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OSCILLATORY AND ASYMPTOTIC BEHAVIOR OF SOLUTIONS

OF HIGHER ORDER DAMPED NONLINEAR DIFFERENCE

EQUATIONS

E. Thandapani and R. Arul, Tamil Nadu

(Received August 5, 1996)

Abstract. The asymptotic and oscillatory behavior of solutions of mth order damped
nonlinear difference equation of the form

∆(an∆
m−1yn) + pn∆

m−1yn + qnf(yσ(n+m−1)) = 0

where m is even, is studied. Examples are included to illustrate the results.
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1. Introduction

The problem of determining oscillation criteria for difference equations has been

the subject of intensive investigations in the last few years, see for example [2–3,
6–18] and the references cited therein. We refer particularly to [2, 3, 12, 13, 16–

18] in which oscillation theorems for higher order nonlinear difference equations are
presented. Following this trend, in this paper we are concerned with the oscillatory

and asymptotic behavior of the mth order nonlinear damped difference equation of
the form

(E) ∆(an∆
m−1yn) + pn∆

m−1yn + qnf(yσ(n+m−1)) = 0, n ∈ �

where m is even, n ∈ � = {0, 1, 2, . . .} and ∆ is the forward difference operator
defined by ∆yn = yn+1− yn and ∆iyn = ∆(∆i−1yn), 1 � i � m. The real sequences
{an}, {pn}, {qn}, {σ(n)} and the function f satisfy the following hypotheses:
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(H1) an > 0 with ∆an > 0 and {pn} and {qn} are given infinite sequences such that
pn � 0 and qn > 0 for all n � n0 ∈ �;

(H2) {σ(n)} is a given monotonic increasing sequence of integers such that σ(n)→∞
as n→∞;

(H3) f : � → � = (−∞,∞) is continuous and nondecreasing such that uf(u) > 0
for u �= 0.

By a solution of equation (E) we mean a real sequence {yn} satisfying equation
(E) for all n ∈ �. A solution of equation (E) is said to be oscillatory if it is neither
eventually positive nor eventually negative. Otherwise it is called nonoscillatory.

Our purpose in this paper is to obtain sufficient conditions for all solutions of equa-

tion (E) to be oscillatory. Thandapani and Sundaram [14] have recently considered
a special case of equation (E)

(E1) ∆myn + qnf(yn−σn) = 0, n � n0

where {qn} is an eventually positive sequence. Our results include, as special cases,
known oscillation theorems not only for equation (E1), but also for several other
particular difference equations considered in [1]. Further, our results generalize those

in [10, 11]. Finally, we remark that the motivation of this paper comes from [4, 5].

2. Main results

In the sequel, we need the following two lemmas of which the first can be found

in [18] and the second in [1].

Lemma 1. Let {yn} be a sequence of real numbers defined in �. Let {yn} and
{∆myn} be of constant sign with ∆myn being not identically zero on any subset of

the form {n1, n1 + 1, . . .} of �. If

yn∆myn � 0,

then

(i) there is a natural member n2 � n1 such that the sequence {∆jyn}, j =

1, 2, . . .m− 1 is of constant sign on {n2, n2 + 1, . . .}.
(ii) there exists a number l ∈ {0, 1, 2, . . .m− 1} with (−1)m−l−1 = 1 such that

yn∆jyn > 0 for j = 0, 1, 2, . . . l, n � n2,

(−1)j−lyn∆jyn > 0 for j = l + 1, . . .m− 1, n � n2.
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Lemma 2. Let yn > 0 and ∆m−1yn > 0 be defined for n � n0 ∈ � with

∆myn � 0 for all n � n0, and not eventually identically equal to zero. Then there

exists an integer n1 � n0 such that

yn � (n− n1)(m−1)

(m− 1)! ∆m−1y2m−l−1n

for n � n1, where l is defined in Lemma 1 and (n − n1)(m−1) is the usual factorial

notation.

Remark 1. Observe that under the hypotheses of Lemma 1, if {yn} is increasing,
then

yn+m−1 � 1
(m− 1)!

( n

2m−1

)(m−1)
∆m−1yn

for n � 2m−1n1.

Theorem 1. Suppose that

(1) an − pn > 0 for n � n0 ∈ �,

and

(2)
∞∑

n=n0

qn

an+1
=∞.

Further assume that there exists a positive real sequence {βn} such that

(3) ∆βn � 0, ∆(pnβn+1) � 0 and ∆(an∆βn) � 0

for all n � n0 ∈ �. If

(4)
∞∑

n=n0

qnβn+1 =∞

and
∞∑

n=n0

1
anβn

( n−1∑

s=n0

qsβs+1

)
=∞

hold then every solution of equation (E) is either oscillatory or tends to zero monoton-

ically as n →∞.
�����. Let {yn} be a nonoscillatory solution of equation (E) which is eventually

of constant sign. Without loss of generality we may assume that yn > 0 and yσ(n) > 0

for all n � n0 ∈ �, since the proof for the case yn < 0 for n � n0 is similar. Now we
consider the following cases for the behavior of {∆m−1yn}.
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Case 1. Suppose {∆m−1yn} is oscillatory. Then there exists an integer n1 � n0

such that
∆m−1yn1 < 0 or ∆m−1yn1 = 0.

First we consider ∆m−1yn1 < 0. Now equation (E) implies

∆(an1∆
m−1yn1) = −pn1∆

m−1yn1 − qn1f(yσ(n1+m−1))

< −pn1∆
m−1yn1

since −qn1f(yσ(n1+m−1)) < 0. Hence

an1+1∆
m−1yn1+1 − an1∆

m−1yn1 < −pn1∆
m−1yn1

or
an1+1∆

m−1yn1+1 < (an1 − pn1)∆
m−1yn1 < 0.

Thus we get
∆m−1yn1+1 < 0.

By induction we obtain

∆m−1yn < 0 for all n � n1.

Next, consider ∆m−1yn1 = 0. Then equation (E) implies ∆
m−1yn1+1 < 0 and we ob-

tain as above ∆m−1yn < 0 for all n > n1. Hence in both cases, we obtain ∆m−1yn < 0
for all n > n1 which however contradicts the assumption that {∆m−1yn} oscillates.
Thus {∆m−1yn} is eventually of fixed sign.

Case 2. ∆m−1yn > 0 for all n � n1 for some integer n1 � n0 ∈ �. Using

(H1)–(H3), it follows from (E) that

an+1∆myn +∆an∆m−1yn = −pn∆m−1yn − qnf(yσ(n+m−1)) < 0 for n � n1.

Hence we have

∆myn � 0 for n � n1.

Now from Lemma 1, we have (here l is odd and 1 � l � m− 1)

∆yn > 0 and ∆yσ(n) > 0 for n � n1.

Define
zn =

βnvn

f(yσ(n+m−2))
where vn = an∆m−1yn.
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Note that zn > 0. Then for n � n1 we have

∆zn = − qnβn+1 −
pnβn+1∆m−1yn

f(yσ(n+m−1))
(6)

+
vn∆βn

f(yσ(n+m−1))
− vnβn∆f(yσ(n+m−2))

f(yσ(n+m−2))f(yσ(n+m−1))
.

From the hypotheses and condition (3) we obtain

∆zn � −qnβn+1 for n � n1.

Summing the above inequality from n1 to n, we have

n∑

s=n1

qsβs+1 � zn1 − zn+1 � zn1 < ∞,

which contradicts (4).

Case 3. ∆m−1yn < 0 for n � n1 for some integer n1 � n0 ∈ �. For m � 4 we
have from Lemma 1 either

(7) ∆yn > 0, ∆2yn > 0

or

(8) ∆yn < 0, ∆2yn > 0

for n � n1. Suppose (7) holds. Let L = lim
n→∞

yσ(n+m−1).

Then, since σ(n + m − 1) → ∞ and yn and ∆yn are increasing for large n, we
have L = ∞. Since f is nondecreasing, there exists an integer n2 � n1 such that

f(yσ(n+m−1)) � A, n � n2 for some A > 0. Now, from equation (1), we get

an+1∆m−1yn+1 � (an − pn)∆m−1yn −Aqn, n � n2,

which in view of (1) leads to

(9) ∆m−1yn+1 � − Aqn

an+1
, n � n2.

Summing (9) from n2 to n− 1, we obtain

(10) ∆m−2yn+1 � ∆m−2yn2+1 −A
n−1∑

s=n2

qs

as+1
.
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By (3), the right hand side of (10) tends to −∞ as n → ∞. Thus, there exists an
integer n3 � n2 such that

∆m−2yn+1 < 0 for n � n3,

which implies that yn → −∞ as n →∞ (see, Lemma (1.7.10 [1])). This contradicts
the assumption that {yn} is eventually positive. Thus condition (8) is fulfilled. For
m = 2, we automatically have ∆yn < 0 for n � n1. Hence we have for m � 2,
∆yn < 0 for all n � n1. Since yn > 0 for n � n0 ∈ �, it follows that

lim
n→∞

yn = b, b � 0.

We claim that b = 0. To prove it, assume b > 0. Define

un = βnan∆m−1yn for n � n1.

We then obtain for n � n1

∆un = −βn+1pn∆
m−1yn − βn+1qnf(yσ(n+m−1)) + an∆

m−1yn∆βn.

Hence for all n � n1 we have

un = un1 −
n−1∑

s=n1

βs+1ps∆m−1ys −
n−1∑

s=n1

βs+1qsf(yσ(s+m−1))(11)

+
n−1∑

s=n1

as∆βs∆m−1ys

= un1 −
n−1∑

s=n1

βs+1ps∆m−1ys − f(yσ(n+m−1))
n−1∑

s=n1

qsβs+1

+
n−1∑

s=n1

∆f(yσ(s+m−1))
s∑

t=n1

qtβt+1 +
n−1∑

s=n1

as∆βs∆
m−1ys.

Since {yn} is positive decreasing and f is nondecreasing, we have ∆f(yσ(n+m−1)) � 0
for all n � n1. Then we have from (11)

un � un1 −
n−1∑

s=n1

βs+1ps∆m−1ys − f(yσ(n+m−1))
n−1∑

s=n1

qsβs+1 +
n−1∑

s=n1

as∆βs∆m−1ys.

Now using condition (3), summation by parts and the fact that ∆m−2yn < 0 we
obtain

un � un1 + pn1βn1+1∆
m−2yn1 − f(b)

n−1∑

s=n1

qsβs+1 − an1∆
m−2yn1 .
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So, for every n � n1, we have

un � M − f(b)
n−1∑

s=n1

qsβs+1

where M = un1 + pn1βn1+1∆
m−2yn1 − an1∆βn1∆

m−2yn1 . By assumption (4), there
exists an integer n2 � n1 such that

un � −f(b)
2

n−1∑

s=n2

qsβs+1 for n � n2.

Thus
n−1∑

s=n2

∆m−1ys � −f(b)
2

n−1∑

s=n2

1
asβs

s−1∑

t=n2

qtβt+1.

This, in view of condition (5), leads to

∆m−2yn → −∞ as n →∞,

which in turn implies yn → −∞ as n →∞ (see Lemma 1.7.10 [1]). This contradicts
the assumption that yn > 0 for all n � n0 ∈ �. This completes the proof of the
theorem. �

Remark 2. When m = 2 and σ(n) = n, Theorem 1 reduces to Theorem 1 given
in [10].

Example 1. The difference equation

(E2) ∆(n(n+1)(n+2)(n+3)∆3yn)+n(n+1)∆3yn+
6(n+ 3)4

n+ 2
y5n+3 = 0, n � 1

satisfies all conditions of Theorem 1 when βn = 1
n(n+1)(n+2) and hence every solution

of equation (E2) is either oscillatory or tends to zero monotonically as n → ∞. In
fact, equation (E2) admits a solution {yn} = {1/n} → 0 monotonically as n →∞.

Theorem 2. Let conditions (1), (3)–(5) hold. Then every bounded (all) solu-
tion(s) of equation (E) is (are) oscillatory when m � 4 (m � 2).

�����. The proof is similar to that of Theorem 1 except Case 3. In this case if
we take into account the boundedness of solutions of equation (E) for m � 4, then
condition (8) holds for m � 2. The rest of the proof is similar to that of Case 3 and
hence the details are omitted.

Next, we study the oscillatory behavior of equation (E) using the following lemma,
which is a discrete analogue of Lemma 3 of Grace and Lalli [4]. �
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Lemma 3. Suppose that condition (1) holds. If

(12)
∞∑

n=n0

1
an

[ n−1∏

s=n0

(
1− ps

as

)]
=∞

and if {yn} is a nonoscillatory solution of equation (E), then there is an integer
n1 � n0 ∈ � such that

yn∆m−1yn > 0 for all n � n1.

�����. Let {yn} be a nonoscillatory solution of equation (E) which must then
eventually be of constant sign. Without loss of generality, we can assume that yn > 0,

and yσ(n) > 0 for all n � n0 ∈ �, since the proof for the case yn < 0, n � n0 is
similar. As in the proof of Theorem 1 (Case 3), {∆m−1yn} cannot oscillate. Therefore
{∆m−1yn} is eventually of fixed sign. Let ∆m−1yn < 0 for all n � n1 � n0; then if
wn = −an∆m−1yn, n � n1, we get from equation (E)

∆wn +
pn

an
wn � 0.

From the above equation, we obtain

wn � wn1

n−1∏

s=n1

(
1− ps

as

)

or

∆m−1yn � −wn

an

n−1∏

s=n1

(
1− ps

as

)
, n � n1.

Summing the above inequality from n1 to n− 1 and using the condition (12) yields

∆m−2yn → −∞ as n →∞,

which implies that yn → −∞ as n →∞, a contradiction. This complete the proof.
�

Theorem 3. Let conditions (1), (3), (4) and (12) be satisfied. Then every solution
of equation (E) is oscillatory.

�����. The proof is similar to that of Theorem 1 and Lemma 3 and hence the
details are omitted. �
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Example 2. The difference equation

(E3) ∆(n∆3yn) +
1
n
∆3yn +

27(3n2 + n− 2)22n+5
n

y3n+3 = 0, n � 2

satisfies all conditions of Theorem 3 if we choose βn = 1. Hence all solutions of (E3)

are oscillatory. In fact, one such solution of (E3) is {yn} = {(−1)n/2n}.

Remark 3. In Theorems 1-3 we do not require that the function f be superlinear

or sublinear. Furthermore, the statement of Theorems 1–3 holds when the argument
σ(n) is of ordinary, retarded, advanced or mixed type.

In the following theorem we study the oscillatory behavior of equation (E) subject

to the condition

(13)
f(u)

u
� M > 0 for u �= 0.

Theorem 4. Let σ(n) � n. Suppose that conditions (1), (12) and (13) hold.
Assume that there exists a positive nondecreasing real sequence {βn} such that
condition (4) and

(14)
∞∑

n=n0

an∆βn

(σ(n+m− 1)/2m−1)(m−1) < ∞

hold. Then every solution of equation (E) is oscillatory.

�����. Let {yn} be a nonoscillatory solution of equation (E) which must then
eventually be of constant sign. In view of Lemma 3, there is no loss in generality in
assuming that there is an integer n1 � n0 ∈ � such that

yn > 0, yσ(n) > 0 and ∆m−1yn > 0 for all n � n1.

Using the function zn defined in the proof of Theorem 1 (Case 2), we obtain (6).
This, in view of the hypothesis of the theorem, implies

∆zn � −qnβn+1 +
vn∆βn

f(yσ(n+m−1))
, n � n1

or

(15) ∆zn � −qnβn+1 +
an∆βn∆m−1yn

f(yσ(n+m−1))
.
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By Lemma 2, there exists an integer n2 � n1 such that

yσ(n+m−1) � 1
(m− 1)! (σ(n+m− 1)/2m−1)(m−1)∆m−1yn,

n � 2m−1n2 = n3 (say).

Using the above inequality in (15), one gets

∆zn � −qnβn+1 +
(m− 1)!an∆βn

(σ(n+m− 1)/2m−1)(m−1)
yσ(n+m−1)

f(yσ(n+m−1))
.

Now using condition (13) in the last inequality, we obtain

∆zn � −qnβn+1 +
(m− 1)!

M

an∆βn

(σ(n+m− 1)/2m−1)(m−1) , n � n3,

n∑

s=n3

qsβs+1 < zn3 − zn+1 +
(m− 1)!

M

n∑

s=n3

as∆βs

(σ(n +m− 1)/2m−1)(m−1) .

By using condition (14) and in view of zn > 0, n � n3, we have

∞∑

n=n3

qnβn+1 < ∞,

which contradicts condition (4). This completes the proof of the theorem.

Example 3. The difference equation

(E4) ∆(n∆
3yn) +

1
n
∆3yn + 27

3n2 + n− 2
n

22n+5

1 + 22n+6
(yn+3 + y3n+3) = 0, n � 1

satisfies all conditions of Theorem 4 if we choose βn = 1. Hence all solutions of (E4)
are oscillatory. In fact, one such solution of (E4) is {yn} = {(−1)n/2n}.

Finally, we study the oscillatory behavior of equation (E) subject to the condition

(15) −f(−uv) � f(uv) � Kf(u)f(v)

on � − {0}, where K is a positive constant. �

Theorem 5. Let σ(n) � n. Suppose that conditions (1), (13), (15) hold. Assume

(16)
∫ 0

−α

du
f(u)

> −∞ and
∫ α

0

du
f(u)

< ∞, for all α > 0,
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and

(17)
∞∑

n=n0

Anqn =∞,

where

An = f
[ 1
an

(σ(n+m− 1)
2m−1

)(m−1)]
.

Then every solution of equation (E) is oscillatory.

�����. Let {yn} be a nonoscillatory solution of equation (E). As in Theorem
4, there exists an integer n1 � n0 ∈ � such that

yn > 0, yσ(n) > 0 ∆m−1yn > 0 for all n � n1,

which in turn by Lemma 1 that

∆yn > 0 and ∆yσ(n) > 0 for n � n1.

Since pn � 0, equation (E) yields

(18) ∆(an∆m−1yn) + qnf(yσ(n+m−1)) � 0, n � n1.

By Lemma 2, there exists an integer n2 � n1 such that

yσ(n+m−1) � 1
(m− 1)!

(σ(n+m− 1)
2m−1

)(m−1) 1
an
[an∆m−1yn],(19)

n � 2m−1n2 = n3.

Using condition (15) and the nondecreasing nature of f , we have from (19)

(20) f(yσ(n+m−1)) > K2f
( 1
(m− 1)!

)
Anf(an∆

m−1yn), n � n3.

Then, using (2) in (18) we have

(21)
∆(an∆m−1yn)
f(an∆m−1yn)

+ µ Anqn � 0, n � n3,

where µ = k2f( 1
(m−1)!).

Observe that, for an∆m−1yn � u � an+1∆m−1yn+1, we have

1
f(u)

� 1
f(an∆m−1yn)
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and consequently

−
∫ an∆

m−1yn

an+1∆m−1yn+1

du
f(u)

� ∆(an∆m−1yn)
f(an∆m−1yn)

.

Using the last inequality in (21) and summing the resulting inequality from n3 to n,

we obtain
n∑

s=n3

Anqn <
1
µ

∫ an3∆
m−1yn3

an+1∆m−1yn+1

du
f(u)

,

which is by (16) an immediate contradiction to (17). Hence the proof of the theorem

is complete.

Remark 4. Theorem 5 generalizes Theorem 4 given in [11].

Example 4. The difference equation

(E5) ∆(n∆3yn) +
1
n
∆3yn + qny

1/3
n+3 = 0, n � n2

where qn =
27(43/4)(3n2+2n−1)

2n , satisfies all conditions of Theorem 5. Hence every
solution of equation (E5) is oscillatory. One such solution is {yn} = {(−1)n2n}. �

Acknowledgement. The authors thank the referee for his suggestions and cor-
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