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PSEUDODIMENSION OF RELATIONAL STRUCTURES

Vítězslav Novák and Miroslav Novotný, Brno

(Received September 25, 1996)

1. Introduction

In the paper [4] we have established the theory of pseudodimension (see [3]) for

binary structures, i.e. for sets with a binary relation, and demonstrated the rela-
tionship of our theory with the theory of dependence spaces (cf. [6]). In this paper

we extend the theory of pseudodimension to relational structures of an arbitrary
(finitary) arity. The notation used here coincides with that of [4]; for the reader’s

convenience we repeat the fundamental concepts and notation.

If G is a set, then the cardinality of G is denoted by |G| and the power set of G
is symbolized by B(G). If G, H are sets, we denote by GH the set of all mappings

of the set H into G. The symbol � means the set of all natural numbers.

Let G �= ∅ be a set, n ∈ �, n � 2, let X ⊆ Gn be an n-ary relation on G.
Then the structure G = (G, X) will be referred to as an n-ary structure. If nec-

essary, we denote by C(G) and R(G) the carrier and the relation of the struc-
ture G, respectively, i.e., C(G) = G, R(G) = X . If G = (G, X), H = (H, Y )

are n-ary structures, then—as usual—a mapping f of the set G into H is called
a homomorphism of G into H whenever for any (x1, . . . , xn) ∈ Gn the condition

(x1, . . . , xn) ∈ X implies (f(x1), . . . , f(xn)) ∈ Y . The symbol Hom(G,H) de-
notes the set of all homomorphisms of the structure G into H. A homomorphism
f ∈ Hom(G,H) is said to be strong if for any (x1, . . . , xn) ∈ Gn the condition
(x1, . . . , xn) ∈ X is equivalent to the condition (f(x1), . . . , f(xn)) ∈ Y . An in-

jective strong homomorphism of the structure G into H is referred to as an em-
bedding of G into H. A bijective strong homomorphism of the structure G onto
H is called an isomorphism. If G = (G, X), H = (H, Y ) are n-ary structures,
then the power GH is an n-ary structure such that C(GH) = Hom(H,G) and
R(GH) = {(h1, . . . , hn) ∈ (Hom(H,G))n ; (h1(x), . . . , hn(x)) ∈ X for any x ∈ H}.
The structure H is called discrete if R(H) = ∅; then C(GH) = GH .
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Let (G, �) be a complete lattice. Suppose that Θ is an equivalence relation on the
set G such that any Θ-block has a greatest element. Then the structure (G, �,Θ)
is said to be a dependence space. Isomorphisms of dependence spaces are defined
in the usual way: Let (G, �,Θ), (H,�,Φ) be structures with two binary relations

and f a bijection of G onto H . Then f is an isomorphism if the condition x � y is
equivalent to f(x) � f(y) and the condition xΘy is equivalent to f(x)Φf(y) for any

x, y in G. We obtain

Lemma 1.1. Let (G, �,Θ) be a dependence space, (H,�,Φ) a structure with

two binary relations. Suppose that f is an isomorphism of (G, �,Θ) onto (H,�,Φ).
Then (H,�,Φ) is a dependence space.

�����. It follows from the hypotheses that (H,�) is a complete lattice and
that Φ is an equivalence relation on H . Furthermore, to any Φ-block Q there exists a
Θ-block P such that f(P ) = Q, which implies that f�P is an isomorphism of (P, �)
onto (Q,�). If a is the greatest element of P , then f(a) is the greatest element of Q.
Hence any Φ-block has a greatest element and (H,�,Φ) is a dependence space. �

Lemma 1.2. Let (G, �,Θ) be a dependence space, (H,�) a complete lattice, and
f an isomorphism of (G, �) onto (H,�). Then there exists an equivalence relation Φ
on H such that (H,�,Φ) is a dependence space and f is an isomorphism of (G, �,Θ)
onto (H,�,Φ).

�����. For any u, v ∈ H put (u, v) ∈ Φ if and only if (f−1(u), f−1(v)) ∈ Θ.
Then f is an isomorphism of the structure (G,Θ) onto the structure (H,Φ) and,
therefore, of the structure (G, �,Θ) onto the structure (H,�,Φ); the assertion follows

from Lemma 1.1. �

A dependence space (G, �,Θ) is said to be natural if there exists a set M such
that G ⊆ B(M) and that the relation � coincides with the set theoretic inclusion.
We may limit our considerations to natural dependence spaces because the following
holds.

Theorem 1.1. Any dependence space is isomorphic to a natural dependence
space.

�����. Let (G, �,Θ) be a dependence space. Let f be an embedding of the

ordered set (G, �) into (B(G),⊆) defined by f(x) = {t ∈ G ; t � x}. It is sufficient
to apply Lemma 1.2 to (G, �,Θ), f , and (f(G),⊆). �

Let (G,⊆,Θ) be a natural dependence space and x ∈ G an element. Put c(x,Θ) =

min{|y| ; (x, y) ∈ Θ, y ⊆ x}; this cardinal will be referred to as the Θ-character of
the element x.
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2. Realizer and pseudodimension of an n-ary structure

Let G be a set, n ∈ �, n � 2,H = (H, Y ) an n-ary structure, and suppose |G| � 2,
|H | � 2. Similarly as in [4] we define a mapping S of the set B(Gn) into B(HG) and
a mapping T of the set B(HG) into B(Gn) as follows. For an arbitrary set X ⊆ Gn,

put
S(X) = Hom((G, X),H).

For any set U ⊆ HG, set

T (U) = {(x1, . . . , xn) ∈ Gn ; (f(x1), . . . , f(xn)) ∈ Y for any f ∈ U}.

Clearly, the pair of mappings (S, T ) forms a Galois connexion between the complete

lattices (B(Gn),⊆) and (B(HG),⊆). For any sets U1, U2 ∈ B(HG), put (U1, U2) ∈
Θ(H) if T (U1) = T (U2). Clearly Θ(H) is an equivalence relation on the set B(HG).

Lemma 2.1. Let U1 ∈ B(HG), U2 ∈ B(HG), (U1, U2) ∈ Θ(H). Then
(U1, S(T (U2))) ∈ Θ(H) and U1 ⊆ S(T (U2)).

�����. Since T (U2) = T (S(T (U2))), we have (U2, S(T (U2))) ∈ Θ(H); tran-
sitivity of Θ(H) implies (U1, S(T (U2))) ∈ Θ(H). The hypothesis (U1, U2) ∈ Θ(H)
entails T (U1) = T (U2) and, therefore, S(T (U1)) = S(T (U2)). Since S ◦T is a closure

operator, we obtain U1 ⊆ S(T (U1)) = S(T (U2)). �

Theorem 2.1. (B(HG),⊆,Θ(H)) is a natural dependence space.

�����. (B(HG),⊆) is a complete lattice and Θ(H) is an equivalence relation on
B(HG). Let P be an arbitrary Θ(H)-block; we choose an arbitrary element U0 ∈ P .

By Lemma 2.1, we obtain S(T (U0)) ∈ P and U ⊆ S(T (U0)) for an arbitrary U ∈ P .
Thus, S(T (U0)) is the greatest element in P . �

Let X ⊆ Gn, U ⊆ HG. If T (U) = X holds, then U is called an H-realizer of
(G, X). An H-realizer of an n-ary structure (G, X) need not exist. But by the same

argument as in Theorem 3.1 in [4] we obtain

Theorem 2.2. Let X ⊆ Gn. Then the structure (G, X) has an H-realizer if and
only if T (S(X)) = X holds.

Similarly as Theorem 3.2 in [4] we may prove

Theorem 2.3. Let X ⊆ Gn and suppose the existence of an H-realizer of the
n-ary structure (G, X). A set U ⊆ HG is an H-realizer of (G, X) if and only if
(U, S(X)) ∈ Θ(H) holds.
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Suppose U ⊆ HG. By an evaluation map for U we mean the mapping e of the set

G into HU such that for any x ∈ G the mapping e(x) of the set U into H is defined
by the condition e(x)(f) = f(x).

By repeating the proof of Theorem 3.3 in [4] we obtain

Theorem 2.4. Suppose X ⊆ Gn, U ⊆ HG. Then the following assertions are

equivalent.

(i) The set U is an H-realizer of the structure (G, X).

(ii) The evaluation map for U is a strong homomorphism of the structure (G, X)
into the structure HU where U = (U, ∅) is a discrete structure.

Let G = (G, X), H = (H, Y ) be n-ary structures, suppose that V ⊆ Hom(G,H),
V �= ∅. The relation X will be referred to as determined by the set V if for any

elements x1, . . . , xn in G with the property (x1, . . . , xn) �∈ X there exists f ∈ V such
that (f(x1), . . . , f(xn)) �∈ Y .

The following is trivial.

Lemma 2.2. Let G = (G, X), H = (H, Y ) be n-ary structures and suppose that

V ⊆ Hom(G,H), V �= ∅. Then the set V is an H-realizer of the structure (G, X) if
and only if the relation X is determined by V .

Theorem 2.5. Let X ⊆ Gn and suppose that the structure (G, X) has at least
one H-realizer. Then the set of all H-realizers of (G, X) forms a complete upper

semilattice with respect to set inclusion and S(X) is the greatest element of this
semilattice.

�����. If {Ui ; i ∈ I} is an arbitrary system of H-realizers of the structure
(G, X), then Lemma 2.2 implies that

⋃
i∈I

Ui is an H-realizer of (G, X). Hence the set

of all H-realizers of the structure (G, X) constitutes a complete upper semilattice
with respect to inclusion. By Theorem 2.3, the set S(X) is an H-realizer of (G, X).

Since the set of all H-realizers of the structure (G, X) forms a Θ(H)-block in the
dependence space (B(HG),⊆,Θ(H)), the greatest element of this Θ(H)-block equals
S(T (U0)) where U0 is an arbitrary element of this block; this follows from the proof
of Theorem 2.1. But T (U0) = X and hence S(X) is the greatest H-realizer. �

Theorem 2.6. Let X ⊆ Gn. Suppose that H = (H, Y ) is an n-ary structure.

Then the following assertions are equivalent.

(a) The structure (G, X) has an H-realizer.
(b) The set S(X) is an H-realizer of the structure (G, X).
(c) The relation X is determined by the set Hom((G, X),H).
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(d) There exists a set K �= ∅ and a strong homomorphism of the structure (G, X)

into HK where K = (K, ∅).

�����. (b) implies (a) trivially, (b) follows from (a) by Theorem 2.5. The equiv-
alence of (b) and (c) is a consequence of Lemma 2.2. Furthermore, (d) follows from

(a) by Theorem 2.4. We prove that (d) implies (a): Let ϕ be a strong homomorphism
of the structure (G, X) into the structure HK. For any k ∈ K we define a mapping

fk of G into H putting fk(x) = ϕ(x)(k) for any x ∈ G. Put U = {fk ; k ∈ K};
clearly U ⊆ HG holds. Let the elements x1, . . . , xn in G be arbitrary. Then any two

consecutive conditions in the following sequence are equivalent.

(A) (x1, . . . , xn) ∈ X ;

(B) (ϕ(x1), . . . , ϕ(xn)) ∈ R(HK);

(C) (ϕ(x1)(k), . . . , ϕ(xn)(k)) ∈ Y for any k ∈ K;

(D) (fk(x1), . . . , fk(xn)) ∈ Y for any k ∈ K.

The equivalence of (A) and (D) means that the set U is an H-realizer of the
structure (G, X) and hence (a) holds. �

Suppose that the structure G = (G, X) has an H-realizer. We denote by α the

type of the structure H = (H, Y ). Then we put

α- pdimG = min{|U | ; U ⊆ HG and U is an H-realizer of G}.

This cardinal is called the α-pseudodimension of the structure (G, X).

The following theorem describes the relationship between the α-pseudodimension
of the structure (G, X) and the Θ-character in natural dependence spaces.

Theorem 2.7. Let G = (G, X) be an n-ary structure that has an H-realizer
where H = (H, Y ) has the type α. Then α-pdimG = c(C(HG),Θ(H)).

�����. By definition, we have c(C(HG),Θ(H)) = min{|U | ; U ⊆ C(HG),
(U, C(HG)) ∈ Θ(H)}. But C(HG) = Hom(G,H) = S(X), which implies that the
condition (U, C(HG)) ∈ Θ(H) is equivalent to the condition (U, S(X)) ∈ Θ(H). This
means T (U) = T (S(X)) = X by Theorem 2.2. But this is equivalent to the condition
that U is an H-realizer of the structure (G, X). It follows that c(C(HG),Θ(H)) =
min{|U | ; U ⊆ HG is an H-realizer of (G, X)} = α-pdimG. �
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3. n-ary preorderings

In [4] we have proved the following result. If H = (H, Y ) is a preordered set such

that there exist elements u, v ∈ H with (u, v) ∈ Y , (v, u) �∈ Y and if α is the type of
H, then for any preordered set G = (G, X) the pseudodimension α-pdimG exists.
In this section we present particular n-ary relations that have an analogous property.
In the whole section we suppose that G �= ∅ is a set, n ∈ � a natural number such
that n � 2, and X ⊆ Gn is an n-ary relation on G.

The relation X is said to be reflexive if it contains all constant sequences of length
n. The relation X will be referred to as n-transitive if it has the following property:

If (x1, . . . , xn) ∈ X , (y1, . . . , yn) ∈ X hold and if there exist natural numbers i0,
j0 such that 1 < i0 � n, 1 � j0 < n, xi0 = yj0 , then (xi1 , . . . , xik

, yjk+1 , . . . , yjn) ∈ X

for any natural numbers 1 � k < n and i1, . . . , ik, jk+1, . . . , jn such that 1 � i1 <

. . . < ik < i0, j0 < jk+1 < . . . < jn � n.

Example 3.1. For n = 2 we obtain that a binary relation is 2-transitive if and
only if it is transitive in the usual sense.

Example 3.2. Let n = 3. Then a ternary relation X is 3-transitive if and only if

it has the following properties.
(i) If (x, y, z) ∈ X , (y, u, v) ∈ X , then (x, u, v) ∈ X .

(ii) If (x, y, z) ∈ X , (z, u, v) ∈ X , then (x, y, u) ∈ X , (x, y, v) ∈ X , (x, u, v) ∈ X ,
(y, u, v) ∈ X .

(iii) If (x, y, z) ∈ X , (u, z, v) ∈ X , then (x, y, v) ∈ X .

An n-ary relation on a set G that is reflexive and n-transitive will be called an

n-ary preordering on G. The n-ary structure (G, X) will be referred to as an n-ary

preordered set if X is an n-ary preordering.

Let X be an n-ary relation on a set G. We define a binary relation b[X ] on G as
follows. For any (x, y) ∈ G×G we put (x, y) ∈ b[X ] if there exists (x1, . . . , xn) ∈ X

and natural numbers i, j such that 1 � i < j � n, x = xi, y = xj .

Lemma 3.1. Let X be an n-ary preordering on a set G. Then (x, y) ∈ b[X ]
holds if and only if (x, y, . . . , y) ∈ X .

�����. If (x, y, . . . , y) ∈ X , then (x, y) ∈ b[X ] holds trivially.
Let (x, y) ∈ b[X ]. Then there exists (x1, . . . , xn) ∈ X and natural numbers i, j

such that 1 � i < j � n, x = xi, y = xj . Since (y, . . . , y) ∈ X , the n-transitivity of

X implies (x, y, . . . , y) ∈ X . �

Theorem 3.1. Let X be an n-ary preordering on a set G. Then b[X ] is a
preordering on G.
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�����. The reflexivity of the relation b[X ] is obvious. Suppose (x, y) ∈ b[X ],
(y, z) ∈ b[X ]. By Lemma 3.1, we obtain (x, y, . . . y) ∈ X , (y, z, . . . , z) ∈ X and the
n-transivity implies (x, z, . . . , z) ∈ X , which entails (x, z) ∈ b[X ]. Thus b[X ] is a
transitive relation. �

Theorem 3.2. Let X be an n-ary preordering on a set G. Then (x1, . . . , xn) ∈ X

holds if and only if (xi, xj) ∈ b[X ] is satisfied for any natural numbers i, j with

1 � i < j � n.

�����. If (x1, . . . , xn) ∈ X , then (xi, xj) ∈ b[X ] holds for any i, j with the
property 1 � i < j � n by the definition of b[X ].
Suppose that (xi, xj) ∈ b[X ] holds for any i, j with 1 � i < j � n. Then (x1, x2) ∈

b[X ] implies (x1, x2, . . . , x2) ∈ X by Lemma 3.1. Similarly, (x2, x3) ∈ b[X ] entails
(x2, x3, . . . , x3) ∈ X . The n-transitivity of X implies that (x1, x2, x3, . . . , x3) ∈ X .

Suppose that we have proved that (x1, . . . , xi, xi, . . . , xi) ∈ X for some i with

1 < i < n. Since (xi, xi+1) ∈ b[X ] holds, we have (xi, xi+1, . . . , xi+1) ∈ X and the
n-transitivity of X implies (x1, . . . , xi, xi+1, . . . , xi+1) ∈ X . After n steps we obtain

(x1, . . . , xn) ∈ X . �

Theorem 3.3. Let (G, X), (H, Y ) be n-ary preordered sets. Then Hom((G, X),

(H, Y )) = Hom((G,b[X ]), (H,b[Y ])).

�����. (1) Suppose h ∈ Hom((G, X), (H, Y )), (x, y) ∈ b[X ]. Then there
exist (x1, . . . , xn) ∈ X and natural numbers i, j such that 1 � i < j � n, x = xi,

y = xj . Therefore (h(x1), . . . , h(xn)) ∈ Y whence (h(x), h(y)) ∈ b[Y ]. It follows
that h ∈ Hom((G,b[X ]), (H,b[Y ])).
(2) Let h ∈ Hom((G,b[X ]), (H,b[Y ])), (x1, . . . , xn) ∈ X . Then (xi, xj) ∈ b[X ]

holds for any i, j with 1 � i < j � n, which implies (h(xi), h(xj)) ∈ b[Y ] for any
i, j with 1 � i < j � n; it follows that (h(x1), . . . , h(xn)) ∈ Y by Theorem 3.2.

Therefore h ∈ Hom((G, X), (H, Y )). �

An n-ary preordering X on a set G will be said to be nontrivial if there exist

elements x, y ∈ G such that (x, y) ∈ b[X ], (y, x) �∈ b[X ].

Theorem 3.4. Let (G, X), (H, Y ) be n-ary preordered sets where the n-

ary preordering Y is nontrivial. Then the relation X is determined by the set

Hom((G, X), (H, Y )).

�����. By hypothesis there are elements a, b ∈ H such that (a, b) ∈ b[Y ],
(b, a) �∈ b[Y ]. Suppose that (x1, . . . , xn) ∈ Gn, (x1, . . . , xn) �∈ X . By Theorem 3.2
there exist natural numbers i, j such that 1 � i < j � n and (xi, xj) �∈ b[X ].
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We define a mapping h of the set G into H as follows.

h(x) =

{
a if (x, xj) ∈ b[X ];
b if (x, xj) �∈ b[X ].

We prove that h ∈ Hom((G, X), (H, Y )); by Theorem 3.3 it is sufficient to prove
that h ∈ Hom((G,b[X ]), (H,b[Y ])). Let (x, y) ∈ b[X ]. If h(y) = b, we ob-

tain (h(x), h(y)) ∈ b[Y ] because the relation b[Y ] is reflexive. If h(y) = a, we
have (y, xj) ∈ b[X ] and the transitivity of the relation b[X ] implies (x, xj) ∈
b[X ] whence h(x) = a and we have (h(x), h(y)) ∈ b[Y ], too. Thus we obtain
h ∈ Hom((G, X), (H, Y )). It follows from the definition of h that h(xi) = b,

h(xj) = a and, therefore, (h(xi), h(xj)) �∈ b[Y ]. By Theorem 3.2, we obtain
(h(x1), . . . , h(xn)) �∈ Y . �

Corollary 3.1. Let α be the type of a nontrivial n-ary preordered set. Then for

any n-ary preordered set (G, X) the pseudodimension α-pdim(G, X) exists.

The proof follows from Theorem 3.4 and Theorem 2.6.

Corollary 3.2. Let α be the type of a nontrivial preordered set. Then for any

preordered set (G, P ) the pseudodimension α-pdim(G, P ) exists.

(Cf. [4], Corollary of Theorem 4.1.)

4. n-ary preordering versus preordering

In the whole section we suppose that G �= ∅ is a set and n is a natural number

such that n � 2.
Let B be a binary relation on a set G. We define an n-ary relation n[B] on the set

G by putting (x1, . . . , xn) ∈ n[B] if (xi, xj) ∈ B for any natural numbers i, j with
1 � i < j � n.

Theorem 4.1. Let B be a preordering on a set G. Then n[B] is an n-ary

preordering on G.

�����. Since (x, x) ∈ B holds for any x ∈ G, we obtain (x, . . . , x) ∈ n[B] for
any x ∈ G, i.e. n[B] is reflexive. Suppose (x1, . . . , xn) ∈ n[B], (y1, . . . , yn) ∈ n[B],
xi0 = yj0 for some natural numbers i0, j0 such that 1 < i0 � n, 1 � j0 < n, let
1 � i1 < . . . < ik < i0, j0 < jk+1 < . . . < jn � n for some k with 1 � k < n.

Then (xir , xis) ∈ B holds for any natural numbers r, s with 1 � r < s � k,
(yjp , yjq ) ∈ B for any natural numbers p, q with k + 1 � p < q � n. Furthermore,
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we have (xis , xi0 ) ∈ B, (yj0 , yjp) ∈ B, xi0 = yj0 . The transitivity of B implies that

(xis , yjp) ∈ B for any s with 1 � s � k and any p with k+1 � p � n. It follows that
(xi1 , . . . , xik

, yjk+1 , . . . , yjn) ∈ n[B] and so n[B] is n-transitive. �

Theorem 3.2 may be reformulated as follows.

Theorem 4.2. Let X be an n-ary preordering on a set G. Then n[b[X ]] = X .

We obtain also

Theorem 4.3. Let B be a preordering on a set G. Then b[n[B]] = B.

�����. If (x, y) ∈ B then (x, y, . . . , y) ∈ n[B] and, therefore, (x, y) ∈ b[n[B]],
which implies B ⊆ b[n[B]]. On the other hand, if (x, y) ∈ b[n[B]], then Theorem 4.1
and Lemma 3.1 imply that (x, y, . . . , y) ∈ n[B]; hence (x, y) ∈ B and, therefore,
b[n[B]] ⊆ B. �

We denote by Pn the category whose objects are n-ary preordered sets and whose
morphisms are homomorphisms of these structures. It is easy to see that Pn is a

category. For n = 2 homomorphisms coincide with isotone mappings.

Theorem 4.4. Let n � 2. Then the categories Pn and P2 are isomorphic.

�����. The isomorphism of Pn onto P2 will be defined by the object mapping
Fo and the morphism mapping Fm. If (G, X) is an object of the category Pn, we

put Fo(G, X) = (G,b[X ]). If (G, X), (H, Y ) are objects of the category Pn and h a
morphism of (G, X) into (H, Y ), we put Fm(h) = h.
By Theorem 3.1, Fo is a mapping of the class of all objects of the category Pn into

the class of objects in P2. By Theorems 4.2 and 4.3, the mapping b is a bijection,
which implies that the mapping Fo is a bijection, too.

By Theorem 3.3, the mapping Fm is a bijection of the class of all morphisms of
the category Pn onto the class of all morphisms of the category P2. Clearly, Fm

preserves identity mappings and compositions of morphisms.
It follows that F is an isomorphism. �

Let (H, Y ) be an n-ary preordered set of type α. We denote by b[α] the type of
the preordered set (H,b[Y ]).
We prove that there exists a very close relationship between the α-pseudodimension

of an n-ary preordered set and the b[α]-pseudodimension of the corresponding pre-
ordered set.

Lemma 4.1. Let (G, X), (H, Y ) be n-ary preordered sets and suppose U ⊆
Hom((G, X), (H, Y )). Then the set U is an (H, Y )-realizer of the structure (G, X) if
and only if it is an (H,b[Y ])-realizer of the structure (G,b[X ]).
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�����. (1) Let U be an (H, Y )-realizer of the structure (G, X). By The-

orem 3.3, we obtain U ⊆ Hom((G,b[X ]), (H,b[Y ])). Suppose (x, y) �∈ b[X ]; by
Lemma 3.1, we have (x, y, . . . , y) �∈ X . Consequently, there exists h ∈ U such that
(h(x), h(y), . . . , h(y)) �∈ Y , which entails (h(x), h(y)) �∈ b[Y ]. It follows that the set
U is an (H,b[Y ])-realizer of the structure (G,b[X ]).
(2) Suppose that U is an (H,b[Y ])-realizer of the structure (G,b[X ]). Then

U ⊆ Hom((G, X), (H, Y )). Let (x1, . . . , xn) �∈ X ; by Theorem 3.2, there exist natural
numbers i, j such that 1 � i < j � n, (xi, xj) �∈ b[X ]. Thus there exists h ∈ U

such that (h(xi), h(xj)) �∈ b[Y ]. By Theorem 3.2, we obtain (h(x1), . . . , h(xn)) �∈ Y .
Therefore the set U is an (H, Y )-realizer of the structure (G, X). �

Theorem 4.5. Let (G, X), (H, Y ) be n-ary preordered sets where Y is nontrivial

and α is the type of (H, Y ). Then α-pdim(G, X) = b[α]-pdim(G,b[X ]).

The proof follows from Lemma 4.1.
Let (H, P ) be a preordered set of type β. We denote by n[β] the type of the n-ary

preordered set (H,n[P ]).
In a similar way we may prove

Theorem 4.6. Let (G, B) be a preordered set, (H, P ) a nontrivial preordered set
of type β. Then β-pdim(G, B) = n[β]-pdim(G,n[B]).

5. n-equivalence

Suppose that G �= ∅ is a set, n � 2 a natural number and X an n-ary relation
on G. The relation X will be referred to as strongly symmetric if (x1, . . . , xn) ∈ X

implies (xp(1), . . . , xp(n)) ∈ X for any permutation p of the set {1, . . . , n}. An n-ary
relation on the set G that is reflexive, strongly symmetric, and n-transitive (i.e. a

strongly symmetric n-ary preordering) will be called an n-equivalence on G. (The
reader must be warned: The expression “n-equivalence” appears in Section 5 of [4] in

a different meaning! In the present paper, we respect the definition presented here.)

Theorem 5.1. Let X be an n-equivalence on the set G. Then b[X ] is an equiv-
alence relation on G.

�����. By Theorem 3.1, the relation b[X ] is a preordering on G. If (x, y) ∈
b[X ] holds then there exist (x1, . . . , xn) ∈ X and natural numbers i, j such that
1 � i < j � n, x = xi, y = xj . Then (y1, . . . , yn) ∈ X holds where yk = xk for any

k �= i, k �= j, yi = y, yj = x. It follows that (y, x) ∈ b[X ] and the relation b[X ] is
symmetric. �
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Theorem 5.2. Let B be an equivalence relation on the set G. Then n[B] is an
n-equivalence on G.

�����. By Theorem 4.1, n[B] is an n-ary preordering on G. Let (x1, . . . , xn) ∈
n[B] and choose an arbitrary permutation p of the set {1, . . . , n}. Then (xi, xj) ∈ B

holds for arbitrary natural numbers i, j such that 1 � i < j � n; the reflexivity and
symmetry of B imply (xs, xt) ∈ B for arbitrary natural numbers s, t ∈ {1, . . . , n},
which entails (xp(i), xp(j)) ∈ B for arbitrary natural numbers i, j with 1 � i < j � n.
It follows that (xp(1), . . . , xp(n)) ∈ n[B] and the relation n[B] is strongly symmetric.

�

Theorem 4.2 and Theorem 4.3 imply, in particular,

Theorem 5.3. If X is an n-equivalence on a set G, then n[b[X ]] = X . If B is an

equivalence relation on a set G, then b[n[B]] = B.

We denote by En the subcategory of the category Pn whose objects are sets with
n-equivalences and whose morphisms are homomorphisms. Similarly as Theorem 4.4

we may prove

Theorem 5.4. The categories En and E2 are isomorphic.

An n-equivalence X on a set G will be referred to as nontrivial if there exist
elements x, y ∈ G such that (x, y) �∈ b[X ].

Theorem 5.5. Let G, H be sets such that |G| � 2, |H | � 2 and suppose that Y

is a nontrivial n-equivalence on the set H . Then an arbitrary n-equivalence X on

the set G is determined by the set Hom((G, X), (H, Y )).

�����. Let u, v ∈ H be elements such that (u, v) �∈ b[Y ]. Suppose

(x1, . . . , xn) ∈ Gn, (x1, . . . , xn) �∈ X ; by Theorem 3.2, there exist natural num-
bers i, j such that 1 � i < j � n, (xi, xj) �∈ b[X ]. We define a mapping h of the set
G into H as follows:

h(x) =

{
u if (x, xi) ∈ b[X ];
v if (x, xi) �∈ b[X ].

We prove that h ∈ Hom((G,b[X ]), (H,b[Y ])). Suppose that (x, y) ∈ b[X ] holds.
If (x, xi) ∈ b[X ] then (y, xi) ∈ b[X ] because the relation b[X ] is an equivalence
relation. It follows that h(x) = h(y) = u. If (x, xi) �∈ b[X ], then (y, xi) �∈ b[X ] and,
therefore, h(x) = h(y) = v. In either case we obtain (h(x), h(y)) ∈ b[Y ] and hence
h ∈ Hom((G,b[X ]), (H,b[Y ])). By Theorem 3.3, we have h ∈ Hom((G, X), (H, Y )).

Furthermore, we obtain h(xi) = u, h(xj) = v, which implies that (h(xi), h(xj)) �∈
b[Y ]. We have (h(x1), . . . , h(xn)) �∈ Y by Theorem 3.2. �
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Corollary 5.1. Let Y be a nontrivial n-equivalence on a set H , denote by α the

type of the structure (H, Y ). Then for any set G �= ∅ and any n-equivalence X on

G the pseudodimension α-pdim(G, X) exists.

Corollary 5.2. Let B be a nontrivial equivalence relation on a set H , denote by

α the type of the structure (H, B). Then for any set G �= ∅ and any equivalence
relation P on G the pseudodimension α-pdim(G, P ) exists.

Corollary 5.3. Let P be an equivalence relation on a set G �= ∅. Then for any
cardinalm � 2 the pseudodimension m-pdim(G, X) exists where m denotes the type

of the structure (H, idH) with the property |H | = m.

(Cf. [4], Corollary of Theorem 5.1.)

6. Examples

Example 6.1. Let G = (G, B) be an ordered set where G = {x, y, z, u} and B =

{(x, x), (x, z), (y, y), (y, z), (y, u), (z, z), (u, u)}. In Example 1 of [4], we found that
3-pdimG = 2, where 3 = (H, �), H = {0, 1, 2}, �= {(0, 0), (0, 1), (0, 2), (1, 1), (1, 2),
(2, 2)}.

Put n = 3; then n[B] = {(x, x, x), (x, x, z), (x, z, z), (y, y, y), (y, y, z), (y, z, z),

(y, y, u), (y, u, u), (z, z, z), (u, u, u)}. Similarly, n[�] = {(0, 0, 0), (0, 0, 1), (0, 1, 1),
(0, 0, 2), (0, 2, 2), (1, 1, 1), (1, 1, 2), (1, 2, 2), (0, 1, 2), (2, 2, 2)}.
By Theorem 4.2, we obtain b[n[B]] = B, b[n[�]] = �. By Lemma 4.1, the

structure (G,n[B]) has an (H,n[�])-realizer if and only if (G, B) has an (H, �)-
realizer; this (H, �)-realizer has been found in Example 1 of [4]. By Theorem 4.6,
we obtain n[3]-pdim(G,n[B]) = 3-pdim(G, B) = 2.

Example 6.2. Let m � 2, n � 2 be integers, G1, . . . , Gm mutually disjoint finite
nonempty sets, let Xi denote the set of all finite sequences of length n formed of

elements in Gi for any i with 1 � i � m. Put G = G1∪ . . .∪Gm, X = X1∪ . . .∪Xm.
Then (G, X) is an n-ary structure where X is an n-equivalence. Denote by E the

equivalence on G whose blocks are the sets Gi (1 � i � m).

Suppose that H = {a, b}, a �= b. Put Y = {(a, . . . , a), (b, . . . , b)} where the
first sequence is formed by n symbols equal to a and the second by n symbols
that are equal to b. Then Y is an n-equivalence on H . By Corollary 5.1, the

α-pdim(G, X) exists where α is the type of (H, Y ). By Theorem 4.5, we obtain
α-pdim(G, X) = b[α]-pdim(G,b[X ]) = 2-pdim(G, E).
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Let (G, •) be a groupoid (cf., e.g., [2]). We put X(•) = {(x, y, •(x, y)) ; (x, y) ∈
G×G}. Then the following lemma is easy to prove (cf. Example 2 of [5]).

Lemma 6.1. If (G, •), (H, ◦) are groupoids and h is a mapping of the set G into

H , then h is a homomorphism of the groupoid (G, •) into (H, ◦) if and only if it is a
homomorphism of the ternary structure (G, X(•)) into (H, X(◦)).

Hence, groupoids may be regarded as ternary structures and all concepts intro-
duced for structures may be introduced for groupoids as well. In particular, we may

consider realizers of groupoids. The problem of existence of an (H, ◦)-realizer of a
groupoid (G, •) is solved in the following theorem.

Theorem 6.1. Let (G, •), (H, ◦) be groupoids, V �= ∅ a set of homomorphisms
of the groupoid (G, •) into (H, ◦). Then the following two assertions are equivalent.
(i) V is an (H, ◦)-realizer of (G, •).
(ii) If x, y, z in G are arbitrary elements such that z �= •(x, y), then there exists a
homomorphism f ∈ V such that f(z) �= ◦(f(x), f(y)).

�����. Using Lemma 6.1, condition (ii) may be reformulated as follows.
If (x1, x2, x3) ∈ G3 are arbitrary and (x1, x2, x3) �∈ X(•), then there exists
a homomorphism f ∈ V of the structure (G, X(•)) into (H, X(◦)) such that
(f(x1), f(x2), f(x3)) �∈ X(◦). By Lemma 2.2, this is equivalent to the fact that
V is an (H, X(◦))-realizer of the structure (G, X(•)). Using Lemma 6.1, this can be
reformulated in the form of (i). �

Example 6.3. Let n � 2 be an integer. We denote by Zn = (Zn,+n) the

groupoid where Zn = {0, . . . , n− 1} and +n is the addition modulo n.

Choose n � 3, (G, •) = (Zn,+n), (H, ◦) = (Z2,+2). Then 1 +n 1 �= 0. If f is
an arbitrary homomorphism of Zn into Z2, then f(0) = 0 and either f(1) = 0 or

f(1) = 1. In the first case, we obtain f(1) +2 f(1) = 0 +2 0 = 0 = f(0), in the
other, we have f(1) +2 f(1) = 1 +2 1 = 0 = f(0). By Theorem 6.1, there exists no

Z2-realizer of Zn.

Example 6.4. Let (G,∨) be a finite upper semi-lattice with a least element 0
and a greatest element 1 (cf. [1], p. 22), let (H,∪) be a two-element upper semilattice
with elements 0 and 1. As usual, put x � y if and only if x∨y = y for any x, y in G.
It is easy to see that for any homomorphism f of the semilattice (G,∨) into (H,∪),
there exists an element gf ∈ G such that f(t) = 0 for any t ∈ G with the property
t � gf , and f(t) = 1 for any t ∈ G with t �� gf .
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Let a, b, c be elements in G such that a ∨ b �= c. If c �� a ∨ b, put f(t) = 0 for any

t ∈ G with t � a ∨ b, and f(t) = 1 else. Then f(a) ∪ f(b) = 0 ∪ 0 = 0 �= 1 = f(c).
Suppose c � a ∨ b, i.e., c < a ∨ b. Define f(t) = 0 for any t ∈ G with t � c and
f(t) = 1 else. Then either a �� c or b �� c (in the opposite case, we would obtain

a ∨ b � c) and, therefore, f(a) ∪ f(b) = 1 �= 0 = f(c). Thus, for any a, b, c in G

with a ∨ b �= c, there exists a homomorphism f of the semilattice (G,∨) into (H,∪)
such that f(a)∪f(b) �= f(c), which implies that the set of all homomorphisms of the
semilattice (G,∨) into (H,∪) is an (H,∪)-realizer of the semilattice (G,∨).
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