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N. Parhi, Seshadev Pardi, Berhampur

(Received October 13, 1995)

Abstract. In this paper, oscillation and asymptotic behaviour of solutions of

y′′′ + a(t)y′′ + b(t)y′ + c(t)y = 0

have been studied under suitable assumptions on the coefficient functions a, b, c ∈ C([σ,∞),
�), σ ∈ �, such that a(t) � 0, b(t) � 0 and c(t) < 0.

1. In this paper we study the oscillatory and asymptotic behaviour of solutions of

(1.1) y′′′ + a(t)y′′ + b(t)y′ + c(t)y = 0,

where a ∈ C2
(
[σ,∞),�

)
, b ∈ C1

(
[σ,∞),�

)
, c ∈ C

(
[σ,∞),�

)
and σ ∈ � is such that

a(t) � 0, b(t) � 0 and c(t) < 0. Eq. (1.1) may be written as

(1.2)
(
r(t)y′′

)′
+ q(t)y′ + p(t)y = 0,

where r(t) = exp
( ∫ t

σ
a(s) ds

)
, q(t) = b(t)r(t) and p(t) = c(t)r(t). When a(t), b(t),

c(t) are constants, then Eq. (1.1) takes the form

(1.3) y′′′ + ay′′ + by′ + cy = 0,

where a � 0, b � 0 and c < 0.

The motivation for the present work has come from certain observations of oscil-
latory and asymptotic behaviour of solutions of (1.3). The characteristic equation of
(1.3) is

(1.4) m3 + am2 + bm+ c = 0.
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The transformation n = m+ a
3 transforms (1.4) to

(1.5) n3 + 3Hn+G = 0,

where H = 1
3

(
b − a2

3

)
and G = c − ab

3 +
2a3

27 . We may notice that H � 0 and
−G− 2(−H)3/2 > 0 if and only if

(1.6) −2a
3

27
+

ab

3
− c− 2

3
√
3

(a2

3
− b

)3/2
> 0.

Since G2+4H3 =
(
−G− 2(−H)3/2

)(
−G+2(−H)3/2

)
, the inequality implies that

G < 0 and hence G2+4H3 > 0. Thus (1.5) has two imaginary roots and a real root.

Consequently, (1.4) has two imaginary roots, say,
(
α− a

3

)
+ iβ and

(
α− a

3

)
− iβ and

a real root γ − a
3 , where α + iβ, α − iβ and γ are the roots of (1.5). Since c < 0,

we have γ − a
3 > 0. Thus (1.3) admits oscillatory solutions. On the other hand, if

(1.3) admits an oscillatory solution, then (1.4) has two imaginary roots and a real

root. This real root is positive because c < 0. Thus (1.5) has two imaginary roots
and a positive root. Consequently, G2 + 4H3 > 0 and G < 0. This in turn implies

that (1.6) holds. Hence (1.3) admits an oscillatory solution if and only if (1.6) holds.
Further, if (1.6) holds, then a basis of the solution space of (1.3) is

(1.7)
{
e(α−

a
3 )t cosβt, e(α−

a
3 )t sinβt, e(γ−

a
3 )t

}
.

If y(t) = λ1e(α−
a
3 )t cosβt + λ2e(α−

a
3 )t sinβt + λ3e(γ−

a
3 )t, where λ1, λ2, λ3 are reals

such that λ3 �= 0, then y(t) is nonoscillatory because γ − a
3 > 0, (α− a

3 ) + iβ + (α−
a
3 )− iβ + γ − a

3 = −a implies that α < 0 and we may write

y(t) = e(γ−
a
3 )t

[
(λ1 cosβt+ λ2 sinβt)e(α−γ)t + λ3

]
.

Hence, if (1.6) holds, then the oscillatory solutions of (1.3) form a two-dimensional
subspace of the solution space of (1.3). Further, these oscillatory solutions of (1.3)

tend to zero as t → ∞ because (α − a
3 ) < 0. Since e(α−

a
3 )t cosβt and e(α−

a
3 )t sinβt

are solutions of

z′′ − 2(α− a

3
)z′ +

((
α− a

3

)2
+ β2

)
z = 0,

it follows from Sturm’s separation theorem that the zeros of any two linearly inde-

pendent oscillatory solutions of (1.3) separate on [σ,∞]. Moreover, if (1.3) admits
an oscillatory solution and if y(t) is a nonoscillatory solution of (1.3), then we may

write

y(t) = e(α−
a
3 )t(µ1 cosβt+ µ2 sinβt) + µ3e(γ−

a
3 )t,
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where µ1, µ2, µ3 are reals such that µ3 �= 0. As
∣∣y(t)

∣∣ � |µ3|e(γ−
a
3 )t −

(
|µ1|+ |µ2|

)
e(α−

a
3 )t,

then
∣∣y(t)

∣∣ →∞ as t →∞. Conversely, if every nonoscillatory solution of (1.3) tends
to ±∞ as t → ∞, then (1.3) admits an oscillatory solution. Indeed, if all solutions
of (1.3) are non-oscillatory, then all roots of (1.4) are positive. Hence the sum of the
product of these roots taken two at a time is positive. But Eq. (1.4) implies that

this sum = b � 0, a contradiction.
The above observations concerning the behaviour of solutions of Eq. (1.3) may be

put in the form of a proposition.

Proposition. Eq. (1.3) admits an oscillatory solution if and only if (1.6) holds. If
(1.6) holds, then oscillatory solutions of (1.3) form a two-dimensional subspace of the
solution space of (1.3), the zeros of any two linearly independent oscillatory solutions

of (1.3) separate each other on [σ,∞) and these oscillatory solutions tend to zero
as t → ∞. Eq. (1.3) admits an oscillatory solution if and only if all nonoscillatory

solutions of (1.3) tend to ±∞ as t → ∞. Further, (1.3) admits a positive solution
which tends to ∞ as t → ∞ and whose successive derivatives are positive and tend
to ∞ as t →∞.

The object of this paper is to generalize, as far as possible, the above proposition
to Eq. (1.1). In [1], Ahmad and Lazer considered a similar problem for (1.1) with

a(t) � 0, b(t) � 0, c(t) � 0. The open question stated by them was answered by
Parhi and Das [8] following the techniques used in [5].

We may recall that a function y ∈ C
(
[σ,∞),�

)
is said to be oscillatory if it has

arbitrarily large zeros in [σ,∞); otherwise, it is said to be nonoscillatory. Eq. (1.1) is
said to be oscillatory if it has an oscillatory solution, and it is said to be nonoscillatory
if all its solutions are nonoscillatory.

Following Hanan [4], Eq. (1.1) is said to be of Class I or CI if any solution y(t)
of the equation with y(t0) = y′(t0) = 0, y′′(t0) > 0, t0 > σ, satisfies y(t) > 0 for
σ � t < t0. It is said to be of Class II of CII if any solution y(t) of the equation with

y(t0) = y′(t0) = 0, y′′(t0) > 0, t0 � σ, satisfies y(t) > 0 for t > t0.

The transformation y = z exp
(
− 1
3

∫
a(t) dt

)
transforms Eq. (1.1) to the equation

(1.8) z′′′ + 2A(t)z′ +
(
A′(t) +B(t)

)
z = 0,

where A(t) = 1
2

(
b(t)− a′(t)− 1

3a
2(t)

)
and

B(t) =
2
27

a3(t) +
1
6
a′′(t) +

1
3
a(t)a′(t)− 1

3
a(t)b(t) − 1

2
b′(t) + c(t).
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2. In this section we obtain sufficient conditions for oscillation of Eq. (1.1). The
adjoint of (1.1) is given by

(2.1) z′′′ − a(t)z′′ +
(
b(t)− 2a′(t)

)
z′ −

(
c(t)− b′(t) + a′′(t)

)
z = 0.

The following theorem due to Parhi and Das [7] is needed in the sequel.

Theorem 2.1. If a(t) � 0, b(t) � 0, c(t) > 0, b(t)− a′(t) � 0 and
∫ ∞

σ

[
2a3(t)
27

− a(t)b(t)
3

+ c(t)− 2

3
√
3

(a2(t)
3

− b(t) + a′(t)
)3/2]

dt =∞,

then Eq. (1.1) is oscillatory.

Lemma 2.2. If a(t)b(t) + b′(t)− c(t) � 0, then Eq. (1.1) is of Class I.

�����. Let y(t) be a solution of (1.1) with y(t0) = y′(t0) = 0 and y′′(t0) > 0,

where t0 > σ. From the continuity of y′′(t) it follows that there exists a δ, 0 < δ <

t0 − σ, such that y′′(t) > 0 for t ∈ [t0 − δ, t0]. We claim that y′′(t) > 0 for t ∈ [σ, t0].

If not, there exists a t1 ∈ [σ, t0− δ] such that y′′(t1) = 0 and y′′(t) > 0 for t ∈ (t1, t0].
Thus y′(t) < 0 and y(t) > 0 for t ∈ (t1, t0). Integrating (1.2) from t1 to t0, we obtain

0 < r(t0)y
′′(t0) = q(t1)y(t1) +

∫ t0

t1

(
q′(t)− p(t)

)
y(t) dt < 0,

since q′(t)−p(t) � 0, a contradiction. Hence our claim holds. Consequently, y(t) > 0
and y′(t) < 0 for t ∈ [σ, t0).

The proof of the lemma is complete. �

Lemma 2.3. If y(t) is a solution of (1.1) with y(t0) � 0, y′(t0) � 0 and y′′(t0) > 0
for some t0 � σ, then y(t) > 0, y′(t) > 0 and y′′(t) > 0 for t > t0. Similarly, if

y(t0) � 0, y′(t0) � 0 and y′′(t0) < 0 for t0 � σ, then y(t) < 0, y′(t) < 0 and
y′′(t) < 0 for t > t0.

�����. Let y(t) be a solution of (1.1) with y(t0) � 0, y′(t0) � 0 and y′′(t0) > 0
for t0 � σ. So there exists a δ > 0 such that y′′(t) > 0 for t ∈ [t0, t0 + δ). If there is

a t1 � t0 + δ such that y′′(t1) = 0 and y′′(t) > 0 for t0 � t < t1, then y′(t) > 0 and
y(t) > 0 for t0 < t � t1. Multiplying Eq. (1.2) by y′(t) and integrating the resulting
identity from t0 to t1, we obtain

0 <

∫ t1

t0

r(t)
(
y′′(t)

)2
dt =

∫ t1

t0

q(t)
(
y′(t)

)2
dt+

∫ t1

t0

p(t)y(t)y′(t) dt < 0,

a contradiction. Hence y′′(t) > 0 for t � t0. Then y(t) > 0 and y′(t) > 0 for t > t0.

The other assertion follows similarly.
Hence the lemma is proved. �
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Corollary 2.4. Eq. (1.1) is of Class II.

Theorem 2.5. Eq. (1.1) admits a positive increasing solution which tends to ∞
as t → ∞. Further, if

∫∞
σ

dt
r(t) = ∞, then the derivative of the solution tends to ∞

as t →∞.

�����. If y(t) is a solution of (1.1) with y(t0) � 0, y′(t0) � 0 and y′′(t0) > 0,
then Lemma 2.3 implies that lim

t→∞
y(t) =∞. Since y(t) > 0 and y′(t) > 0 for t > t0,

then r(t)y′′(t) is increasing in [t0,∞). Thus
∫∞

σ
dt

r(t) =∞ implies that y′(t)→∞ as
t →∞. This completes the proof of the theorem. �

Theorem 2.6. If b(t)− a′(t) � 0, b(t)− 2a′(t) � 0, c(t)− b′(t) + a′′(t) < 0 and
∫ ∞

σ

[
− 2a

3(t)
27

+
a(t)b(t)
3

− c(t) + b′(t)− a′′(t)(2.2)

− 2a(t)a
′(t)
3

− 2

3
√
3

(a2(t)
3

− b(t) + a′(t)
)3/2]

dt =∞,

then (1.1) is oscillatory.

�����. It follows from Theorem 2.1 that Eq. (2.1) is oscillatory. Since (1.1) is
of CII and its adjoint (2.1) is oscillatory, then (1.1) is oscillatory (see theorem 4.7,

Hanan [4]).
The proof of the theorem is complete. �

Remark. We may note that (2.2) reduces to (1.6) if a(t), b(t), c(t) are constants.

A theorem similar to Theorem 2.6 is given in [3] (see Theorem 2.14, p. 39). How-
ever, these theorems are not comparable. From the above Remark it is clear that

Theorem 2.6 is a generalization of the first part of Proposition in Section 1.1. This
cannot be claimed as concerns Theorem 2.14 in [3].

3. This section deals with oscillatory and asymptotic behaviour of solutions of
Eq. (1.1).

Lemma 3.1. If y(t) is a nonoscillatory solution of (1.1), then there exists a t0 � σ

such that either y(t)y′(t) < 0 or y(t)y′(t) > 0 for t � t0.

�����. Without any loss of generality we may assume that y(t) > 0 for
t � T � σ. Let t1 and t2(T � t1 < t2) be two consecutive zeros of y′(t) such that

y′(t) > 0 for t ∈ (t1, t2). Multiplying (1.1) by y′(t) and integrating the resulting
identity from t1 to t2, we obtain

0 <

∫ t2

t1

r(t)
(
y′′(t)

)2
dt =

∫ t2

t1

q(t)
(
y′(t)

)2
dt+

∫ t2

t1

p(t)y(t)y′(t) dt < 0,
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a contradiction. Hence there exists a t0 � T such that y′(t) > 0 or < 0 for t � t0.

This completes the proof of the lemma. �

Theorem 3.2. If (1.1) has an oscillatory solution, then every nonoscillatory
solution y(t) of (1.1) satisfies the following conditions:

y(t)y′(t) �= 0, sgn y(t) = sgn y′(t), t � t0 � σ

and lim
t→∞

∣∣y(t)
∣∣ = ∞. If, in addition,

∫∞
σ p(t) dt = −∞, then y(t)y′(t)y′′(t) �= 0 and

sgn y(t) = sgn y′(t) = sgn y′′(t), t � T0 � t0.

�����. Let y(t) > 0 for t � T � σ. Let z(t) be an oscillatory solution of

(1.1). We claim that W (t) = y(t)z′(t) − y′(t)z(t) must vanish for some value of
t ∈ [T,∞). If not, then W (t) �= 0 for t ∈ [T,∞). Setting u(t) = z(t)/y(t), we obtain

u′(t) = W (t)/y2(t) �= 0 for t � T. If t1 and t2(T � t1 � t2) are consecutive zeros of
z(t), then u(t1) = 0, u(t2) = 0 and u(t) �= 0 for t ∈ (t1, t2). This is impossible since
u′(t) �= 0 for t � T. Thus our claim holds. Let W (a) = 0 for some a ∈ [T,∞). It is
possible to obtain c1 and c2, not both zero, such that

c1y(a) + c2z(a) = 0,

c1y
′(a) + c2z

′(a) = 0

and

c1y
′′(a) + c2z

′′(a) �= 0,

because y(t) and z(t) are linearly independent on [T,∞). Without any loss of gen-
erality we may assume that c1y

′′(a) + c2z
′′(a) > 0. Setting v(t) = c1y(t) + c2z(t),

we notice that v(t) is a solution of (1.1) with v(a) = 0, v′(a) = 0 and v′′(a) > 0.
Proceeding as in Lemma 2.3, one may obtain v(t)→∞ as t →∞.

From Lemma 3.1, it follows that y′(t) > 0 or < 0 for t � t0 � T. If y′(t) < 0 for
t � t0, then lim

t→∞
y(t) = λ exists, where 0 � λ < ∞. Clearly, c2 = 0 implies that

lim
t→∞

v(t) = c1λ < ∞, a contradiction. Thus c2 �= 0. Further, since lim
t→∞

c2z(t) =

lim
t→∞

v(t) − c1 lim
t→∞

y(t) = ∞, then lim
t→∞

z(t) = ∞ or −∞ provided c2 > 0 or < 0,

respectively. In either case we obtain a contradiction since z(t) is oscillatory. Hence

y′(t) > 0 for t � t0. Clearly, c1 �= 0 because c1 = 0 implies that c2 �= 0 and v(t) =
c2z(t) is oscillatory, a contradiction. If c2 = 0, then lim

t→∞
c1y(t) = lim

t→∞
v(t) = ∞.

As c1 < 0 implies that y(t) < 0 for large t, then c1 > 0 and hence lim
t→∞

y(t) = ∞.

Suppose that c2 �= 0. If lim
t→∞

y(t) exists and its value is finite, then lim z(t) = ±∞,
contradicting the oscillatory nature of z(t). Thus lim

t→∞
y(t) =∞.
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Suppose that
∫∞

σ
p(t) dt = −∞. Since y(t) > 0 and y′(t) > 0 for t � t0, then

r(t)y′′(t) is increasing and hence y′′(t) has a constant sign for t � T0 � t0. If y′′(t) < 0
for t � T0, then integrating (1.1) from T0 to t we obtain

r(t)y′′(t) � r(T0)y′′(T0)−
∫ t

T0

p(s)y(s) ds

� r(T0)y′′(T0)− y(T0)
∫ t

T0

p(s) ds.

Thus y′′(t) > 0 for large t, a contradiction. Hence y′′(t) > 0 for t � T0 and the proof
of the theorem is complete. �

Corollary 3.3. If (1.1) has an oscillatory solution, then every bounded solution
of (1.1) oscillates.

Theorem 3.4. Let
∫∞

σ
p(t) dt = −∞. Then Eq. (1.1) has an oscillatory solution

if and only if every nonoscillatory solution y(t) of (1.1) satisfies the conditions

y(t)y′(t)y′′(t) �= 0, sgn y(t) = sgn y′(t) = sgn y′′(t),(3.1)

t � T0 � σ and lim
t→∞

∣∣y(t)
∣∣ =∞.

�����. Necessity follows from Theorem 3.2. For sufficiency, we assume that
(3.1) holds for every nonoscillatory solution y(t) of (1.1). We shall show that (1.1)

admits an oscillatory solution. The proof is similar to that of Theorem 1 in [1],
however, it is given here for completeness.

Let z0, z1, z2 be solutions of (1.1) with initial conditions

z
(j)
k (σ) =

{
0, j �= k

1, j = k

j, k = 0, 1, 2. Clearly, z0, z1, z2 are linearly independent. For each positive integer

n > σ it is possible to determine real numbers a0n, a2n, b1n and b2n such that

a0nz0(n) + a2nz2(n) = 0,(3.2)

b1nz1(n) + b2nz2(n) = 0

and a20n + a22n = 1, b
2
1n + b22n = 1. Define, for each positive integer n > σ,

un = a0nz0 + a2nz2,

vn = b1nz1 + b2nz2.
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Thus un and vn are solutions of (1.1) with un(n) = 0 and vn(n) = 0 by (3.2). Clearly,

there exists a sequence 〈nj〉 of positive integers > σ such that a0nj → a0, a2nj → a2,
b1nj → b1 and b2nj → b2 as nj →∞ and hence a20 + a22 = 1 and b21 + b22 = 1. Setting
u = a0z0 + a2z2 and v = b1z1 + b2z2, we notice that u and v are nontrivial solutions

of (1.1) and
lim

nj→∞
u(k)nj
= u(k), lim

nj→∞
v(k)nj
= v(k),

k = 0, 1, 2, uniformly on any compact subinterval of [σ,∞). We show that both u

and v are oscillatory solutions of (1.1). If u is nonoscillatory, then there exists a

T0 � σ such that

u(t)u′(t)u′′(t) �= 0, sgnu(t) = sgnu′(t) = sgnu′′(t), t � T0

and lim
t→∞

∣∣u(t)
∣∣ =∞. In particular,

u(T0)u′(T0)u′′(T0) �= 0, sgnu(T0) = sgnu′(T0) = sgnu′′(T0).

Hence there exists a positive integer N such that

unj (T0)u
′
nj
(T0)u′′nj

(T0) �= 0, sgnunj (T0) = sgnu′nj
(T0) = sgnu′′nj

(T0),

for nj � N. Lemma 2.3 yields that unj(t) �= 0 for nj � N and t > T0. Thus

unj (nj) �= 0 for all nj > max{N, T0}. This contradicts the fact that un(n) = 0 for
every positive integer n > σ. Hence u(t) is oscillatory. Similarly, it may be shown

that v(t) is oscillatory.
Thus the theorem is proved. �

Remark. The assumption
∫∞

σ p(t) dt = −∞ is not needed in the proof of the
sufficiency part of theorem 3.4. Moreover, this condition is satisfied if a, b and c are

constants.

Theorem 3.5. Let
∫∞

σ
p(t) dt = −∞. If (1.1) admits an oscillatory solution, then

there exist two linearly independent oscillatory solutions u and v of (1.1) such that
any nontrivial linear combination of u and v is also oscillatory and the zeros of u

and v separate.

The proof is similar to that of Theorem 2 due to Ahmad and Lazer [1] and hence

is omitted.

Remark. Theorem 3.4 and 3.5 are similar to theorems 6.23 and 6.25, respectively,
in [3]. While

∫∞
σ

p(t) dt = −∞ is assumed in the former theorems, the disconjugacy
of y′′ + a(t)y′ + b(t)y = 0 is assumed in the latter ones. The proof of Theorems 6.23
and 6.25 may be found in Gera [2].
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Theorem 3.6. Suppose that q′(t) − p(t) � 0 but �≡ 0 in any neighbourhood of
infinity. Then Eq. (1.1) admits a solution y(t) with the following properties:

y(t)y′(t)y′′(t) �= 0, sgn y(t) = sgn y′′(t) �= sgn y′(t), t � σ,

lim
t→∞

y′(t) = 0 and lim
t→∞

y(t) = λ, −∞ < λ < ∞.

If, in addition,
∫∞

σ

(
q′(t) − p(t)

)
dt = −∞ and lim

t→∞
q(t) = k, −∞ < k < 0, then

lim
t→∞

y(t) = 0.

�����. For every positive integer n > σ, let yn(t) be a solution of (1.1) with

initial conditions
yn(n) = 0, y′n(n) = 0, y′′n(n) > 0.

Since q′(t) − p(t) =
(
a(t)b(t) + b′(t) − c(t)

)
r(t), Lemma 2.2 yields that yn(t) > 0,

y′n(t) < 0 and y′′n(t) > 0 for t ∈ [σ, n). We may write

yn(t) = c1nu1(t) + c2nu2(t) + c3nu3(t), t ∈ [σ, n),

where c21n+c22n+c23n = 1 and {u1, u2, u3} is a basis of the solution space of (1.1). The
sequence 〈cin〉, i = 1, 2, 3, has a convergent subsequence 〈cinj 〉 such that cinj → ci

and nj → ∞. Hence c21 + c22 + c23 = 1. Setting y(t) = c1u1(t) + c2u2(t) + c3u3(t), we
see that y(t) is a solution of (1.1) and

lim
nj→∞

y(k)nj
(t) = y(k)(t),

k = 0, 1, 2, uniformly on every compact subinterval of [σ,∞). Thus y(t) > 0, y′(t) < 0
and y′′(t) > 0 for t � σ. As lim

t→∞
y′(t) = L, −∞ < L < 0, implies that y(t) < 0 for

large t, we have lim
t→∞

y′(t) = 0. Clearly, lim
t→∞

y(t) = λ, 0 � λ < ∞.

If lim
t→∞

y(t) = λ, λ > 0, then integrating (1.1) from σ to t and using the additional

conditions we get

0 < r(t)y′′(t) = r(σ)y′′(σ)− q(t)y(t) + q(σ)y(σ) +
∫ t

σ

(
q′(s)− p(s)

)
y(s) ds

� r(σ)y′′(σ)− q(t)y(t) + q(σ)y(σ) + y(t)
∫ t

σ

(
q′(s)− p(s)

)
ds < 0

for large t, a contradiction. Hence the theorem is proved. �

Theorem 3.7. If q′(t)− p(t) � 0 but �≡ 0 in any neighbourhood of infinity, then
(1.1) is nonoscillatory.
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�����. If possible, let (1.1) admit an oscillatory solution. It follows from

Theorem 3.2 that every nonoscillatory solution y(t) of (1.1) has the property
∣∣y(t)

∣∣ →
∞ as t →∞. On the other hand, Theorem 3.6 yields that (1.1) has a nonoscillatory
solution u(t) such that lim

t→∞
u(t) = λ, −∞ < λ < ∞. This contradiction completes

the proof of the theorem. �

Remark. Theorem 3.7 is the same as Theorem 2.1 in [6]. However, our method
of proof is quite different.

Theorem 3.8. Suppose that q′(t)− p(t) � 0 and
∫∞

σ

(
q′(t)− p(t)

)
dt =∞. Then

Eq. (1.1) has an oscillatory solution if and only if every nonoscillatory solution y(t)
of (1.1) satisfies the conditions (3.1).

�����. The sufficiency part is similar to that of Theorem 3.4. For necessity,

one may proceed as in Theorem 3.2 to obtain y(t)y′(t) �= 0, sgn y(t) = sgn y′(t) for
t � t0 � σ and lim

t→∞

∣∣y(t)
∣∣ = ∞. In order to be definite about the sign of y′′(t), we

may assume that y(t) > 0 for t � t0. Hence y′(t) > 0 for t � t0. Since r(t)y′′(t) is
increasing, we have y′′(t) > 0 or < 0 for t � T0 � t0. If y′′(t) < 0 for t � T0, then

integration of (1.2) from T0 to t yields

r(t)y′′(t) � r(T0)y′′(T0) + q(T0)y(T0) +
∫ t

T0

(
q′(s)− p(s)

)
y(s) ds

� r(T0)y′′(T0) + q(T0)y(T0) + y(T0)
∫ t

T0

(
q′(s)− p(s)

)
ds.

Hence y′′(t) > 0 for large t. This contradiction completes the proof of the theorem.
�

Example. Consider

y′′′ +
1
t2

y′′ −
(
1 +
2
t3
− 1
3t4

)
y′ −

(
et +

2

3
√
3

)
y = 0.

Clearly, the conditions of Theorems 2.6, 3.4 and 3.8 are satisfied. Hence the given
equation admits an oscillatory solution and all nonoscillatory solutions of the equa-

tion tend to ∞ as t →∞.

Theorem 3.9. Suppose that q′(t) − p(t) � 0,
∫∞

σ

(
q′(t) − p(t)

)
dt = −∞ and

lim
t→∞

q(t) = k, −∞ < k < 0. Then every solution y(t) of (1.1) satisfies either

y(t)y′(t)y′′(t) �= 0, sgn y(t) = sgn y′(t) �= sgn y′′(t), t � t0 � σ
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or

y(t)y′(t)y′′(t) �= 0, sgn y(t) = sgn y′′(t) �= sgn y′(t), t � t0 � σ,

lim
t→∞

y(t) = 0 and lim
t→∞

y′(t) = 0.

�����. Let y(t) be any solution of (1.1). From Theorem 3.7, it follows that

Eq. (1.1) is nonoscillatory and hence y(t) is nonoscillatory. We may assume, without
any loss of generality, that y(t) > 0 for t � T � σ. Lemma 3.1 yields that y′(t) > 0

or < 0 for t � T0 � T. If y′(t) > 0 for t � T0, then r(t)y′′(t) is increasing and hence
y′′(t) > 0 or < 0 for large t. As y′′(t) > 0 for large t yields, due to Theorem 3.4, that

Eq. (1.1) has an oscillatory solution, a contradiction, we conclude that y′′(t) < 0 for
t � t0 � T0. Thus we have sgn y(t) = sgn y′(t) �= sgn y′′(t) for t � t0.

Next suppose that y′(t) < 0 for t � T0. If possible, let y′′(t) be oscillatory with a
sequence of zeros 〈tn〉 such that T0 < t1 < t2 < . . . and tn →∞ as n →∞. Clearly,

lim
t→∞

y(t) = α exists. If α = 0, then integrating (1.1) form t1 to tn we obtain

0 = r(tn)y′′(tn)− r(t1)y′′(t1) + q(tn)y(tn)− q(t1)y(t1) +
∫ tn

t1

(
p(t)− q′(t)

)
y(t) dt

= q(tn)y(tn)− q(t1)y(t1) +
∫ tn

t1

(
p(t)− q′(t)

)
y(t) dt.

If the zeros of y′′ and q coincide, then we get a contradiction 0 > 0 form the above
identity. Otherwise, taking limit in

0 > q(tn)y(tn)− q(t1)y(t1)

as n → ∞, we obtain 0 � −q(t1)y(t1) > 0, a contradiction. If α > 0, then taking
limit as n →∞ in

0 � q(tn)y(tn)− q(t1)y(t1) + y(tn)
∫ tn

t1

(
p(t)− q′(t)

)
dt

we get a contradiction again. Thus y′′(t) > 0 or < 0 for large t. As y′′(t) < 0 for large
t implies that y(t) < 0 for large t, we have y′′(t) > 0 for t � t0 � T0. If lim

t→∞
y′(t) = λ,

−∞ < λ < 0, then y(t) < 0 for large t. Thus λ = 0. Let α > 0. Integrating (1.1)
from t0 to t we obtain

0 < r(t)y′′(t) = r(t0)y′′(t0)− q(t)y(t) +
∫ t

t0

(
q′(s)− p(s)

)
y(s) ds

� r(t0)y
′′(t0)− q(t)y(t) + y(t)

∫ t

t0

(
q′(s)− p(s)

)
ds
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and hence y′′(t) < 0 for large t, a contradiction. Thus y(t)y′(t)y′′(t) �= 0, sgn y(t) =

sgn y′′(t) �= sgn y′(t), t � t0, lim
t→∞

y(t) = 0 and lim
t→∞

y′(t) = 0.

The proof of the theorem is complete. �

Remark. The following assertions are yet to be established:
(A) If (1.1) admits an oscillatory solution, then (2.2) holds.

(B) If (1.1) admits an oscillatory solution, then all oscillatory solutions of (1.1) tend
to zero as t →∞. Corollary 3.3 provides an indication in this direction.

(C) If (1.1) has an oscillatory solution, then all oscillatory solutions of (1.1) form a
two-dimensional subspace of the solution space of (1.1).

In the conclusion we prove (C) with the assumption of (B).

Theorem 3.10. Suppose that the existence of an oscillatory solution of (1.1)
implies that all oscillatory solutions of (1.1) tend to zero as t → ∞. If

∫∞
σ

p(t) dt =

−∞ and (1.1) admits as oscillatory solution, then all oscillatory solutions of (1.1)
form a two-dimensional subspace of the solution space of (1.1).

�����. It follows from Theorem 3.5 that (1.1) admits two linearly independent
oscillatory solutions u and v whose linear combination is an oscillatory solution of

(1.1). Let y(t) be any oscillatory solution of (1.1). Theorem 2.5 yields that (1.1)
admits a positive solution y0(t) such that y0(t)→∞ as t →∞. Clearly, {u, v, y0} is
a basis of the solution space of (1.1). If possible, let y(t) = c1u(t) + c2v(t) + c3y0(t),
where c1, c2, c3 are reals such that c3 �= 0. Thus y(t) → ∞ or −∞ as t → ∞
provided c3 > 0 or < 0, respectively. In either case we get a contradiction because
y(t) is oscillatory. Thus y(t) can be expressed as linear combination of u and v and

hence the theorem is proved. �
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