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SEQUENTIAL COMPLETENESS OF SUBSPACES OF PRODUCTS

OF TWO CARDINALS

Roman Frič,1 Košice, and Nobuyuki Kemoto, Oita

(Received June 10, 1996)

Abstract. Let κ be a cardinal number with the usual order topology. We prove that all
subspaces of κ2 are weakly sequentially complete and, as a corollary, all subspaces of ω21
are sequentially complete. Moreover we show that a subspace of (ω1 + 1)

2 need not be
sequentially complete, but note that X = A× B is sequentially complete whenever A and
B are subspaces of κ.
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Sequentially complete spaces arise in connection with the extension of sequentially

continuous maps as absolutely sequentially closed spaces [FK]. Since normal spaces
are sequentially complete, it is interesting to compare the normality of subspaces of

products of two cardinals, see [KOT], with the sequential completeness. The results
are described in the abstract.

Throughout the paper, a space means a Hausdorff completely regular topological

space. Denote by C(X) the continuous real-valued functions on a space X . If X is a
subspace of Y , then X is C(X)-embedded in Y if each f ∈ C(X) can be continuously

extended over Y .

Let X be a space. A sequence in X is a function from the set ω of all natural
numbers to X ; it will be denoted by 〈xn : n ∈ ω〉. Let x ∈ X . A sequence 〈xn : n ∈
ω〉 converges to a point x in X if the set {n ∈ ω : xn ∈ V } is cofinite in ω, i.e.
its complement in ω is finite for each neighborhood V of x. A real-valued function

f on X is sequentially continuous if the following implication is true: if a sequence

1Written during the study stay in Japan supported by the Japan Society for the Promotion
of Sciences; partially supported by Grant GA SAV 1230/96.
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〈xn : n ∈ ω〉 converges inX to a point x, then the sequence 〈f(xn) : n ∈ ω〉 converges
in R to f(x). Denote by Cs(X) the set of all sequentially continuous real-valued
functions on X . Obviously C(X) ⊂ Cs(X). In accordance with [Ko], denote by P
the class of all spaces X for which C(X) = Cs(X). If X is sequential (in particular

metrizable), then X ∈ P. But not all spaces in P are sequential [Ko]. Denote by Xs

the underlying set of X carrying the weak topology with respect to Cs(X). Then Xs

is a space and Cs(X) = C(Xs). Observe that a sequence 〈xn : n ∈ ω〉 converges in X

to a point x if and only if it converges in Xs to x. If X is sequentially closed in every

space Y in which it is C(X)-embedded, then X is said to be sequentially complete
(cf. [FK]). For easier reference, we call a space X weakly sequentially complete if

Xs is sequentially complete. We shall abbreviate sequential completeness and weak
sequential completeness to SC and WSC, respectively.

LetX be a space. A sequence 〈xn : n ∈ ω〉 is said to be fundamental if the sequence
〈f(xn) : n ∈ ω〉 converges in R for each f ∈ C(X). For the reader’s convenience, we

recall here the following characterizations of SC spaces (cf. [FK]).

Theorem 0. Let X be a space. Then the following are equivalent.

(1) X is SC.

(2) Each fundamental sequence in X is convergent.

(3) X is sequentially closed in its Čech-Stone compactification βX .

(4) X is sequentially closed in its Hewitt realcompactification υX .

Observe that X is WSC if and only if, for every sequence 〈xn : n ∈ ω〉 in X , if

〈f(xn) : n ∈ ω〉 converges in R for every f ∈ Cs(X), then 〈xn : n ∈ ω〉 converges
in X .

In [F2], the following assertion was proved.

Proposition 1. All normal spaces are SC.

Moreover, it is also well-known that all subspaces of a cardinal κ with the usual

order topology are normal. Therefore we have

Corollary 2. All subspaces of a cardinal κ are SC.

Note that ω21 is normal. But according to [KOT], if A and B are disjoint stationary

sets of ω1, then X = A×B is not normal. So it is natural to ask whether such spaces
are (W)SC or not. Our first result is

Theorem 3. Let κ be a cardinal. Then all subspaces of the square κ2 with the

usual product topology are WSC.
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�����. Assume X ⊂ κ2 and 〈xn : n ∈ ω〉 is a sequence in X such that

〈f(xn) : n ∈ ω〉 converges for each f ∈ Cs(X). We shall show that 〈xn : n ∈ ω〉
converges. By retaking a suitably large κ, we may assume κ is a successor cardinal.
Let α = min{γ < κ : {n ∈ ω : xn ∈ [0, γ]× κ} is infinite} and β = min{δ < κ : {n ∈
ω : xn ∈ [0, α] × [0, δ]} is infinite}. Since κ is a successor cardinal, such α and β

always exist. Then T = {n ∈ ω : xn ∈ [0, α]× [0, β]} is infinite, Tα′ = {n ∈ ω : xn ∈
[0, α′] × [0, β]} is finite for each α′ < α and T β′

= {n ∈ ω : xn ∈ [0, α] × [0, β′]} is
finite for each β′ < β. Consider the function f : X → I defined by

f(x) =

{
0, if x ∈ X ∩ [0, α]× [0, β],
1, otherwise.

Since X ∩ [0, α]× [0, β] is clopen in X , f is continuous. Note that f(xn) = 0 for each

n ∈ T and f(xn) = 1 for each n ∈ ω\T . So, by our assumption, T must be cofinite.
Moreover, since Tα′ and T β′

are finite for each α′ < α and β′ < β and T is cofinite,

〈xn : n ∈ ω〉 converges to 〈α, β〉 in κ2. We shall show that 〈xn : n ∈ ω〉 converges to
〈α, β〉 in X . It suffices to show the next claim.

Claim. 〈α, β〉 ∈ X .

����� �� �����. Assume 〈α, β〉 /∈ X . Put Z = {xn : n ∈ ω} ∩ [0, α]× [0, β],
Z(0) = {xn : n ∈ ω}∩α×β, Z(1) = {xn : n ∈ ω}∩{α}× [0, β] and Z(2) = {xn : n ∈
ω} ∩ [0, α] × {β}. Note that Z = {xn : n ∈ T } and Z is the disjoint union of Z(0),

Z(1) and Z(2). Moreover, put T (i) = {n ∈ T : xn ∈ Z(i)} for each i ∈ 3 = {0, 1, 2}.
Then T is also the disjoint union of T (0), T (1) and T (2).

Assume Z is finite. Then, since T is infinite, there is z ∈ Z such that {n ∈
T : xn = z} is infinite, say z = 〈γ, δ〉. By the minimality of α and β, we have γ = α

and δ = β. Thus X ⊃ Z � z = 〈γ, δ〉 = 〈α, β〉, which contradicts the assumption
〈α, β〉 /∈ X . This shows Z is an infinite subset of X ∩ [0, α]× [0, β].

Fact 1. Z is closed discrete in X .

����� �� 	�
� �. Let 〈γ, δ〉 ∈ X . It suffices to find a neighborhood U of
〈γ, δ〉 such that U ∩ Z is finite.

If 〈γ, δ〉 ∈ U = X\[0, α] × [0, β], then U is a neighborhood with U ∩ Z = ∅. So
assume 〈γ, δ〉 ∈ X ∩ [0, α] × [0, β]. Then by our assumption 〈α, β〉 /∈ X , we have
γ < α or δ < β. If γ < α, then, by the minimality of α, U = X ∩ [0, γ] × [0, β]
is a neighborhood of 〈γ, δ〉 such that U ∩ Z is finite. Similarly, if δ < β, then
U = X ∩ [0, α]× [0, δ] is a desired one. This completes the proof of Fact 1. �
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To prove Claim, we consider three cases. In all cases, we shall derive contradictions.

Case 1. cf α � ω1 or α is a successor ordinal, where cf α denotes the cofinality
of α.

First assume cf α � ω1. Since Z∩α×κ is countable and cf α � ω1, there is α′ < α

such that Z ∩ α′ × κ = Z ∩ α× κ. Then by the minimality of α, Z ∩ α× κ must be

finite. Next assume α is a successor ordinal. Then of course, by the minimality of α,
Z ∩ α × κ is also finite. Thus in both cases, by the minimality of β and the infinity

of Z, Z(1) is infinite.

Put Y = X ∩{α}× [0, β]. Note that Z(1) is an infinite closed discrete subset of Y

and Y is homeomorphic to a subspace of [0, β], thus Y is normal. Divide Z(1) into
two disjoint infinite sets Z0(1) and Z1(1). Then they are disjoint closed sets in the

normal space Y . Put Ti(1) = {n ∈ ω : xn ∈ Zi(1)} for each i ∈ 2 = {0, 1}. Hence
there is a continuous function g : Y → I such that g(x) = i for each x ∈ Zi(1) and

i ∈ 2. Moreover, define a function f : X → I by

f(x) =

{
g(x), if x ∈ Y ,

1, otherwise.

Fact 2. f is sequentially continuous.

����� �� 	�
� . Let 〈yn : n ∈ ω〉 be a sequence in X which converges to a

point y ∈ X . We shall show 〈f(yn) : n ∈ ω〉 converges to f(y).

First assume y /∈ Y . Since X\Y = X\{α} × [0, β] is an open neighborhood of
y, C = {n ∈ ω : yn ∈ X\Y } is cofinite. By the definition of f , f(yn) = 1 for each

n ∈ C and f(y) = 1. Therefore 〈f(yn) : n ∈ ω〉 converges to f(y).

Next assume y ∈ Y . Since X ∩ [0, α] × [0, β] is an open neighborhood of y,

{n ∈ ω : yn ∈ X ∩ [0, α]× [0, β]} is cofinite. Moreover, by cf α � ω1 or α successor,
C = {n ∈ ω : yn ∈ Y } is also cofinite. Note that f(yn) = g(yn) for each n ∈ C. Let

V be a neighborhood of f(y) = g(y) in I. Since g is continuous and 〈yn : n ∈ ω〉
converges to y, F = {n ∈ C : g(yn) /∈ V } is finite. Since C\F is also cofinite in ω

and f(yn) = g(yn) ∈ V for each n ∈ C\F , 〈f(yn) : n ∈ ω〉 converges to f(y). This
completes the proof of Fact 2. �

By Fact 2 and our assumption, 〈f(xn) : n ∈ ω〉 must converge. But, since f(xn) =
i for each n ∈ Ti(1) and i ∈ 2 and Ti(1)’s are infinite, we have a contradiction. This

completes Case 1.

The next case is similar to Case 1.

Case 2. cf β � ω1 or β is a successor ordinal.
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Finally we consider the following case.

Case 3. cf α = cf β = ω.

First fix two strictly increasing sequences 〈α(m) : m ∈ ω〉 and 〈β(m) : m ∈ ω〉
cofinal in α and β, respectively.

Subcase 0. Z(0) is infinite.

For each α′ < α and β′ < β, since Tα′ and T β′
are finite, {z ∈ Z(0) : z ∈

[0, α′]× [0, β] ∪ [0, α]× [0, β′]} is also finite. So, since Z(0) is infinite, we can define,
by induction, two strictly increasing sequences 〈γm : m ∈ ω〉 in α and 〈δm : m ∈ ω〉 in
β such that α(m) < γm, β(m) < δm and zm = 〈γm, δm〉 ∈ Z(0) for each m ∈ ω. Put
Vm = X∩(γm−1, γm]×(δm−1, δm] for eachm ∈ ω, where we consider γ−1 = δ−1 = −1.
Note that each Vm is a clopen neighborhood of zm.

Fact 3. V = {Vm : m ∈ ω} is discrete in X .

����� �� 	�
� �. Note that, by the definition, V is disjoint. Let 〈γ, δ〉 ∈ X .
If 〈γ, δ〉 ∈ U = X\[0, α]× [0, β], then U does not meet any member of V . So we may
assume 〈γ, δ〉 ∈ X ∩ [0, α] × [0, β]. Since 〈α, β〉 /∈ X , we have γ < α or δ < β. If
γ < α (δ < β, resp.), then take the smallest m0 ∈ ω with γ � γm0 (δ � δm0 , resp.).

Then U = X ∩ [0, γ]× [0, δ] is a neighborhood of 〈γ, δ〉 which does not meet Vm’s for
m > m0. This argument completes the proof of Fact 3. �
Consider the function f : X → I defined by

f(x) =

{
0, if x ∈ V2m for some m ∈ ω,

1, otherwise.

By Fact 3, f is continuous, so f ∈ Cs(X). Therefore 〈f(xn) : n ∈ ω〉 must
converge. But since f(z2m) = 0 and f(z2m+1) = 1 for each m ∈ ω, f(xn) = 0 for
infinitely many n ∈ ω and f(xn) = 1 for infinitely many n ∈ ω, a contradiction. This

completes the proof of Subcase 0.

Subcase 1. Z(1) is infinite.

Similarly by induction, define a strictly increasing sequence 〈δm : m ∈ ω〉 in β

such that β(m) < δm and zm = 〈α, δm〉 ∈ Z(1) for each m ∈ ω. Put Vm =

X ∩ (α(m), α] × (δm−1, δm] for each m ∈ ω and V = {Vm : m ∈ ω}. The rest is
similar to Subcase 0.

Subcase 2. Z(2) is infinite.

This subcase is also similar to Subcase 1.

Thus, in all subcases, we have contradictions. This completes the proof of Claim.
�
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This completes the proof of Theorem 3. �

Since the space ω21 is first countable, we have C(ω21) = Cs(ω21) and hence

Corollary 4. All subspaces of ω21 are SC.

Now we will describe a subspace of (ω1 + 1)2 which is not SC.

Example 5. Let X = (ω1 + 1)× (ω + 1)\{〈ω1, ω〉}, and xn = 〈ω1, n〉 for each
n ∈ ω. Evidently 〈xn : n ∈ ω〉 does not converge in X . Let f ∈ C(X). Since f is

continuous, for each n ∈ ω, we can fix αn < ω1 such that f has the constant value
f(xn) on (αn, ω1]×{n}. Put α = sup{αn : n ∈ ω} and take γ < ω1 with α < γ, and

moreover put yn = 〈γ, n〉 for each n ∈ ω. Since 〈yn : n ∈ ω〉 converges to 〈γ, ω〉, by
the continuity of f , 〈f(yn) : n ∈ ω〉 must converge to f(〈γ, ω〉). Since f(xn) = f(yn)

for each n ∈ ω, 〈f(xn) : n ∈ ω〉 also converges to f(〈γ, ω〉). This argument shows X

is not SC.

The next theorem is in fact a corollary to Lemma 1.17 and Lemma 1.16 in [F2].

We give a simple direct proof.

Theorem 6. The properties WSC and SC are hereditary with respect to se-

quentially closed subspaces and are productive.

�����. Let Y be a sequentially closed subspace of an SC space X . If a sequence

is fundamental in Y , then it is fundamental in X and hence converges to a point in
Y . This proves the first assertion.

Let X =
∏

α∈κ
Xα be the product space of WSC spaces Xα’s and let 〈xn : n ∈ ω〉

be a fundamental sequence in X , say xn = 〈xn(α) : α ∈ κ〉. Then, for each α ∈ κ,
the sequence 〈xn(α) : n ∈ ω〉 is fundamental in Xα (remember the composition of

each projection pα of X onto Xα and each f ∈ Cs(Xα) is sequentially continuous
on X) and hence converges in Xα to a point x(α). Hence 〈xn : n ∈ ω〉 converges to
〈x(α) : α ∈ κ〉.
The same argument proves that also SC is productive. �

Corollary 7. Let κ be a cardinal. If A and B are subspaces of κ, then X = A×B

is SC.

Historical Remarks. An extension theory for sequentially continuous func-
tions analogous to the Čech-Stone compactification and the Hewitt real compactifi-

cation was initiated by J. Novák in [No]. Absolutely sequentially closed spaces (in
the classP of spaces for which sequentially continuous functions are continuous) were
investigated in [F1] and in a very general setting in [FK]. Independently, sequential
completeness has been defined and investigated in [Ki].
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