

∣∣∣
0
= 0,

as well as

(3.13)
∂

∂ξn

( ∂ξn
∂xn

)∣∣∣
0
= −∂

2xn

∂ξ2n

∣∣∣
0
= 0.

�����. To establish (3.9) and (3.10) we begin by observing that as x = x(ξ)

and ξ = ξ(x) are inverse to each other, so also are their Jacobian matrices: ∂x
∂ξ

∂ξ
∂x = I.

In terms of the Jacobian entries this means that

n∑

k=1

∂xj

∂ξk

∂ξk
∂xl
= δjl, j, l = 1, . . . , n.

Differentiating with respect to ξm, m = 1, . . . , n, yields

n∑

k=1

[ ∂

∂ξm

(∂xj

∂ξk

)∂ξk
∂χl
+
∂xj

∂ξk

∂

∂ξm

(∂ξk
∂xl

)]
= 0.
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Evaluating at x = ξ = 0, making use of (3.7) and (3.8) according to which ∂ξk

∂xl

∣∣
0
= δkl

and ∂xj

∂ξk

∣∣
0
= δjk, we arrive at

n∑

k=1

[ ∂

∂ξm

(∂xj

∂ξk

)∣∣∣
0
δkl + δjk

∂

∂ξm

(∂ξk
∂xl

)∣∣∣
0

]
= 0;

and hence
∂

∂ξm

(∂xj

∂ξl

)∣∣∣
0
+

∂

∂ξm

(∂ξj
∂xl

)∣∣∣
0
= 0

for j, l,m = 1, . . . , n, which is (3.9).

To prove (3.10) we note that as the right sides of (3.9) and (3.10) are identical,

(3.10) will follow the moment we can show that the left sides of (3.9) and (3.10) are
the same:

(3.14)
∂

∂ξm

(∂ξj
∂xl

)∣∣∣
0
=

∂

∂xm

(∂ξj
∂xl

)∣∣∣
0
.

To do so we apply the chain rule to carry out the indicated differentiation on the left
side of (3.14):

∂

∂ξm

(∂ξj
∂xl

)
=

n∑

k=1

∂

∂xk

(∂ξj
∂xl

) ∂xk

∂ξm
.

Evaluating this at x = ξ = 0, using ∂xk

∂ξm

∣∣
0
= δkm results in

∂

∂ξm

(∂ξj
∂xl

)∣∣∣
0
=

n∑

k=1

∂

∂xk

(∂ξj
∂xl

)∣∣∣
0
δkm =

∂

∂xm

(∂ξj
∂xl

)∣∣∣
0
,

which is (3.14).

Finally, we turn to the verification of (3.11)–(3.13). To accomplish this for (3.11)

and (3.12) we apply (3.10) with j = n and m = l = i:

∂2ξn
∂x2i

∣∣∣
0
= −∂

2xn

∂ξ2i

∣∣∣
0
, i = 1, . . . n.

Using (3.4) we can explicitly calculate the derivative on the right side of this equation.
Carrying this out we find that

(3.15)
∂2xn

∂ξ2i

∣∣∣
0
=

{
gξiξi(0, . . . , 0) for i = 1, . . . n− 1,
0 for i = n,

which establishes (3.11) and (3.12).
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Lastly, the remaining relation (3.13) follows by applying (3.9) with j = m = l = n

which yields
∂

∂ξn

( ∂ξn
∂xn

)∣∣∣
0
= −∂

2xn

∂ξ2n

∣∣∣
0
;

and since, as we just observed in (3.15), the derivative on the right vanishes, (3.13)
is proved. �

Section 4

In this section we will prove the non-positivity of the normal derivative of |gradu|2
on ∂Ω, i.e. for p an arbitrary point on ∂Ω we will show that

(4.1)
∂

∂n
|gradu|2

∣∣∣
p

� 0.

(We suppress any mention of the time variable t because it plays no role in our
computations; it is to be understood as being fixed at an arbitrary positive value.)

In order to establish (4.1) we introduce the transformation x = x(ξ) defined in the
previous section, in which ξn = 0 corresponds to ∂Ω and p corresponds to ξ = 0. Our

first step will be to compute |gradu|2 in terms of the ξ coordinates. For this purpose
let v(ξ, t) denote the function u(x, t) referred to ξ coordinates, i.e. v(ξ, t) = u(x(ξ), t).

We then find that

(4.2) |gradu(x, t)|2 =
n∑

i=1

( ∂u
∂xi

)2
=

∑

1�j,k�n

bjk
∂v

∂ξj

∂v

∂ξk

where

(4.3) bjk =
n∑

i=1

∂ξj
∂xi

∂ξk
∂xi

, j, k = 1, . . . , n.

Next we wish to calculate the normal derivative ∂
∂n |gradu|

2 on ∂Ω in the ξ coor-
dinates. Since differentiation in the outward normal direction on ∂Ω corresponds to

differentiation with respect to ξn when ξn = 0 (see (3.5)), it follows that

∂

∂n
|gradu|2

∣∣∣
∂Ω
=

∂

∂ξn

( ∑

1�j,k�n

bjk
∂v

∂ξj

∂v

∂ξk

)∣∣∣
ξn=0

=
∑

1�j,k�n

∂

∂ξn
(bjk)

∂v

∂ξj

∂v

∂ξk
+

∑

1�j,k�n

2bjk
∂2v

∂ξn∂ξj

∂v

∂ξk

∣∣∣
ξn=0

.
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But as u vanishes on ∂Ω, v vanishes when ξn = 0 and consequently so do all deriva-

tives ∂v
∂ξk
with k �= n vanish when ξn = 0. Hence

∂

∂n
|gradu|2

∣∣∣
∂Ω
=

∂

∂ξn
(bnn)

( ∂v

∂ξn

)2
+

n∑

j=1

2bjn
∂2v

∂ξn∂ξj

∂v

∂ξn

∣∣∣
ξn=0

.

Finally, evaluating at the point p which corresponds to ξ = 0, we arrive at

(4.4)
∂

∂n
|gradu|2

∣∣∣
p
= 2bnn

∂2v

∂ξ2n

∂v

∂ξn

∣∣∣
ξ=0

,

because, as we shall in a moment,

(4.5)
∂

∂ξn
(bnn)

∣∣∣
ξ=0
= 0

and

(4.6) bjn

∣∣
ξ=0
= 0 for j = 1, . . . , n− 1.

To verify (4.6), we set ξ = 0 in the definition (4.3) for bnj and then use the

evaluation ∂ξj

∂xi

∣∣
x=0
= ∂ξj

∂xi

∣∣
ξ=0
= δji (see (3.7)) as follows:

bjn

∣∣
ξ=0
=

n∑

i=1

∂ξj
∂xi

∂ξn
∂xi

∣∣∣
ξ=0
=

n∑

i=1

δjiδni = δjjδnj = 0

for j �= n.
The verification of (4.5) is similarly straightforward: We differentiate the defining

equation (4.3) for bnn with respect to ξn and then set ξ = 0 thereby obtaining

∂

∂ξn
(bnn)

∣∣∣
ξ=0
=

∂

∂ξn

n∑

i=1

(∂ξn
∂xi

)2∣∣∣
ξ=0
=

n∑

i=1

2
∂ξn
∂xi

∣∣∣
ξ=0

∂

∂ξn

(∂ξn
∂xi

)∣∣∣
ξ=0

=
n∑

i=1

2δni
∂

∂ξn

(∂ξn
∂xi

)∣∣∣
ξ=0
= 2

∂

∂ξn

( ∂ξn
∂xn

)∣∣∣
ξ=0
= 0

in view of (3.13); and this proves (4.5).

The next step in proving (4.1) involves the Laplacian of u; we shall need the
expression for ∆u in terms of the ξ coordinates. This is given by

(4.7) ∆u =
∑

1�j,k�n

bjk
∂2v

∂ξj∂ξk
+

n∑

j=1

cj
∂v

∂ξj
,
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where the bjk are as defined in (4.3) and

(4.8) cj =
n∑

i=1

∂2ξj
∂x2i

, j = 1, . . . , n.

Now by standard regularity theory [1], the derivatives uxjxk
and ut have continuous

extensions to the lateral boundary ∂Ω × (0,∞); and so the equation ut − ∆u = 0
is satisfied on ∂Ω × (0,∞). But as u vanishes on ∂Ω × (0,∞), ut also vanishes on
∂Ω × (0,∞). Consequently we must have ∆u = 0 on ∂Ω for t > 0. Therefore,
evaluating the left side of (4.7) on ∂Ω and correspondingly, the right side on ξn = 0,
we find that

0 = ∆u
∣∣
∂Ω
=

∑

1�j,k�n

bjk
∂2v

∂ξj∂ξk
+

n∑

j=1

cj
∂v

∂ξj

∣∣∣
ξn=0

.

Taking into account the vanishing of v when ξn = 0, which implies that all the

derivatives of v which do not involve ξn also vanish when ξn = 0, the preceeding
becomes

0 = bnn
∂2v

∂ξ2n
+

n−1∑

j=1

2bjn
∂2v

∂ξj∂ξn
+ cn

∂v

∂ξn

∣∣∣
ξn=0

.

Evaluating at ξ = 0 then yields

(4.9) bnn
∂2v

∂ξ2n

∣∣∣
ξ=0
= −cn

∂v

∂ξn

∣∣∣
ξ=0

,

in view of (4.6).
We now multiply both sides of (4.9) by 2 ∂v

∂ξn

∣∣
ξ=0
and insert the resulting expression

for 2bnn
∂2v
∂ξ2n

∂v
∂ξn

∣∣
ξ=0
into (4.4) thereby obtaining

∂

∂n
|gradu|2

∣∣∣
p
= −2cn

( ∂v

∂ξn

)2∣∣∣
ξ=0

.

Finally, to evaluate cn as defined by (4.8) at ξ = 0, we use (3.11) and (3.12):

cn

∣∣∣
ξ=0
=

n∑

i=1

∂2ξn
∂x2i

∣∣∣
ξ=0
= −

n−1∑

i=1

gξiξi(0, . . . , 0).

Therefore

∂

∂n
|gradu|2

∣∣∣
p
= 2

(n−1∑

i=1

gξiξi(0, . . . , 0)

)( ∂v

∂ξn

)2∣∣∣
ξ=0

� 0

because of the mean curvature hypothesis (1.6). This proves the desired result (4.1)
and completes the proof of Theorem 1.1.
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Section 5

In this section we will sketch the construction of an example showing that the

mean curvature condition (1.6) is required to establish the estimate (1.7).

Our example will be constructed with Ω in �2 , in which case (1.6) just amounts
to a convexity condition. Accordingly, we seek our example so that Ω is some simple

non-convex set in �2 ; and such Ω’s are furnished by the circular sectors Sα whose
polar coordinate description is

Sα = {(r, θ) : 0 < r < 1, 0 < θ < α}

provided that the central angle α > �. (These Sα’s will not quite do for our example

because their boundaries are not C3; however, the example that we will ultimately
devise will be based on a “smoothed out” version of S 3�

2
.)

Next, we construct solutions of the heat equation in Sα × (0,∞) with the aid of
the Bessel functions of index p:

(5.1) Jp(s) =
∞∑

m=0

(−1)m
m!Γ(p+m+ 1)

(s
2

)2m+p

.

Because of the differential equation

s2J ′′p (s) + sJ
′
p(s) + (s

2 − p2)Jp(s) = 0

satisfied by Jp(s), it is easily verified that the functions

(5.2) g(r, θ) = Jn�
α
(λr) sin

(n�θ
α

)
, n = 1, 2, . . .

are solutions of

(5.3) ∆g = −λ2g

for all r > 0 and all θ ∈ (−∞,∞). In particular g(r, θ) satisfies this equation inside
Sα and vanishes on the boundary of Sα if λ is a zero of Jn�

α
(s); i.e. Jn�

α
(λ) = 0.

Now consider the circular sector S 3�
2
with central angle 3�2 , and let µ and ν denote

any pair of distinct zeros for the function J 2
3
(s). It follows from the above, that for

any choice of a and b, the function

(5.4) u =
[
aJ 2

3
(µr)e−µ2t + bJ 2

3
(νr)e−ν2t

]
sin

(2
3
θ
)
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will be a solution of the heat equation in S 3�
2
×(0,∞), which vanishes on ∂S 3�

2
×(0,∞)

and which takes on the initial values

(5.5) f =
[
aJ 2

3
(µr) + bJ 2

3
(νr)

]
sin

(2
3
θ
)

in S 3�
2
.

The function f is clearly continuous in the closure of S 3�
2
and vanishes on its

boundary. In regard to its differentiabilty properties, an examination of the series

representing f :

f =
∞∑

m=0

(−1)m
m!Γ(23 +m+ 1)

[
a
(µ
2

)2m+ 23
+ b

(ν
2

)2m+ 23 ]
r2m+

2
3 sin

(2
3
θ
)

reveals that, although every term with m > 0 is C1 in the closure of S 3�
2
, in general,

this is not so for the term corresponding to m = 0 because

(5.6)
∣∣∣grad

[
r
2
3 sin

(2
3
θ
)]∣∣∣

2
=

(2
3

)2
r−

2
3 →∞ as r ↓ 0.

Consequently, f will not be in C1(S 3�
2
) unless the term corresponding to m = 0 does

not appear; and this will be the case if the bracketed factor in that term vanishes:

(5.7) a
(µ
2

) 2
3
+ b

(ν
2

) 2
3
= 0.

We now choose a and b in accordance with this condition, thus assuring that the
resulting function f is in C1(S 3�

2
) and vanishes on ∂S 3�

2
. Nevertheless, the solution

u given by (5.4) of the initial boundary value problem (1.4) which is generated by
this initial data f , does not have a bounded gradient in S 3�

2
for fixed t > 0. Again,

this follows from a series representation, namely

u =
∞∑

m=0

(−1)m
m!Γ(23 +m+ 1)

[
a
(µ
2

)2m+ 23
e−µ2t + b

(ν
2

)2m+ 23
e−ν2t

]
r2m+

2
3 sin

(2
3
θ
)
.

Just as in the series for f , all the terms with m > 0 are in C1(S 3�
2
) (for fixed t > 0)

and the series converges so rapidly that the sum of all these terms is also in C1(S 3�
2
).

Only the term corresponding to m = 0 fails to be in C1(S 3�
2
); in fact its gradient

in S 3�
2
is unbounded on account of (5.6). Moreover, unlike the situation for f , this

term actually appears in the series because the corresponding bracketed factor here
does not vanish:

(5.8) a
(µ
2

) 2
3
e−µ2t + b

(ν
2

) 2
3
e−ν2t �= 0 for t > 0.
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It does not vanish because functions of t of the form on the left of (5.8) vanish at

most for only one value of t ∈ (−∞,+∞), and in view of (5.7) it already vanishes at
t = 0.
In summary then we have constructed a solution u of (1.4) in S 3�

2
× (0,∞) whose

gradient is unbounded for any t > 0, even though the initial function f meets all the
requirements of Theorem 1.1. This does not yet provide us with the desired example

showing the necessity of the mean curvature condition (1.6), because the underlying
domain S 3�

2
does not have a C3 boundary as assumed in the theorem. However, we

can produce such an example based on the considerations above, by means of an
appropriate approximation procedure which we describe without proof.

First, we approximate S 3�
2
by a sequence of expanding domains Ωn ⊂ S 3�

2
, with

C∞ boundaries and which “converge” to S 3�
2
in the set theoretic sense:

(5.9)
∞⋃

n=1

Ωn = S 3�
2
.

At the same time, by multiplying f by suitable cut-off functions which vanish near

∂Ω, we can construct a sequence of functions {fn} with fn ∈ C1(Ωn), vanishing on
∂Ωn, and converging to f in the sense that

(5.10) sup
Ωn

|fn − f | → 0 as n→∞;

while

(5.11) gradfn → grad f as n→∞, pointwise in Ω

and boundedly, meaning that

(5.12) sup
Ωn

|grad fn| � B for all n

and some number B (for B we can take a suitable constant multiple of sup
Ω

|gradf |).

Next, consider the solutions un in Ωn × (0,∞) of (1.4) generated by the initial
data fn. Because of the convergence (5.9) of Ωn to Ω and the convergence (5.10)
of fn to f , the solutions un converge to the solution u in S 3�

2
× (0,∞) constructed

above:
un → u as n→∞,

pointwise and boundedly in S 3�
2
× (0,∞). In turn this implies that for the gradients

of the un’s we have

(5.13) gradun → gradu as n→∞,
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pointwise in S 3�
2
× (0,∞).

Suppose now that we had an estimate of the form (1.7) holding without assuming
the curvature condition (1.6) but only assuming that ∂Ω is C3 and that f ∈ C1(Ω)
with f vanishing on ∂Ω. Then that estimate would hold for the un’s generated by

the fn’s:

(5.14) |gradun| � sup
Ωn

|grad fn|

in Ωn × (0,∞). In view of (5.12) this would imply that

|gradun| � B in Ωn × (0,∞), for all n.

Sending n→∞, we would then obtain, because of (5.13),

|gradu| � B in S 3�
2
× (0,∞).

But this is a contradiction, since we known that the gradient of the function u
constructed above is not bounded in S 3�

2
× (0,∞). It follows that the estimate (5.14)

cannot hold for all the functions un; and so we will have arrived at our desired
example.
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