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1. Introduction

The main intention of this paper is to show the interaction between function
spaces of variable order of differentiationW s(x)

p and function spaces of variable order

of integration Lq(x).
As concerns the usual spaces Hs

p and Lq, for each of them we get only non satis-

factory embedding results:

(1)
Hs
p(�

n ) ↪→ Lq(x)(�
n ) if 1 < p � inf{q(x) : x ∈ �n} and

s � n

p
− n

sup{q(x) : x ∈ �n}

and

(2)
W s(x)
p (�n ) ↪→ Lq(�n ) if 1 < p � q � ∞ and

inf{s(x) : x ∈ �n} � n

p
− n

q
,
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where neither result can be improved. This comes from the fact that the spaces Hs
p

and Lq are translation invariant, in contrast to the spaces W
s(x)
p and Lq(x), neither

of which has this important property.

So it seems natural to compare these both scales. We prove the following result:

(3)
W s(x)
p (�n ) ↪→ Lq(x)(�

n ) if 1 < p � inf{q(x) : x ∈ �n} and

inf{[s(x) + n

q(x)
] : x ∈ �n} > n

p
.

It contains the non-limiting cases of (1) and (2) as special cases. On the other hand,
in the case that both s(x) and q(x) are variable, (3) is more general, because it takes

into consideration the local behavior and the relation between s(x) and q(x), too.

Function spaces Lq(x) have been considered since 1991 in connection with boundary
problems [KR], [ER]. In the case of the interval [0, 1] some elements of the theory

appeared in [Sh] and [Ts] in connection with some problems in the approximation
theory.

Function spaces W s(x)
p were considered for example in [Le2] in connection with a

more general theory of function spaces of variable order of differentiation, where the
special case W s(x)

p plays a role also in connection with problems in the probability

theory [JL], [Ne].

The author would like to thank J. Rákosník for valuable discussions and helpful
comments.

2. Function spaces Lq(x)

We will use a special case of function spaces Lq(x)(Ω) defined and described in
[KR] and [ER].

Let q : �n → [1,∞] be continuous and let on the set of all measurable functions
f on �n

(4) �q(f) =
∫

�n\Ω∞

|f(x)|q(x) dx+ ess sup
Ω∞

|f(x)|

where Ω∞ = {x : q(x) =∞}.
The generalized Lebesgue space Lq(x)(�n ) is the class of all functions f such that

�q(λf) <∞ for some λ = λ(f) > 0.
Lq(x)(�n ) is a Banach space if endowed with the norm

‖f
∣∣Lq(x)‖ = inf{λ > 0: �q(f/λ) � 1}.
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It is obvious that for q(x) = q = const. this norm coincides with the usual Lq-norm.

Further properties of Lq(x)(�n ) may be found in [KR].
We need the following lemma.

Lemma 1. Let 1 � q∗ � q(x) � q∗ � ∞ for all x ∈ �n . Then

Lq∗(�
n ) ∩ Lq∗(�n ) ↪→ Lq(x)(�

n )

and there exists a constant c > 0 with

‖f
∣∣Lq(x)‖ � cmax(‖f

∣∣Lq∗‖, ‖f
∣∣Lq∗‖)

for all f ∈ Lq∗(�n ) ∩ Lq∗(�n ).

�����. Step 1. Let q∗ <∞ and λ > 0, then

�q(f/λ) =
∫

�n

∣∣∣∣
f(x)
λ

∣∣∣∣
q(x)

dx

�
∫

{x : |f(x)|�λ}

∣∣∣∣
f(x)
λ

∣∣∣∣
q∗

dx+
∫

{x : |f(x)|>λ}

∣∣∣∣
f(x)
λ

∣∣∣∣
q∗

dx

�
(
‖f
∣∣Lq∗‖
λ

)q∗
+

(
‖f
∣∣Lq∗‖
λ

)q∗
.

If λ = 2max(‖f
∣∣Lq∗‖, ‖f

∣∣Lq∗‖) we get

�q(f/λ) � (1/2)q∗ + (1/2)q
∗ � 1

and consequently
‖f
∣∣Lq(x)‖ � 2max(‖f

∣∣Lq∗‖, ‖f
∣∣Lq∗‖).

Step 2. In the case q∗ =∞ we have f ∈ L∞(�n ), that is ess sup
x∈�n

|f(x)| = ‖f
∣∣L∞‖ <

∞. Let again λ = 2max(‖f
∣∣Lq∗‖, ‖f

∣∣L∞‖), then

�q(f/λ) =
∫

�n\Ω∞

∣∣∣∣
f(x)
λ

∣∣∣∣
q(x)

dx+ ess sup
Ω∞

∣∣∣∣
f(x)
λ

∣∣∣∣

�
(
‖f
∣∣Lq∗‖
λ

)q∗
+
‖f
∣∣L∞‖
λ

� (1/2)q∗ + 1/2 � 1
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and this again yields

‖f
∣∣Lq(x)‖ � 2max(‖f

∣∣Lq∗‖, ‖f
∣∣L∞‖).

�

Remark 1. The same is true with Ω instead of �n . In case of q∗ and q∗ variable
and q∗ < ∞ similar results are contained in [KR]—Corollary 2.2. But they are not
sufficient for our purpose. For constants q∗ and q∗, |Ω∞| = 0 and a little different
definition of the norm ‖ · |Lq(x)‖, such a result is contained also in [Sa], Lemma 3.6.

Corollary 1. Let Ω be an open, non-empty set, 1 � qΩ � q(x) � qΩ � ∞ for
x ∈ Ω. Then there again exists a constant c > 0 with

‖g|Lq(x)‖ � cmax(‖g|LqΩ‖, ‖g|LqΩ‖)

for all g ∈ Lq
Ω
(�n ) ∩ LqΩ(�n ) with supp g ⊂ Ω.

In virtue of the proof of Lemma 1, this is obvious.

Let q∗ = inf{q(x) : x ∈ �n} and q∗ = sup{q(x) : x ∈ �n}. If additionally 1 < p �
q∗ and s � n

p − n
q∗ , then by the classical embedding theorem we have

Hs
p(�

n ) ↪→ Lq∗(�
n ) and Hs

p(�
n ) ↪→ Lq∗(�

n )

and now by Lemma 1 the embedding (1)

Hs
p(�

n ) ↪→ Lq(x)(�
n ).

3. Function spaces W s(x)
p

The function spaces W s(x)
p , defined in the sequel, are a special case of function

spaces of variable order of differentiation. Such spaces are defined and studied in [Le1]
and [Le2]—see there for details, other examples and more references. We will use also

some notation and properties from the theory of pseudodifferential operators. We
refer to [Kg], [Ta] and to [Le1], [Le2] where the needed properties are also collected.

Let B(�n) denote the set of all C∞-functions whose derivatives are all bounded
on �n . Further let s(x) ∈ B(�n ) be real-valued with m = sup{s(x) : x ∈ �

n} and
m′ = inf{s(x) : x ∈ �

n} > 0. With respect to the embedding in Section 4, the
assumption m′ > 0 is natural.
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Then the pseudodifferential operator Λs(x)(Dx) is defined by

Λs(x)(Dx)u(x) = (2�)−n
∫
eixξ(1 + |ξ|2)s(x)/2û(ξ) dξ for u ∈ S(�n ),

where S(�n ) denotes the Schwartz class, and û(ξ) =
∫
e−iyξu(y) dy is the Fourier

transform of u.
Λs(x)(Dx) can be extended to a continuous operator from S′(�n ) into S′(�n ), the

space of all complex-valued tempered distributions on �n .
Λs(x)(Dx) is a pseudodifferential operator belonging to the Hörmander class Ψm1,δ

for arbitrary 0 < δ < 1. Furthermore we have

|Dα
ξD

β
x 〈ξ〉s(x) | � cα,β 〈ξ〉s(x) 〈ξ〉−|α|+δ|β|

and

〈ξ〉s(x) � 〈ξ〉m
′
,

where 〈ξ〉 = (1 + |ξ|2)1/2, Dβ
x = (−i)|β|∂βx and 0 < δ < 1. Consequently Λs(x)(Dx) is

hypoelliptic and we can construct a parametrix Q(x,Dx) ∈ Ψ−m
′

1,δ such that

(5) Λs(x)(Dx)Q(x,Dx) = I +RR(x,Dx),

Q(x,Dx)Λs(x)(Dx) = I +RL(x,Dx)

with RR, RL ∈ Ψ−∞. The class Ψ−∞ =
⋂
m
Ψm1,δ is independent of δ < 1. Furthermore

Q(x,Dx)u(x) = (2�)−n
∫
eixξq(x, ξ)û(ξ) dξ for u ∈ S(�n ),

and for the symbol q(x, ξ) the inequality

(6) |Dα
ξD

β
xq(x, ξ)| � cα,β 〈ξ〉−s(x) 〈ξ〉−|α|+δ|β|

holds for any α, β and all x ∈ �nx , ξ ∈ �nξ with |ξ| � Rq. See [Kg] Sect. 2, §5 or [Ta]
Chapt. III, §5 for details.

For 1 < p <∞, the function space W s(x)
p (�n ) is defined in a natural way by

W s(x)
p (�n ) = {u : u ∈ Lp(�n ) and ‖u

∣∣W s(x)
p ‖ <∞},

‖u
∣∣W s(x)

p ‖ = ‖Λs(x)(Dx)u
∣∣Lp‖+ ‖u

∣∣Lp‖.

These spaces are a special case of function spaces of variable orderW 1,a
p (�

n ) defined
in [Le2]. The case s(x) ∈ B(�n) was considered also separately in connection with
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problems in the probability theory in [KN]. From [Le2] and [Le1] we get immediately

the following properties:
W

s(x)
p (�n ) is a Banach space in which S(�n ) is dense, the dual space and the

interpolation spaces can be described explicitly and furthermore we have

Hm
p (�

n ) ↪→W s(x)
p (�n ) ↪→ Hm′

p (�
n ).

The following lemma gives a justification for the name variable order of differenti-
ation. A similar result for more complicated spaces of Besov type is contained in

[Le1] Theorem 7.

Lemma 2. Let Ω be an open subset of �n and s � s(x) for all x ∈ Ω. If 1 < p <

∞, σ > 0 and ϕ ∈ C∞(�n ) with (suppϕ)σ ⊂ Ω where (suppϕ)σ = {y : y = x + h,

x ∈ suppϕ, |h| < σ}, then there exists a positive constant cσ depending on σ such
that

‖ϕu
∣∣Hs

p‖ � cσ‖ϕu
∣∣W s(x)

p ‖

holds for all u ∈ Lp(�n ).

�����. Let ϕ and σ be as described above. Then there exists ψ ∈ C∞(�n )

such that ψ(x) = 1 on suppϕ, suppψ ⊂ Ω and |Dγψ(x)| � cγ,σ uniformly for all
x ∈ �n and γ.
With the notation of (5) it follows that

‖Λs(Dx)ϕu
∣∣Lp‖ = ‖Λs(Dx)ψϕu

∣∣Lp‖
� ‖Λs(Dx)ψQ(x,Dx)Λs(x)(Dx)ϕu

∣∣Lp‖
+ ‖Λs(Dx)ψRL(x,Dx)ϕu

∣∣Lp‖.

If Λs(Dx)ψ(x)Q(x,Dx) and Λs(Dx)ψ(x)RL(x,Dx) belong to Ψ01,δ, then by a result
of [Il], see also [Le2] Theorem 2, these operators are bounded on Lp and we have

the desired result. For the second operator this is obvious, because RL ∈ Ψ−∞.
Denote by b(x, ξ) the symbol of the first pseudodifferential operator. Then the com-

position formula for pseudodifferential operators—see [Kg] Chapter 2 §3, or [Le2]
Theorem 1—gives us for arbitrary natural numbers N that

b(x, ξ) =
∑

|γ|<N

[
1/γ!Dγ

ξ (〈ξ〉
s)∂γx (ψ(x)q(x, ξ))

]
+ rN (x, ξ)

where the pseudodifferential operator RN (x,Dx) defined by the symbol rN (x, ξ) is
an element of Ψs−m

′−(1−δ)N
1,δ .

We fix N so large that RN (x,Dx) ∈ Ψ01,δ holds.
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Let 0 � |γ| < N and

bγ(x, ξ) = D
γ
ξ (〈ξ〉

s)∂γx (ψ(x)q(x, ξ)).

By an easy calculation and the use of (6) we get

|Dα
ξD

β
xbγ(x, ξ)| � c 〈ξ〉−|α|−(1−δ)|γ|+|β|δ χψ(x) 〈ξ〉s−s(x) ;

here χψ is the characteristic function of the support of ψ. The assumption s � s(x)
for all x ∈ Ω and suppψ ⊂ Ω now gives Bγ(x,Dx) ∈ Ψ−(1−δ)|γ|1,δ ⊂ Ψ01,δ for the
operator Bγ(x,Dx) defined by bγ(x, ξ), and this completes the proof. �

The next lemma is a special case of Theorem 4 in [Le2]. That is why we give here
only an outline of the proof.

Lemma 3. Let C(x,Dx) ∈ Ψ01,δ and δ < 1. Then for all p with 1 < p <∞ there
exist a constant c′ and integers l, k, all independent of C(x,Dx) such that

‖C(x,Dx)u
∣∣W s(x)

p ‖ � c′|c|(0)(l,k)‖u
∣∣W s(x)

p ‖

holds for all functions u ∈ W s(x)
p (�n ).

Here

|c|(0)(l,k) = max
|α|�l,|β|�k

sup
x,ξ

{∣∣Dα
ξD

β
xc(x, ξ)

∣∣ 〈ξ〉|α|−δ|β|
}

denotes a suitable semi-norm of the symbol c(x, ξ) of C(x,Dx).

�����. There exists, again by (5), Q(x,Dx) ∈ Ψ−m
′

1,δ such that

Q(x,Dx)Λ
s(x)(Dx) = I +RL(x,Dx), RL ∈ Ψ−∞,

and (6) hold. If C(x,Dx) ∈ Ψ01,δ, then we get by the composition rule for pseudodif-
ferential operators and by (6)

Λs(x)(Dx)C(x,Dx)Q(x,Dx) = C(x,Dx) +D(x,Dx)

with D(x,Dx) ∈ Ψ−(1−δ)1,δ —see also [Le2] Lemma 1.

Now we use the relations C(x,Dx) ∈ Ψ01,δ, D(x,Dx) ∈ Ψ−(1−δ)1,δ ⊂ Ψ01,δ,

Λs(x)(Dx)C(x,Dx)RL(x,Dx) ∈ Ψ−∞ ⊂ Ψ01,δ and the fact that pseudodifferen-
tial operators of order zero yield bounded operators on Lp if 1 < p < ∞ and δ < 1
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(see again [Il] or [Le2] Theorem 2, respectively) to obtain

‖C(x,Dx)u
∣∣W s(x)

p ‖ = ‖Λs(x)(Dx)C(x,Dx)u
∣∣Lp‖+ ‖C(x,Dx)u

∣∣Lp‖
� ‖Λs(x)(Dx)C(x,Dx)Q(x,Dx)Λs(x)(Dx)u

∣∣Lp‖
+ ‖Λs(x)(Dx)C(x,Dx)RL(x,Dx)u

∣∣Lp‖+ ‖C(x,Dx)u
∣∣Lp‖

� ‖C(x,Dx)Λs(x)(Dx)u
∣∣Lp‖+ ‖D(x,Dx)Λs(x)(Dx)u

∣∣Lp‖
+ ‖Λs(x)(Dx)C(x,Dx)RL(x,Dx)u

∣∣Lp‖+ ‖C(x,Dx)u
∣∣Lp‖

� c|c|(0)(l,k)‖Λs(x)(Dx)u
∣∣Lp‖+ c′|c|(0)(l,k)‖u

∣∣Lp‖.

The special dependence of the constants on C(x,Dx) also comes from these results.
�

Corollary 2. Let s � s(x) on �n , then we have

Λs(Dx) = Λs(Dx)Q(x,Dx)Λs(x)(Dx)− Λs(Dx)RL(x,Dx)

and Λs(Dx)Q(x,Dx) ∈ Ψ01,δ, Λs(Dx)RL(x,Dx) ∈ Ψ−∞. Lemma 3 then gives

W s(x)
p (�n ) ↪→W s

p (�
n ).

Now again by the classical embedding theorem with s = inf{s(x) : x ∈ �
n} and

1 < p � q � ∞ we get the embedding (2)

W s(x)
p (�n ) ↪→ Lq(�n ) if inf{s(x) : x ∈ �n} � n

p
− n

q
.

4. The general embedding

Theorem 1. Let 1 < p � q(x) <∞ for all x and let q(x) be uniformly continuous
on �n . Furthermore let s(x) ∈ B(�n ) and inf{[s(x)+ n

q(x) ] : x ∈ �n} > n
p . Then the

continuous embedding

W s(x)
p (�n ) ↪→ Lq(x)(�

n )

holds.

�����. Step 1. Let ε = inf{s(x)+ n
q(x)}− n

p > 0 by assumption andN = [
4n
ε ]+1.

Then there exist numbers qj = N
j , j = 1, . . . , N , 1 = qN < qN−1 < . . . < q1 < ∞

with
1

qj+1
− 1
qj
=
1
N

<
ε

4n
.
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We define the following sets, which are open because q(x) is continuous, and cover

�
n :

Ω1 = {x : q3 < q(x) <∞},
Ωj = {x : qj+2 < q(x) < qj−1} if j = 2, 3, . . . , N − 3,

ΩN−2 = {x : 1 < q(x) < qN−3}.

Step 2. The function q(x) is uniformly continuous with values in (1,∞). Conse-
quently there exists σ > 0 such that for arbitrary x, x′ ∈ �n with |x− x′| < σ,

(7)

∣∣∣∣
1

q(x)
− 1
q(x′)

∣∣∣∣ <
1
N
.

Denote

(Ωj)σ = {y : y = x+ h, x ∈ Ωj , |h| < σ}.
Then we have

(8) (Ωj)σ ⊂ Ωj−1 ∪ Ωj ∪ Ωj+1 for j = 1, . . . , N − 2

with Ω0 = ΩN−1 = ∅.
Step 3. Resolution of unity with respect to {Ωj}N−2

j=1 . It is clear that there exist

functions ϕj ∈ C∞(Ωj) with suppϕj ⊂ Ωj and
N−2∑
j=1

ϕj = 1 on �n . Moreover, in the

following we need the estimates

(9) |Dγϕj(x)| � cγ,j uniformly for all x ∈ �n

and j = 1, . . . , N − 2, γ ∈ �0 .
But by the property (8) it is always possible to find a resolution of unity with

respect to Ω1, . . ., ΩN−2 with this additional property. In the next step, we give an
outline of the construction.

Step 4. We fix a function ϕ ∈ C∞
0 (�

n ) with 0 � ϕ(x) � 1, suppϕ ⊂ {x : |x| < √
n}

and 1/2 � ϕ(x) � 1 if |x| � √
n/2. Furthermore we fix t = σ/

√
n and put

ϕk,t(x) = ϕ(t
−1x− k), k ∈ �n.

The support of such a function is contained in the ball with radius σ and center tk.
Let us denote this ball by B(tk, σ). There exists a number c(n) such that every point

x ∈ �n belongs to at most c(n) such balls. Consequently, the sum
∑

k∈�n

ϕk,t(x) = Φ(x)
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is finite for all x and we get Φ ∈ C∞(�n ) and Φ(x) � 1/2 for all x. Then the
functions

ψk,t(x) =
ϕk,t(x)
Φ(x)

form a resolution of unity with respect to these balls with radius σ, suppψk,t ⊂
B(tk, σ) and, additionally, we have

|Dγψk,t(x)| � c′(n)c(ϕ)σ−|γ|

uniformly for all x ∈ �n and all k ∈ �n.
Let

K1 = {k : k ∈ �n and q2 � q(tk) <∞}.

Then it follows by the construction in Step 1 and property (7) that

⋃

k∈K1
B(tk, σ) ⊂ Ω1.

Let

Kj = {k : k ∈ �n and qj+1 � q(tk) < qj} if j = 2, . . . , N − 3.

Then ⋃

k∈Kj

B(tk, σ) ⊂ Ωj ,

because for k ∈ Kj and for x ∈ B(tk, σ) we have qj+1 � q(tk) < qj and |tk− x| < σ,

and so by (7) qj+2 < q(x) < qj−1.
By the same argument we get

KN−2 = {k : k ∈ �n and 1 < q(tk) < qN−2}

and ⋃

k∈KN−2

B(tk, σ) ⊂ ΩN−2.

Then
ϕj(x) =

∑

k∈Kj

ψk,t(x) for j = 1, . . . , N − 2

are functions with the properties described in Step 3.

Step 5. Let f ∈ W
s(x)
p (�n ). We have s(x) > 0 and therefore every element of

W
s(x)
p (�n ) belongs at least to Lp(�n ). Now

‖f
∣∣Lq(x)‖ =

∥∥∥∥
N−2∑

j=1

ϕjf
∣∣Lq(x)

∥∥∥∥ �
N−2∑

j=1

‖ϕjf
∣∣Lq(x)‖.
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We have supp(ϕjf) ⊂ Ωj and qj+2 < q(x) < qj−1 for x ∈ Ωj where q0 =∞.
By Lemma 1 and Corollary 1 we get

‖ϕjf
∣∣Lq(x)‖ � 2max{‖ϕjf

∣∣Lqj+2‖, ‖ϕjf
∣∣Lqj−1‖}

where the spaces Lqj+2 and Lqj−1 are defined with respect to �
n .

Now by the classical embedding theorem we have

‖ϕjf
∣∣Lq(x)‖ � 2max{‖ϕjf

∣∣Hsj+2
p ‖, ‖ϕjf

∣∣Hsj−1
p ‖}

and

‖f
∣∣Lq(x)‖ � c

N−2∑

j=1

(‖ϕjf
∣∣Hsj+2

p ‖+ ‖ϕjf
∣∣Hsj−1

p ‖)

with sj = n
p − n

qj
, j = 0, 1, . . . , N .

Step 6. Because of qj+2 < qj−1 and sj+2 < sj−1, it is sufficient to compare only
H
sj−1
p (�n ) with W s(x)

p (�n ) for functions (ϕjf) with supp(ϕjf) ⊂ Ωj .
For x ∈ (Ωj−1 ∪ Ωj ∪Ωj+1) we have

sj−1 = s(x) −
[
s(x)− n

p
+

n

q(x)

]
+

n

q(x)
− n

qj−1

� s(x) − inf
{[
s(x) − n

p
+

n

q(x)

]
: x ∈ �n

}

+ sup
{ n

q(x)
− n

qj−1
: x ∈ (Ωj−1 ∪ Ωj ∪ Ωj+1)

}

� s(x) − ε+
4n
N

< s(x).

Since (suppϕjf)σ ⊂ (Ωj)σ ⊂ (Ωj−1 ∪ Ωj ∪ Ωj+1) and sj−1 � s(x) on (Ωj−1 ∪ Ωj ∪
Ωj+1), Lemma 2 implies that

‖ϕjf
∣∣Hsj−1

p ‖ � c‖ϕjf
∣∣W s(x)

p ‖

with a constant c > 0, dependent on σ but not on ϕjf .
Combined with Lemma 3—here the additional property (9) of the system {ϕj}N−2

j=1

is necessary—this yields

‖f
∣∣Lq(x)‖ � c

N−2∑

j=1

‖ϕjf
∣∣W s(x)

p ‖

� c

(N−2∑

j=1

|ϕj |(0)(l,k)
)
‖f
∣∣W s(x)

p ‖

and so the proof is complete. �
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