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EXACT ASYMPTOTIC BEHAVIOR OF SINGULAR VALUES

OF A CLASS OF INTEGRAL OPERATORS

Milutin Dostanić, Beograd

(Received July 12, 1996)

Abstract. We find an exact asymptotic formula for the singular values of the integral
operator of the form

∫
Ω T (x, y)k(x−y)· dy : L2(Ω)→ L2(Ω) (Ω ⊂ �

m , a Jordan measurable

set) where k(t) = k0((t
2
1 + t22 + . . . t2m)

m
2 ), k0(x) = xα−1L( 1x ),

1
2 − 1

2m < α < 1
2 and L

is slowly varying function with some additional properties. The formula is an explicit
expression in terms of L and T .

MSC 2000 : 47B10

0. Introduction

The asymptotic properties of the spectrum of operators with a convolution kernel

have been considered in many papers [1]–[6], [8]–[11], [14], [15]. The exact asymp-
totics have been obtained under the assumption that the Fourier transform of the

kernel satisfies some conditions concerning the rate of growth.

M.Kac [5] obtained the exact asymptotic of the eigenvalues of the operators with
the kernel �(y)|x − y|α−1 (0 < α < 1, � ∈ C[a, b], � > 0 on [a, b]). He used a

probabilistic method and Karamata’s Tauberian theorem.

M. Š. Birman and M. Z. Solomjak [1], G. P.Kostometov [6] and S.Y.Rotfeld [11]

considered the asymptotics of the spectrum of operators with a kernel of the form

(∗) T (x, y)k(x, y).

They assumed that k is a homogeneous function from the class C∞(� \ {0}) and
that T is a function which is smooth of some order.
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F.Cobos and T.Kühn [2] treated the problem of estimating the singular values of

operators with a kernel of the form (∗) where

k(x) =
(1 + ln ‖x‖)γ
‖x‖m(1−α)

, γ ∈ �, x ∈ �
m , 0 < α � 1

2
.

They found an upper bound for singular values of such operators and proved its

optimality (in the sense of growth order) in the case m = 1, Ω = [− 12 , 12 ] and

T (x, y) =

{
|x− y|α−1(1 − ln |x− y|)γ ; |x− y| � 1

2 ,

0; |x− y| > 1
2 .

In [3] we have proved a statement concerning the asymptotic order of singular

values of the operator
∫ x

0 k(x− y) · dy : L2(0, 1)→ L2(0, 1) in the case when k(x) =
xα−1L( 1x ), 0 < α < 1

2 .

In this paper we give an exact asymptotic formula for singular values of integral
with a kernel of the form

T (x, y)k(x, y)

acting on L2(Ω) (Ω–a Jordan measurable set in �m ). Here k(x) = k0
(
(x21 + . . . +

x2m)
m
2
)
, k0(t) = tα−1L(1t ) (t ∈ �), 12 − 1

2m < α < 1
2 , L is a slowly varying function

satisfying some additional conditions and T ∈ L∞(Ω× Ω).
The asymptotic formula gives a direct expression in terms of the functions L and T .

1. Preliminaries

Suppose H is a complex Hilbert space and T is a compact operator on H. The
singular values of T (sn(T )) are the eigenvalues of (T ∗T )1/2 (or (TT ∗)1/2).

The eigenvalues of (T ∗T )1/2 arranged in the decreasing order and repeated ac-
cording to their multiplicity, form a sequence s1, s2, s3, . . . tending to zero.

Denote the set of compact operators on H by C∞.
An operator T is a Hilbert Schmidt operator (T ∈ C2) if

(∑

n�1
s2n(T )

)1/2
= |T |2 <∞.

If T ∈ C2 is an integral operator on L2(Ω) defined by

Tf(x) =
∫

Ω
M(x, y)f(y) dy
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then

|T |22 =
∫

Ω

∫

Ω
|M(x, y)|2 dxdy.

Denote by
∫
ΩK(x, y) · dy the integral operator on L2(Ω) with a kernel K(x, y).

By an ∼ bn (f(x) ∼ g(x), x→ x0) we denote the fact that

lim
n→∞

an

bn
= 1

(
lim

x→x0

f(x)
g(x)

= 1

)
.

Let Nt(T ) be the singular value distribution function

Nt(T ) =
∑

sn(T )�t

1 (t > 0).

A positive function L is a slowly varying function on [a,+∞) if it is measurable
and for each λ > 0 the equality

lim
x→+∞

L(λx)
L(x)

= 1

holds. It is well known [13] that for every γ > 0 we have

lim
x→+∞

xγL(x) = +∞,

lim
x→+∞

x−γL(x) = 0.

Denote by |Ω| the Lebesgue measure of the set Ω ⊂ �
m . In what follows we need

some lemmas.

Lemma 1. Let α > 0 and suppose L is a slowly varying function such that
ϕ(x) = x−αL(x) and ψ(x) = xαL(x) are monotone for x � x0 and

(0) lim
x→+∞

L(x(L(x))±1/α)
L(x)

= 1.

Then

ϕ−1(y) ∼
(
L(y−1/α)

y

)1/α

, y → 0+,

ψ−1(y) ∼
( y

L(y1/α)

)1/α

, y → +∞

where ϕ−1, ψ−1 are the inverses of ϕ and ψ.

�����. Follows directly from (0) by substitution. �
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Observe that the functions L(x) =
s∏

i=1
(lnmi x)

αi (lnm x = ln ln . . . ln︸ ︷︷ ︸
m

x) satisfy the

conditions of Lemma 1.

Lemma 2. Suppose the operator H ∈ C∞ is such that for every ε > 0 there

exists a decomposition H = H ′
ε +H

′′
ε (H

′
ε, H

′′
ε ∈ C∞) with the following properties:

1◦ there exists lim
t→0+

(
t

L(t−1/α)

)1/αNt(H ′
ε) = c(H

′
ε) (c(H

′
ε) is a bounded function in

a neighborhood of the point ε = 0),

2◦

lim
n→∞

nα

L(n)
sn(H ′′

ε ) < ε.

Then there exists lim
ε→0

c(H ′
ε) = c(H) and

lim
t→0+

( t

L(t−1/α)

)1/α

Nt(H) = c(H)

(L is a slowly varying function satisfying the conditions of Lemma 1).

Lemma 3. Let H ′, H ′′ ∈ C∞ and H = H ′ +H ′′. If

lim
t→0+

( t

L(t−1/α)

)1/α

Nt(H ′) = c(H ′)

and

sn(H ′′) = o
(L(n)
nα

)

then

lim
t→0+

( t

L(t−1/α)

)1/α

Nt(H) = c(H
′)

�����. Lemmas 2 and 3 can be proved by a slight modification of the proof of

the Ky-Fan theorem [1], [4]. �
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2. Main result

Suppose Ω ⊂ �
m is a bounded Jordan measurable set with a diameter d. Let

L be a (positive, nondecreasing) slowly varying function, L ∈ C1[ 1d ,+∞) such that
x �→ xL′(x)

L(x) is a decreasing function for x large enough and lim
x→+∞

xL′(x)
L(x) = 0.

Consider integral operators

A : L2(Ω)→ L2(Ω),

B : L2(Ω)→ L2(Ω)

define by

Af(x) =
∫

Ω
k(x− y)f(y) dy,

Bf(x) =
∫

Ω
T (x, y)k(x− y)f(y) dy

where

k(t) = k0
(
(t21 + t

2
2 + . . . t

2
m)

m
2
)
, t ∈ �m ,

k0(x) = kα−1L
(1
x

)
, α > 0, x ∈ �, T ∈ L∞(Ω× Ω).

Let

d(m,α)
def
= �

m
2 (1−α) Γ(

mα
2 )

Γ(m(1−α)
2 )

· 1
(Γ(1 + m

2 ))
α
.

Theorem 1. If 12 − 1
2m < α < 1

2 (m � 2) and the function L satisfies the
conditions of Lemma 1, then

(1) sn(A) ∼ d(m,α)|Ω|α · L(n)
nα

.

Theorem 2. If 12 − 1
2m < α < 1

2 (m � 2) and the function T ∈ L∞(Ω × Ω) is
such that it is continuous in a neighbourhood of the diagonal y = x, T (x, x) > 0 on
Ω and L satisfies the conditions of Lemma 1, then

(2) sn(B) ∼ d(m,α)

( ∫

Ω
(T (x, x))1/α dx

)α

· L(n)
nα

.

Observe that in [2] a special case of Theorem 2 is considered, namely L(x) =
(1 + 1

m

∣∣ln |x|
∣∣)γ .
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Proofs

Before proving Theorems 1 and 2 we prove a number of lemmas.

Lemma 4. [2] For an integral operator
∫
Ω T (x, y)q(‖x−y‖m)· dy (x, y ∈ Ω ⊂ �

m ,

Ω a bounded domain) where T ∈ L∞(Ω×Ω), q ∈ L1(0,∞), q � 0 and q ∈ L2(a,∞)
for every a > 0, the following estimate holds:

sn

(∫

Ω
T (x, y)q(‖x− y‖m) · dy

)
� C‖T ‖∞

[∫ a

0
q(t) dt+ n−1/2

(∫ ∞

a

q2(t) dt

)1/2]
.

(The constant C depends only on Ω).

From the proof in [2] it can be concluded that one can take C = σm+
√
σm ·VolΩ

where σm is the volume of the unit m-dimensional ball.

If we put q(x) = xα−1L( 1x) (≡ k0(x)), 12 − 1
2m < α < 1

2 and a =
1
n in the previous

lemma (L being positive, nondecreasing slowly varying function) we obtain

(3)

sn

( ∫

Ω
T (x, y)k0(‖x− y‖m) · dy

)

� C‖T ‖∞
(∫ 1/n

0
tα−1L

(1
t

)
dt+ n−1/2

(∫ ∞

1/n

t2α−2L2
(1
t

)
dt

)
.

Having in mind

∫ 1/n

0
tα−1L

(1
t

)
dt =

∫ ∞

n

L(x)
xα+1

dx ∼ 1
α

L(n)
nα

,

∫ +∞

1/n

t2α−2L2
(1
t

)
dt =

∫ n

0

L2(x)
x2α

dx ∼ 1
1− 2α

L2(n)
n2α−1

(n→ +∞)

from (3) we get

(4) sn

(∫

Ω
T (x, y)k0(‖x− y‖m) · dy

)
� C1‖T ‖∞

L(n)
nα

(n→∞)

(C1 is a constant depending only on Ω).

Let ξ ∈ �m and

K(ξ)
def
=

∫

�m

eit·ξk(t) dt =
∫

�m

eit·ξk0(‖t‖m) dt
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= (according to [12], p. 358) =

(2�)
m
2

‖ξ‖m−2
2

∫ ∞

0
k0(�m) · �m

2 Jm
2 −1(�‖ξ‖) d�

(Jν is the Bessel function with the index ν).

Let

K(λ) def= (2�)
m
2

λ
m−2
2

∫ ∞

0
k0(�

m)�
m
2 Jm

2 −1(λ�) d�, λ > 0.

Then

K(ξ) = K(‖ξ‖) ξ = (ξ1, ξ2, . . . , ξm), ‖ξ‖2 = ξ21 + ξ22 + . . .+ ξ2m.

Lemma 5. If 12 − 1
2m < α < 1

2 then the asymptotic formula

(5) K(λ) ∼ �

m
2 2mα Γ(mα

2 )

Γ(m(1−α)
2 )

L(λm)
λmα

, λ→ +∞

holds.

�����. Substituting λ� = 1
x in the integral defining K, after a simplification

we get K(λ) = (2�)m
2 λ−mα

∫∞
0 x

m
2 −mα−2L((λx)m)Jm

2 −1(
1
x ) dx.

Put
K(λ) = (2�)m

2 λ−mα(K1(λ) +K2(λ))

where

K1(λ) =
∫ x1

0
x

m
2 −mα−2Jm

2 −1
( 1
x

)
L(λmxm) dx,

K2(λ) =
∫ +∞

x1

x
m
2 −mα−2Jm

2 −1
( 1
x

)
L(λmxm) dx

where x1 is the reciprocal value of the smallest positive zero of the function Jm
2 −2.

(It is known that for every m ∈ � the smallest positive zero of Jm
2 −2 is greater

than 1; so 0 < x1 < 1).
Since

(6)
d
dx
xλJλ

( 1
x

)
= xλ−2Jλ+1

( 1
x

)

we obtain (for λ = m
2 − 2)

K1(λ) =
∫ x1

0
x2−mαL(λmxm)

d
dx

(
x

m
2 −2Jm

2 −2
( 1
x

))
.
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Applying partial integration and having in mind that

lim
x→0

x
m
2 −mαJm

2 −2
(1
x

)
= 0 (0 < α < 1/2)

and

Jm
2 −2

( 1
x1

)
= 0

we obtain

K1(λ) = −
∫ x1

0
x

m
2 −2Jm

2 −2
(1
x

)(
x2−mαL(λmxm)

)′
dx.

So

K1(λ) = (mα − 2)
∫ x1

0
x

m
2 −2Jm

2 −2
(1
x

)
x1−mαL(λmxm) dx

−
∫ x1

0
x

m
2 −2Jm

2 −2
(1
x

)
mλmx1+m−mαL′(λmxm) dx

and therefore

K1(λ)
L(λm)

= (mα− 2)
∫ x1

0
x

m
2 −mα−1Jm

2 −2
(1
x

)L(λmxm)
L(λm)

dx(7)

−m

∫ x1

0
x

m
2 −mα−1Jm

2 −2
( 1
x

) (λx)mL′((λx)m)
L(λmxm)

· L(λ
mxm)

L(λm)
.

By the asymptotic formula

Jλ(z) =

√
2
�z

(
cos

(
z − �λ

2
− �

4

)
+O

(1
z

))
[12]

we get ∫ x1

0
x

m
2 −mα−1

∣∣∣Jm
2 −2

(1
x

)∣∣∣ dx <∞

and from (7), the Lebesgue Dominated Convergence Theorem, the fact that xL′(x)
L(x) ↓

0 and 0 < x1 < 1 it follows that

(8) K1(λ) = L(λm)

(
(mα− 2)

∫ x1

0
x

m
2 −mα−1Jm

2 −2
( 1
x

)
dx+ o(1)

)
, λ→ +∞.

Applying (6) once more we obtain

(mα− 2)
∫ x1

0
x

m
2 −mα−1Jm

2 −2
(1
x

)
dx =

∫ x1

0
x

m
2 −mα−2Jm

2 −1
(1
x

)
dx
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and from (8) we conclude

(9) K1(λ) = L(λm)

[∫ x1

0
x

m
2 −mα−2Jm

2 −1
(1
x

)
dx+ o(1)

]
, λ→ +∞.

Let us now estimate the asymptotic behavior of the function K2. Since

Jm
2 −1

(1
x

)
=

∞∑

k=0

(−1)k
k!Γ(k + m

2 )
21−

m
2 −2kx1−

m
2 −2k,

we obtain
∫∞

x1
x

m
2 −mα−2|Jm

2 −1(
1
x)| dx <∞ provided

∫ ∞

x1

x
m
2 −mα−2x1−

1
2−0 dx <∞.

But this is true, because we have supposed that α > 1
2 − 1

2m .

Since
K2(λ)
L(λm)

=
∫ ∞

x1

x
m
2 −mα−2Jm

2 −1
(1
x

)
· L(λ

mxm)
L(λm)

,

Theorem 2.6 [13] yields

(10) K2(λ) = L(λm)

[∫ ∞

x1

x
m
2 −mα−2Jm

2 −1
(1
x

)
dx+ o(1)

]
, λ→∞.

From (9) and (10) we obtain (after a simplification)

(11) K(λ) = (2�)m
2 λ−mαL(λm)

(∫ ∞

0
x−

m
2 +mαJm

2 −1
( 1
x

)
dx+ o(1)

)
, λ→ +∞.

Since

∫ ∞

0
�βJν(�) d� = 2βΓ

(ν + β + 1
2

)/
Γ
(ν − β + 1

2

)
(Veber integral)

we get ∫ ∞

0
x−

m
2 +mαJm

2 −1(x) dx = 2
mα−m

2
Γ(mα

2 )

Γ(m(1−α)
2 )

and (11) yields

K(λ) = 2mα
�

m
2 Γ

(mα
2

)/
Γ
(m(1− α)

2

)
· L(λ

m)
λmα

· (1 + o(1)) λ→ +∞.

�

715



Lemma 6. If L is a slowly varying nondecreasing function, 12 − 1
2m < α < 1

2 ,

ε > 0 and m � 2 then

S =
∫

[0,ε]m×[0,ε]m

∫ ∣∣∣∣
L(( 1

(x1±y1)2+...(xm±ym)2
)m/2)

((x1 ± y1)2 + . . .+ (xm ± ym)2)
m
2 (1−α)

∣∣∣∣
2

dxdy <∞,

x = (x1, x2, . . . , xm),

y = (y1, y2, . . . , ym)

where all combinations of + and − are possible, except the one with all −.

�����. It is enough to prove the statement in the case ε = 2. As L is a
nondecreasing, the expression under the integral sign is largest when one sign is +

and all the other signs are −. To be specific, let the sign + be in the last term. We
have

S =
∫ 2

0

∫ 2

0
dxm dym

∫ 2

0
. . .

∫ 2

0
dx1 . . . dxm−1

∫ 2

0
. . .

∫ 2

0∣∣∣∣
L(( 1

(x1−y1)2+...(xm+ym)2
)m/2)

((x1 − y1)2 + . . .+ (xm + ym)2)
m
2 (1−α)

∣∣∣∣
2

dy1 . . . dym−1.

Let

ui − xi = ti, i = 1, 2, . . . ,m− 1,
u = xm + ym

and let

S1(u) =
∫ 2

0
. . .

∫ 2

0
dx1 . . . dxm−1

∫
m−1∏
i=1
(−xi,2−xi)

∣∣∣∣
L(( 1

t21+...+t2m−1+u2
)

m
2 )

(t21 + . . .+ t
2
m−1 + u2)

m
2 (1−α)

∣∣∣∣
2

dt1 . . . dtm−1.

It is enough to prove that

∫ 2

0

∫ 2

0
S1(xm + ym) dxm dym <∞

and therefore it is enough to prove that

(12)
∫ 2

0

∫ 2

0
h(xm + ym) dxm dym <∞
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where

h(u) =
∫ 2

0
. . .

∫ 2

0
dx1 . . . dxm−1

∫
m−1∏
i=1
(0,xi)

∣∣∣∣
L(( 1

t21+...+t2m−1+u2
)

m
2 )

(t21 + . . .+ t
2
m−1 + u2)

m
2 (1−α)

∣∣∣∣
2

dt1 . . . dtm−1.

Since
m−1∏

i=1

(0, xi) ⊂
{
t ∈ �

m−1 :
m−1∑

i=1

t2i �
m−1∑

i=1

x2i = R
2 � 4(m− 1)

}

we get

h(u) �
∫ 2

0
. . .

∫ 2

0
dx1 . . . dxm−1

∫

|t|�R

∣∣∣∣
L(( 1

t21+...+t2m−1+u2
)m/2)

(t21 + . . .+ t
2
m−1 + u2)

m
2 (1−α)

∣∣∣∣
2

dt1 . . . dtm−1.

Let

ϕ0(t) =

∣∣∣∣
L( 1
(t2+u2)m/2 )

(t2 + u2)
m
2 (1−α)

∣∣∣∣
2

.

Then

h(u) �
∫ 2

0
. . .

∫ 2

0
dx1 . . . dxm−1

∫
m−1∑
i=1

t2i �
m−1∑
i=1

x2i=R2
ϕ0(‖t‖) dt.

According to the formula

∫
m−1∑
i=1

t2i �
m−1∑
i=1

x2i=R2
ϕ0(‖t‖) dt

=
2�

m−1
2

Γ(m−1
2 )

∫
√

m−1∑
i=1

x2i

0
�m−2

∣∣∣∣
L( 1
(�2+u2)m/2 )

(�2 + u2)
m
2 (1−α)

∣∣∣∣
2

d�

[12] we obtain

h(u) �
∫ 2

0
. . .

∫ 2

0
dx1 . . . dxm−1

2�
m−1
2

Γ(m−1
2 )

∫
√

m−1∑
i=1

x2i

0
�m−2

∣∣∣∣
L( 1
(�2+u2)m/2 )

(�2 + u2)
m
2 (1−α)

∣∣∣∣
2

d�.

Since
m−1∑
i=1

x2i � 4(m− 1) � 4m we conclude that

h(u) � 2m �

m−1
2

Γ(m−1
2 )

∫ 2
√

m

0
�m−2

∣∣∣∣
L( 1
(�2+u2)m/2 )

(�2 + u2)
m
2 (1−α)

∣∣∣∣
2

d�.
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After the substitution � = uv, v ∈ (0, 2
√

m
u ) we obtain

(13) h(u) � 2m �

m−1
2

Γ(m−1
2 )

∫ 2
√

m
u

0
u−m−1+2mα · vm−2L

2( 1
(u2(1+v2))m/2 )

(1 + v2)m(1−α)
dv.

Since the function L is nondecreasing and
∫∞
0 vm−2(1 + v2)−m(1−α) dv < ∞, we

obtain for m � 2 and α < 1/2 from (13) the inequality

h(u) � const u2mα−m−1
(
L

( 1
um

))2

where const. does not depend on u.
To prove (12) it is enough to prove (by virtue of the previous inequality) that

∫ 2

0

∫ 2

0

L2( 1
(x+y)m )

(x+ y)m+1−2mα
dxdy <∞

(12 − 1
2m < α < 1

2 , L is a slowly varying function).
By direct calculation we get that this integral is finite provided

(14)
∫ 2

0

L2( 1ym )

ym−2mα
dy <∞.

Since ∫ 2

0

L2( 1ym )

ym−2mα
dy =

1
m

∫ ∞

2−m

L2(x)

x2α+
1
m

dx,

the integral (14) is finite if 2α + 1
m > 1, i.e. α > 1

2 − 1
2m , which is true by the

assumption. �

Now, we perform a modification of the function L. Let

La(x) =

{
L(x); x � a (a > 1

a ),

L′(a)(x − a) + L(a); 0 < x � a

and ka(x) = xα−1La(x), 12 − 1
2m < α < 1

2 .

We introduce an operator

Aa : L
2(Ω)→ L2(Ω)

(Ω being a bounded, Jordan measurable set in �m ), defined by

Aaf(x) =
∫

Ω
ka(‖x− y‖m)f(y) dy.
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Let

Ka(ξ) =
∫

�m

eit·ξka(t) dt (ξ, t ∈ �m )

and

Ka(λ) =
(2�)

m
2

λ
m−2
2

∫ ∞

0
ka(�

m)�
m
2 Jm

2 −1(λ�) d�.

Clearly Ka(ξ) = Ka(‖ξ‖), ξ ∈ �
m and so Lemma 5 implies Ka(λ) ∼ λ−mαL(λm)�

m
2 ·

2mα · Γ(αm
2 )/Γ(

m(1−α)
2 ).

Lemma 7. If a is a fixed number large enough, then the function Ka(λ) is

monotonicaly decreasing for λ large enough.

�����. Differentiating the function Ka by λ, after a simplification we obtain

K′a(λ) = (2�)
m
2 λ−mαL(λm)

[
−mα

∫ ∞

0
x

m
2 −mα−2Jm

2 −1
(1
x

)
dx

+m
∫ ∞

0
x

m
2 −mα−2Jm

2 −1
( 1
x

)
· (λx)

mL′a((λx)
m)

La(λm)
dx

]
.

Since ∫ ∞

0
x

m
2 −mαJm

2 −1
( 1
x

)
dx = 2mα−m

2 Γ
(mα
2

)/
Γ
(m(1− α)

2

)
,

it is enough to prove that if a is a fixed number large enough and λ is large enough

then

(15)

∣∣∣∣
∫ ∞

0
x

m
2 −mα−2Jm

2 −1
(1
x

)
· (λx)

mL′a((λx)
m)

La(λm)
dx

∣∣∣∣ � α2mα−m
2
Γ(mα

2 )

Γ(m(1−α)
2 )

.

Since (for x � 1)
lim

λ→∞
(λx)mL′a((λx)

m)
La((λx)m)

= 0,

it follows from Theorem 2.6 [13] that

(16) lim
λ→∞

∫ ∞

1
x

m
2 −mα−2Jm

2 −1
(1
x

)
(λx)m

L′a((λx)
m)

La((λx)m)
dx = 0.

Now, consider the integral
∫ 1
0 x

m
2 −mα−2Jm

2 −1(
1
x) · (λx)m

L′a((λx)m)
La((λx)m) dx. If we suppose

λ > m
√
a then the integral can be splitted in the following way:

∫ 1

0
=

∫ m
√

a/λ

0
=

∫ 1

m
√

a/λ

.

719



Since λm > a and x � m
√

a
λ < 1, we have λmxm < a and L′a((λx)

m) = L′(a) and
hence

∫ m√a
λ

0
x

m
2 −mα−2Jm

2 −1
( 1
x

)
· (λx)mL′a((λx)

m)
La(λm)

dx

=
L′(a)
L(λm)

∫ m√a
λ

0
x

m
2 −mα−2Jm

2 −1
( 1
x

)
(λx)m dx.

Therefore

∣∣∣∣
∫ m√a

λ

0
x

m
2 −mα−2Jm

2 −2
(1
x

)
(λx)m

L′a((λx)
m)

La(λm)
dx

∣∣∣∣

� L′(a)
L(a)

∣∣∣∣
∫ m√a

λ

0
x

m
2 −mα−2Jm

2 −1
( 1
x

)
(λx)m dx

∣∣∣∣.

From the asymptotic behavior of the function Jm
2 −1(t) (t → ∞), having in mind

that λm > a and α < 1
2 , we obtain by direct calculation

∣∣∣∣
∫ m√a

λ

0
x

m
2 −mα−2Jm

2 −1
(1
x

)
(λx)m dx

∣∣∣∣ � const.a

where const. does not depend on λ and a.
So

(17)

∣∣∣∣
∫ m√a

λ

0
x

m
2 −mα−2Jm

2 −1
(1
x

)
· (λx)mL′a((λx)

m)
La(λm)

dx

∣∣∣∣ � const.aL
′(a)

L(a)
.

Since the function a �→ aL′(a)
L(a) tends to zero when a → +∞, the integral on the

left hand side of (17) can be made arbitrary small for a large enough.

Now we estimate

R
def
=

∫ 1

m√a
λ

x
m
2 −mα−2Jm

2 −1
(1
x

)
(λx)m

L′a((λx)
m)

La(λmxm)
· L(λ

mxm)
L(λm)

dx.

Applying the Bonnet Mean Value Theorem to the monotone increasing function

La((λx)m) we obtain

R =
La(λm)
La(λm)

∫ 1

ξ1

x
m
2 −mα−2Jm

2 −1
( 1
x

)
(λx)m

L′a((λx)
m)

La((λx)m)
dx

where
m
√

a
λ � ξ1 < 1.
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Applying once more the Bonnet Mean Value Theorem to the nonincreasing func-

tion x �→ (λx)m L′a((λx)m)
La((λx)m) we obtain

R = (λξ1)m
L′a((λξ1)

m)
La((λξ1)m)

∫ ξ2

ξ1

x
m
2 −mα−2Jm

2 −1
(1
x

)
dx

where ξ1 � ξ2 � 1.
Since (λξ1)m � a and the function x �→ xm L′a(x

m)
La(xm) is nonincreasing we get

|R| � a
L′a(a)
La(a)

·
∣∣∣∣
∫ ξ2

ξ1

x
m
2 −mα−2Jm

2 −1
(1
x

)
dx

∣∣∣∣.

Having in mind that L′a(a) = L′(a), La(a) = L(a) and the fact that the integral∫∞
0 x

m
2 −mα−2Jm

2 −1(
1
x ) dx is convergent we conclude that

(18) |R| � const. aL
′(a)
L(a)

where const. does not depend on a.

Since the function a �→ aL′(a)
L(a) tends to zero (when a→ +∞), R can be forced to

be arbitrary small by choosing a large enough and λ > m
√
a.

The statement of Lemma 7 follows from (15), (16), (17) and (18). �

Lemma 8. Consider all numbers
m∑

k=1
n2k, where nk ∈ � ∪ {0}, k = 1, 2, . . . ,m.

If we arrange these numbers in the nondecreasing order λ′1 � λ′2 � λ′3 � then
λ′n ∼ C

−2/m
m · n 2

m where

Cm = �

m
2 /2mΓ

(
1 +

m

2

)
.

�����. This is easily deduced from [7], p. 330. �

Let us now consider a special case of the domain Ω. Namely, we assume Ω = Im

where I = (−1, 1). Then

A : L2(Im)→ L2(Im),

Af(x) =
∫

Im

k0(‖x− y‖m)f(y) dy

(
=

∫

Im

k(x− y)f(y) dy

)
.

Lemma 9. If 12 − 1
2m < α < 1

2 , m � 2 then

sn

(∫

Im

k0(‖x− y‖m) · dy
)
∼ c(α,m)

L(n)
nα

(n→∞)
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where c(α,m) = 2mα
�

m
2 (1−α)Γ(αm

2 )/Γ(
m(1−α)
2 ) · (Γ(1 + m

2 ))
α.

�����. As we do not know in advance whether the function K(λ) is monotone
for λ large enough, we consider instead of A the asymptotics sn(Aa) where

Aa : L
2(Im)→ L2(Im),

Aaf(x) =
∫

Im

ka(‖x− y‖m)f(y) dy.

We shall show that

sn(Aa) ∼ c(α,m)
L(n)
nα

and

lim
n→∞

sn(
∫

Im k0(‖x− y‖m) · dy)
sn(Aa)

= 1

for a fixed and large enough.

Let ha(t) = ka(‖t‖m), t ∈ �m .
Introduce functions ha,1, ha,2, . . . , ha,m−1, Ha is the following way:

ha,1(t1, . . . , tm−1)

=
∑

nm∈�

[
ha(t1, . . . , tm−1, xm − ym + 4nm)− ha(t1, . . . , tm−1, xm + ym + 4nm + 2)

]
,

ha,2(t1, . . . , tm−2)

=
∑

nm−1∈�

[
ha,1(t1, . . . , tm−2, xm−1 − ym−1 + 4nm−1)

− ha,1(t1, . . . , tm−2, xm−1 + ym−1 + 4nm−1 + 2),
...

ha,m−1(t1)

=
∑

n2∈�

[
ha,m−2(t1, x2 − y2 + 4n2)− ha,m−2(t1, x2 + y2 + 4n2 + 2)

]
,

Ha(x, y)

=
∑

n1∈�

[
ha,m−1(x1 − y1 + 4n1)− ha,m−1(x1 + y1 + 4n1 + 2)

]
.

By direct calculation we obtain
∫

Im

Ha(x, y)ϕn1n2...nm(y) dy = Ka

(n1�
2
,
n2�

2
, . . .

nm�

2

)
ϕn1n2...nm(x)

where ϕn1n2...nm(x) =
m∏

i=1
sin ni�(1+xi)

2 is an orthonormal base of L2(Im). According

to Lemma 6 the operator
∫

Im

(Ha(x, y)− ka(‖x− y‖m)) · dy : L2(Im)→ L2(Im)
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is a Hilbert Schmidt operator; hence

sn

(∫

Im

(Ha(x, y)− ka(‖x− y‖m)) · dy
)
= o(n−1/2)(19)

= o
(L(n)
nα

) (
0 < α <

1
2

)
.

The singular values of the operator
∫

Im Ha(x, y) · dy are

sn1n2...nm = Ka

(n1�
2
,
n2�

2
, . . .

nm�

2

)
= Ka

(
�

2

√
n21 + . . .+ n2m

)
.

Arrange the sequence sn1n2...nm to the nonincreasing sequence s
′
1 � s′2 � . . .

According to Lemma 7 the function Ka(λ) is decreasing for a fixed and large
enough and for λ large enough. Hence

(2
�

K−1a (sn1n2...nm)
)2
= n21 + n

2
2 + . . .+ n

2
m

(K−1a is inverse function of Ka), i.e.
(
2
�
K−1a (s

′
n)

)2
= n21 + . . . + n

2
m (for n1 . . . nm, n

large enough).

By Lemma 8 we obtain (2
�
K−1a (s

′
n))
2 ∼ C

−2/m
m n2/m and therefore

K−1a (s
′
n) ∼

�

2
C−1/m

m · n 1
m .

The function Ka behaves (when λ → +∞) as a regularly varying function
(Lemma 7) and so

s′n ∼ Ka

(
�

2
C−1/m

m · n 1
m

)
.

Having in mind the asymptotic behavior of Ka(λ) when λ→ +∞ we get from this
asymptotic relation

s′n ∼ c(α,m)
L(n)
nα

and

(20) sn

(∫

Im

Ha(x, y) · dy
)
∼ c(α,m) · L(n)

nα
.

From (19), (20) and the Ky-Fan Theorem [4] we obtain

sn(Aa) ∼ c(α,m)
L(n)
nα

.
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Let Sa = {x : ‖x‖ < 1
2 m
√

a
}, � : L2(Im)→ L2(Im), Pf(x) = χSaf(x), Q = J − P

(J—the identical operator).
Then

Aa = (P +Q)Aa(P +Q) = PAaP +QAaP + PAaQ+QAaQ

and similarly

A = (P +Q)A(P +Q) = PAP +QAP + PAQ+QAQ.

Since PAaP = PAP , we have

(21) A = Aa +Q(A−Aa)P + P (A−Aa)Q+Q(A−Aa)Q.

Having in mind that A−Aa ∈ C2 (Hilbert Schmidt) we get

sn(Q(A−Aa)P + P (A−Aa)Q+Q(A−Aa)Q) = o(n−1/2) = o
(L(n)
nα

)
(22)

(
α <

1
2

)
.

Since sn(Aa) ∼ c(α,m)L(n)nα , the statement of Lemma 9 follows from (21), (22) and
the Ky-Fan Theorem [4]. �

Remark. From the previous lemma (by substituting) we get the following result:

If ∆ is a cube with edges parallel to the coordinate axes, then

(23) sn

(∫

∆
k(x− y) · dy

)
∼ |∆|αd(m,α)L(n)

nα

(1
2
− 1
2m

< α <
1
2

)
.

Lemma 10. Suppose ∆1 and ∆2 are two cubes of the same size in �m having

no common internal points and with the edges parallel to the coordinate axes. Then

for 12 − 1
2m < α < 1

2 ∫

∆1

∫

∆2

|k(x− y)|2 dxdy <∞

holds.

�����. If ∆1 and ∆2 have no common boundary points, then inf
(x,y)∈∆1×∆2

‖x−
y‖ > 0 and the statement is trivial.
If ∆1 and ∆2 have some common boundary points, then repeating the procedure

as in Lemma 6, the statement of Lemma 10 is obtained under the condition 12− 1
2m <

α < 1
2 . �
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Let Ω1,Ω2 ⊂ �
m be bounded measurable sets and let Ω1 ⊂ Ωi. Let Fi : L2(Ωi)→

L2(Ωi), i = 1, 2 be compact operators defined by

Fif(x) =
∫

Ωi

M(x, y)f(y) dy.

Lemma 11. The singular value distribution functions of the operators Fi (i =
1, 2) satisfy the inequality

Nt(F1) � Nt(F2) (t > 0).

�����. Let P : L2(Ω2)→ L2(Ω1) be the orthoprojector (Pf(x) = χΩ1(x)f(x)).

Since F1 = PF2P , we have

sn(F1) � sn(F2)

and hence

Nt(F1) � Nt(F2).

�

Lemma 12. Let Ω =
s⋃

i=1
Qi where Qi are cubes such that Q01 ∩ Q0j = ∅, i �= j

(V 0-the interior of the set V ) and with the edges parallel to the coordinate axes.
Then

sn

(∫

Ω
k(x− y) · dy

)
∼ d(m,α)|Ω|αL(n)

nα

(1
2
− 1
2m

< α <
1
2

)
.

�����. A =
∫
Ω k(x− y) · dy : L2(Ω)→ L2(Ω),

Pi : L2(Ω)→ L2(Ωi); Pif(x) = χQi(x)f(x), i = 1, 2, . . . , s.

Hence

A =

( s∑

i=1

Pi

)
A

( s∑

i=1

Pi

)
=

s∑

i=1

PiAPi +
s∑

i�=j

PiAPj .

Since, according to Lemma 10, PiAPj ∈ C2 for i �= j, we have
∑
i�=j

PiAPj ∈ C2 and

hence

(24) sn

( s∑

i�=j

PiAPj

)
= o(n−1/2) = o

(L(n)
nα

) (
α <

1
2

)
.
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By (23) we have

sn(PiAPi) ∼ |Qi|αd(m,α)
L(n)
nα

(n→∞)

and hence

Nt(PiAPi) ∼
(L(t−1/α)

t

)1/α

|Qi|(d(m,α))1/α, t→ 0 + .

Having in mind Nt(
s∑

i=1
PiAPi) =

s∑
i=1

Nt(PiAPi), we obtain

(25) lim
t→0+

( t

L(t−1/α)

)1/α

Nt

( s∑

i=1

PiAPi

)
= (d(m,α))1/α|Ω|.

From (24), (25) and Lemma 3 we obtain

lim
t→0+

( t

L(t−1/α)

)1/α

Nt(A) = (d(m,α))1/α|Ω|.

Putting t = sn(A) and µn
def
= (sn(A))−1/α in the previous equality, after a simplifi-

cation we get

µα
nL(µn) ∼

nα

d(m,α)|Ω|α (n→∞).

Applying Lemma 1 to this asymptotic relation we conclude that

µα
n ∼

1
d(m,α)|Ω|α · nα

L(n)
(n→∞),

i.e.

sn(A) ∼ d(m,α)|Ω|αL(n)
nα

.

�

����� �� ������� �. Let Ω be a bounded Jordan measurable set. Let
ΩN ⊂ Ω ⊂ ΩN where the sets ΩN and ΩN are the unions of equal cubes (with

disjoint interiors) such that

m(ΩN )→ m(Ω) = |Ω|,
m(ΩN )→ m(Ω) = |Ω|, N → +∞ (m is the Lebesgue measure).
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Let AN and AN be linear operators acting on L2(ΩN ) and L
2(ΩN ) defined by

ANf(x) =
∫

ΩN

k(x− y)f(y) dy,

ANf(x) =
∫

ΩN

k(x− y)f(y) dy,

respectively.
According to Lemma 11 we get

Nt(AN ) � Nt(A) � Nt(An)

and
( t

L(t−1/α)

)1/α

Nt(AN ) �
( t

L(t−1/α)

)1/α

Nt(A) �
( t

L(t−1/α)

)1/α

Nt(AN ), t > 0.

Next, we get

lim
t→0+

( t

L(t−1/α)

)1/α

Nt(AN ) � lim
t→0+

( t

L(t−1/α)

)1/α

Nt(A)

� lim
t→0+

( t

L(t−1/α)

)1/α

Nt(A)

� lim
t→0+

( t

L(t−1/α)

)1/α

Nt(AN ).

Since there exist lim
t→0+

( t
L(t−1/α) )

1/αNt(AN ) and lim
t→0+

( t
L(t−1/α) )

1/αNt(An) and as they

are equal (according to Lemma 12) to (d(m,α))1/α|ΩN | and (d(m,α))1/α|ΩN |, re-
spectively, (26) implies

(d(m,α))1/α|ΩN | � lim
t→0+

( t

L(t−1/α)

)1/α

Nt(A)

� lim
t→0+

( t

L(t−1/α)

)1/α

Nt(A)

� (d(m,α))1/α|ΩN |.

If N → +∞ then we obtain

lim
t→0+

( t

L(t−1/α)

)1/α

Nt(A) = (d(m,α))1/α|Ω|.

Putting here t = sn(A), by Lemma 1 we obtain

sn(A) ∼ d(m,α) · |Ω|αL(n)
nα

,

which proves (1). �
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Lemma 13. Let Ω =
s⋃

i=1
Qi whereQi are equal cubes in �m such thatQ0i∩Q0j = ∅

(i �= j) and with the edges parallel to the coordinate axes. Let a function T ∈
L∞(Ω×Ω) be continuous in a neighborhood of the diagonal y = x and let T (x, x) > 0
on Ω. If a function L satisfies the condition (0), then for the operator B defined on

L2(Ω) by

Bf(x) =
∫

Ω
T (x, y)k(x− y)f(y) dy

the asymptotic formula

sn(B) ∼ d(m,α)

(∫

Ω
(T (x, x))1/α dx

)α
L(n)
nα

(1
2
− 1
2m

< α <
1
2

)

holds.

�����. Divide the cubes Qi (1 � i � s) in equal smaller cubes so that their

number in Ω in N . Denote these cubes by ∆i (1 � i � N) and denote by xi the
midpoint of ∆i. Let operators

AN
i : L

2(Ω)→ L2(Ω), i = 1, 2, . . . , N,

Aij : L2(Ω)→ L2(Ω), i, j = 1, 2, . . . , N

be defined by

AN
i f(x) =

∫

Ω
k(x− y)χ∆i(x)χ∆i(y)T (xi, xi)f(y) dy,

Aijf(x) =
∫

Ω
k(x− y)χ∆i(x)χ∆j (y)T (x, y)f(y) dy, i �= j.

Let

AN =
N∑

i=1

AN
i .

Then

B = AN +
N∑

i�=j

Aij +BN ,

where BN is the operator defined by

BNf(x) =
∫

Ω
k(x− y)GN (x, y)f(y) dy.

Here

GN (x, y) =
N∑

i=1

χ∆i(x)χ∆i(y)(T (x, y)− T (xi, xi)).
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It follows from the continuity of the function T in a neighborhood of the diagonal y =

x that for an arbitrary ε > 0 and for N large enough we have |T (x, y)−T (xi, xi)| < ε

for (x, y) ∈ ∆i ×∆i, i = 1, 2, . . . , N .
Hence for (x, y) ∈ Ω× Ω we have

|GN (x, y)| < ε.

This inequality and Remark after Lemma 4 give

(27) sn(BN ) < C1 · ε ·
L(n)
nα

where the constant C1 does not depend on n and ε. Since for i �= j, Aij ∈ C2 (by
Lemma 10 in the case 12 − 1

2α < α < 1
2 ), we have

N∑

i�=j

Aij ∈ C2

and

lim
n→∞

n1/2sn

( N∑

i�=j

Aij

)
= 0.

Combining this with (27) and using the properties of the singular values of the sum

of two operators we obtain that for every ε > 0 there exists a positive integer N such
that

(28) lim
t→0+

nα

L(n)
sn

( N∑

i�=j

Aij +BN

)
< ε.

Since the operator AN is the direct sum of the operators AN
i we obtain

(29) Nt(AN ) =
N∑

i=1

Nt(AN
i ).

Theorem 1 implies

lim
t→0+

( t

L(t−1/α)

)1/α

Nt(A
N
i ) = (T (xi, xi))

1/α(d(m,α))1/α|∆i|

and (29) gives

(30) lim
t→0+

( t

L(t−1/α)

)1/α

Nt(AN ) = (d(m,α))1/α
N∑

i=1

(T (xi, xi))1/α|∆i|.
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From (28), (30) and Lemma 2 we conclude

lim
t→0+

( t

L(t−1/α)

)1/α

Nt(B) = lim
N→∞

(d(m,α))1/α
N∑

i=1

(T (xi, xi))1/α|∆i|

= (d(m,α))1/α ·
(∫

Ω
(T (x, x))1/α dx

)
.

Putting here t = sn(B) and (sn(B))−1/α = µn, after a simplification we obtain

(31) µα
nL(µn) ∼

nα


0
where 
0 = d(m,α)

(∫

Ω
(T (x, x))1/α dx

)α

.

Applying Lemma 1 to (31) we conclude

µα
n ∼

nα


0L(n)
and sn(B) ∼ d(m,α)

(∫

Ω
(T (x, x))1/α dx

)α

· L(n)
nα

.

�
����� �� ������� 	. Let us extend the function T to a bounded function

T̃ in some neighborhood Ω × Ω so that it is continuous in a neighborhood of the
diagonal y = x.
Let Ω be a bounded Jordan measurable set in �m .

Let ΩN ⊂ Ω ⊂ ΩN where the sets ΩN and ΩN are the unions of equal cubes (with
disjoint interiors) such that

m(ΩN )→ |Ω|,
m(ΩN )→ |Ω|, N →∞.

Let BN and BN be operators acting on L2(ΩN ) and L
2(ΩN ) defined by

BNf(x) =
∫

ΩN

T (x, y)k(x− y)f(y) dy,

BNf(x) =
∫

ΩN

T̃ (x, y)k(x− y)f(y) dy,

respectively.
It follows from Lemma 11 that Nt(BN ) � Nt(B) � Nt(BN ) and ( t

L(t−1/α) )
1/αNt

(BN ) � ( t
L(t−1/α) )

1/αNt(B) � ( t
L(t−1/α) )

1/αNt(BN ), t > 0 and therefore

(32)

lim
t→0+

( t

L(t−1/α)

)1/α

Nt(BN ) � lim
t→0+

( t

L(t−1/α)

)1/α

Nt(B)

� lim
t→0+

( t

L(t−1/α)

)1/α

Nt(B)

� lim
t→0+

( t

L(t−1/α)

)1/α

Nt(BN ).
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Since lim
t→0+

( t
L(t−1/α))

1/αNt(BN ) and lim
t→0+

( t
L(t−1/α) )

1/αNt(BN) exist and as they

are equal (according to Lemma 13) to

(d(m,α))1/α

∫

ΩN

(T (x, x))1/α dx and (d(m,α))1/α

∫

ΩN

(T̃ (x, x))1/α dx,

respectively, (32) implies

(d(m,α))1/α

∫

ΩN

(T (x, x))1/α � lim
t→0+

( t

L(t−1/α)

)1/α

Nt(B)

� lim
t→0+

( t

L(t−1/α)

)1/α

Nt(B)

� (d(m,α))1/α

∫

ΩN

(T̃ (x, x))1/α dx.

Letting N → +∞ we get

lim
t→0+

( t

L(t−1/α)

)1/α

Nt(B) = (d(m,α))1/α

∫

Ω
(T (x, x))1/α dx.

Putting here t = sn(B), it follows by Lemma 1 that

sn(B) ∼ d(m,α)

(∫

Ω
(T (x, x))1/α dx

)α
L(n)
nα

,

which proves (2). �

Remark. The condition 12− 1
2m < α < 1

2 is used indirectly in the proof of Lemma
13. It is an open problem whether Theorems 1 and 2 hold in the case 0 < α < 1/2.

But if m = 1 it appears that Theorem 1 and 2 are also true, i.e. they hold in the
case 0 < α < 1/2 (their proofs have to be slightly modified).
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