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1. Introduction

Let hp(ϕ) denote the class of (complex-valued) functions harmonic in the unit disc
∆ for which Mp(u, r) = 0(ϕ(r)), r → 1−, where ϕ is a positive, continuous function
defined on some interval [r0, 1), r0 < 1, and

Mp(u, r) =
{ 1
2�

∫ 2�

0
|u(reiθ)|p dθ

}1/p

.

Following [8] we say that hp(ϕ) is self-conjugate if the Riesz projection maps hp(ϕ)
into itself or, equivalently, if f ∈ hp(ϕ) whenever f is an analytic function such that

Re f (= real part of f) is in hp(ϕ).
It follows from the Riesz projection theorem that hp(ϕ) is self-conjugate whenever

1 < p <∞, without additional restrictions on ϕ. That hp((1−r)−a) is self-conjugate
for all p > 0, a > 0, was established by Hardy and Littlewood [3]. Shields and
Williams [8, 9] were the first who studied the case where ϕ(r) is different from

(1− r)−a. They proved that hp(ϕ) is self-conjugate provided

(U) (1− r)βϕ(r) ↓ 0, r → 1−, for some β <∞

and

(L) (1 − r)αϕ(r) ↑ ∞, r → 1−, for some α > 0.

(For the case p < 1 see [4, 6].)
The typical example of functions satisfying (U) + (L) is

ϕ(r) = (1 − r)−a
(
log

1
1− r

)b

,
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where a > 0. It was also proved in [9] that if (1− r)βϕ(r) ↓ 0 (r → 1−) for all β > 0,
then h∞(ϕ) is not self-conjugate, which is true, e.g., if

ϕ(r) =
(
log

1
1− r

)p

, b > 0.

We are however interested in the case where ϕ(r) grows faster than any positive
power of 1/(1− r) and especially when

(1.1) ϕ(r) = (1 − r)−a
(
log

1
1− r

)b

exp
c

1− r

(c > 0). We believe that condition (L) is sufficient for hp(ϕ) to be self-conjugate but
we can prove it only under additional restrictions on the regularity of growth of ϕ. As

a special case of our main result (Theorem 2.1) we have that hp(ϕ) is self-conjugate
in the case of (1.1) (c > 0 or c = 0, a > 0).

Our proofs are surprisingly easy and are independent of any deeper fact from the
theory of harmonic functions. The key is the inequality

(1.2) |u(0)|p � Cp

∫

∆
|u|p dA,

where u is harmonic in ∆, and dA is the normalized planar measure on ∆. If

p � 1, then one can take Cp = 1 because of the subharmonicity of |u|p. In the case
of p < 1, in which |u|p need not be subharmonic, (1.2) is contained implicitly in
another theorem of Hardy and Littlewood on harmonic conjugates [3], Theorem 5:

(1.3)
∫

∆
|f |p dA � Cp

∫

∆
|Re f |p dA,

where f is analytic and Im f(0) = 0. Indeed, (1.2) follows from (1.3) and the sub-
harmonicity of |f |p. However, Hardy and Littlewood proved their theorems without
mentioning the inequality (1.2) and this was the main reason for which their proofs
were rather difficult and long.

A proof of (1.2) can be found in [2]. In order that the paper be self-contained we

reproduce a very short and simple proof given in [7]. See Lemma 2.1.
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2. Main result

A real function F is said to be almost increasing (almost decreasing) if there exists

a constant C > 0 such that F (x) � CF (y) (F (y) � CF (x)) whenever x < y. For a
C1-function F we say that it is almost convex if its derivative is almost increasing.

An application of Lagrange’s theorem shows that F is almost convex if and only if
there is a constant C > 0 such that

(2.1) F ′(x)/C � F (y)− F (x)
y − x

� CF ′(y), x < y.

By the term majorant we mean a function ϕ defined, positive and continuous on

some interval (r0, 1), 0 < r0 < 1, and such that ϕ(r) → ∞ as r → 1. We say that a
majorant ϕ satisfies condition (L+) if it is C1 and

(L+) ϕ−m is almost convex on (r0, 1) for some m > 0, r0 < 1.

This is equivalent to the requirement that ϕ′(r)/ϕ(r)m+1 is almost decreasing near
1, which implies that ϕ′ > 0 near 1. Moreover, applying (2.1) to F = ϕ−m we obtain

−(m/C)ϕ′(r)ϕ(r)−m−1(�− r) � ϕ(�)−m − ϕ(r)−m

for r < � < 1, whence by letting � tend to 1,

(2.2) ϕ′(r) � α(1 − r)−1ϕ(r) (r0 < r < 1),

where α = C/m. In particular, ϕ′(r) → ∞ (r → 1). Thus if ϕ satisfies (L+), then
ϕ′ is a majorant and ϕ satisfies (L). Further remarks are in Section 3.

Theorem 2.1. Let ϕ be a majorant satisfying (L+) and let 0 < p � ∞. For a
function f analytic in ∆ the following assertions are equivalent:

f ∈ hp(ϕ),(a)

Re f ∈ hp(ϕ),(b)

f ′ ∈ hp(ϕ′).(c)

Recall that (c) means Mp(f ′, r) = 0(ϕ′(r)), r → 1−. Since the case p � 1 is
somewhat easier (for instance, (a) is deduced from (c) by means of Minkowski’s
inequality) we shall assume from now on that 0 < p < 1.
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Lemma 2.1. There is a constant Cp <∞ such that

(2.2) sup{|u(w)|p : w ∈ ∆R/2(z)} � Cp

∫

∆R(z)
|u|p dA

whenever u is harmonic in ∆ and ∆R(z) := {w : |w − z| < R} ⊂ ∆.

�����. By dilatations and translations the proof reduces to the case where
z = 0 and R = 1. We may also assume that u is continuous on the closed disc.

Under this hypothesis we choose z0 ∈ ∆ such that the function

h(z) = (1− |z|)2|u(z)|p, z ∈ ∆,

attains its maximum for z = z0. Then we apply the mean value property over the

disc ∆r(z0), r = (1− |z0|)/2 to get

(2.3) |u(z0)| � r−2
∫

∆r(z0)
|u(z)| dA(z).

On the other hand, we have that (1−|z|)−1 � 2(1−|z0|)−1 for z ∈ ∆r(z0) which, along
with the inequality h(z) � h(z0), shows that |u(z)| � 22/p|u(z0)| for z ∈ ∆r(z0).

Hence
|u(z)| � C|u(z)|p|u(z0)|1−p, z ∈ ∆r(z0),

where C depends only on p. Combining this with (2.3) we obtain

h(z0) � Cp

∫

∆
|u|p dA.

Now the desired result follows from the inequality |u(z)|p � 4h(z) � 4h(z0), |z| �
1/2. �

Lemma 2.2. If u = Re f , where f is analytic in ∆, then there is a constant Cp

such that

(2.4) Mp(f
′, r) � Cp(�− r)−1 sup

0<t<�
Mp(u, t)

whenever 0 < r < � < 1.

�����. Using the simple, familiar estimate

|f ′(z)| � CR−1 sup
∆R/2(Z)

|u|
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we deduce from (2.2) that

|f ′(r)|p � C(�− r)−p−2
∫

∆R(r)
|u|p dA,

where R = � − r, 0 < r < � < 1. Applying this to the functions z �→ f(zeiθ) we
obtain

|f ′(reiθ)|p � C(�− r)−p−2
∫

∆R(r)
|u(weiθ)|p dA(w),

where C depends only on p. Integrating this inequality over 0 � θ � 2� we find that

Mp
p (f

′, r) � (�− r)−p−2
∫

∆R(r)
Mp

p (u, |w|) dA(w),

� C(�− r)−p sup
w∈∆R(r)

Mp(u, |w|).

The result follows because ∆R(r) ⊂ ∆�(0). �

Lemma 2.3. There exists a constant Cp such that

(2.5) Mp
p (f, �)−Mp

p (f, r) � Cp(�− r)pMp
p (f

′, �)

whenever 0 < r < � < 1 and f is analytic in ∆.

�����. With these hypotheses let sj = �− 2−j(�− r) and tj = (sj + sj+1)/2,

j � 0. Using Lemma 2.1 (u = f ′) we get

|f(sj+1)− f(sj)|p � (sj+1 − sj)p sup
sj<x<sj+1

|f ′(x)|p

� C(sj+1 − sj)p(�− tj)−2
∫

∆j

|f ′|p dA,

where ∆j = {w : |w− tj | < �− tj}. Now we apply this to the functions z �→ f(zeiθ)
and then integrate with respect to θ. As a result we have

Mp
p (f, sj+1)−Mp

p (f, sj) � C(sj+1 − sj)pMp
p (f

′, �).

(We also have to use the “increasing property” of Mp(f ′, ·).) Now (2.5) is obtained
by summation from j = 0 to j =∞. �
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Remark. The proof can be made shorter by use of the Complex Maximal Theo-
rem (see [5]).

����� �� ������� 2.1. The implication (a)⇒ (b) is obvious. To prove the
rest we may assume that ϕ′ > 0 on [0, 1) and ϕ(0) = 1. Then we define a sequence
{rj} (j � 0) by ϕ(rj) = 2j and choose tj ∈ (Rj , rj+1) so that

ϕ(rj+1)− ϕ(rj) = ϕ′(tj)(rj+1 − rj)

i.e.,

(2.6) rj+1 − rj =
2j

ϕ′(tj)
(j � 0).

Assuming that ϕ satisfies (L+) we have the relation

(2.7) ϕ′(t) � Cϕ′(r), rj � r � t � rj+2,

where C is a constant independent of j, r, t. To show (2.7) choose m > 0 such that

ϕ′/ϕm+1 is almost decreasing on [0, 1). Then

ϕ′(t) � Cϕ′(r)(ϕ(t)/ϕ(r))m+1

� Cϕ′(r)(ϕ(rj+2)/ϕ(rj))m+1,

which is implies (2.7).
Proof of (b) ⇒ (c). Let u = Re f ∈ hp(ϕ). Then Mp(u, rj)Cϕ(rj) = C2j and

hence, by (2.4) and (2.6),

Mp(f
′, rj) � C(rj+1 − rj)

−1ϕ(rj+1) = 2Cϕ
′(tj)

for some constant C. If r ∈ (0, 1) is arbitrary, we choose j such that rj � r � rj+1.
Then

Mp(f, r) � Mp(f, rj+1) � 2Cϕ′(rj+1).
Now (c) follows from (2.7).
Proof of (c)⇒ (a). Let f ′ ∈ hp(ϕ′). By (2.5), (2.7) and (2.6) we have that

Mp
p (f, rj+1)−Mp

p (f, rj) � C(rj+1 − rj)pMp
p (f

′, rj+1)

� C(rj+1 − rj)pϕ′(tj)p = C2p.

Now summation yields

Mp
p (f, rk+1)− |f(0)|p � C2kp = Cϕ(rk)p,

which implies (a). This completes the proof of Theorem 2.1. �
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3. Examples of majorants

In this section we briefly discuss some classes of majorants for which the corre-
sponding hp-spaces are self-conjugate.

(i) (U) + (L) implies (L+) (provided ϕ is C1 near 1).

Indeed, (U) + (L) is equivalent to

(3.1) ϕ′(r) 	 (1− r)−1ϕ(r), r → 1−.

Since (L) implies that (1−r)−1ϕ(r)−m ↓ 0 for somem > 0, we see that ϕ′(r)/ϕ(r)m+1

is almost decreasing near 1.

Remark. We write A(r) 	 B(r), r → 1, to denote that A(r)/B(r) and B(r)/A(r)
remain bounded when r tends to 1.

It is clear that (U) implies

(3.2) ϕ(r) = 0(ϕ(r2)), r → 1−.

On the other hand, (L+) + (3.2) implies (L) + (U). Indeed, as remarked before

Theorem 2.1, (L+) implies (L). Then we apply (2.1) to F = ϕ−m to get

ϕ(r)−m − ϕ(r2)−m

r − r2
� −Cmϕ(r)−m−1ϕ′(r).

Using this and (3.2) we find that ϕ′(r) � γ(1− r)−1ϕ(r), γ = const., which implies

(U).

(ii) It is known [4, 6, 8, 9] that hp(ψ) is self-conjugate provided

(1− r)αψ(r) is almost increasing and (1− r)βψ(r)(N)

is almost decreasing near 1 for some α > 0, β > 0.

This can be deduced from Theorem 2.1 by using the fact that (N) implies the

existence of a majorant ϕ satisfying (3.1) (= (L) + (U)) and such that ϕ(r) 	 ψ(r),
r → 1−.
To see the latter assume that ψ is defined and positive on [0, 1) and let

(3.2′) ϕ(r) =
∫ r

0
(1− t)−1ψ(t) dt.

Using (N) one shows that ϕ 	 ψ and since ϕ′(r) = (1− r)−1ψ(r) the result follows.
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(iii) For a majorant ψ satisfying (L+) let us choose m > 0 such that ψ′/ψm+1 is

almost decreasing near 1 and let

η(r) = sup
r<t<1

ψ′(t)/ψ(t)m+1.

Then define ϕ by

ϕ(r)−m =
∫ 1

r

η(t) dt.

It is easily seen that ϕ(r) 	 ψ(r), r → 1−, and that ϕ−m is convex near 1. By

calculating the second derivative of ϕ−m one concludes that the convexity of ϕ−m

for some m > 0, where ϕ is C2, is equivalent to

(3.3) lim sup
r→1

ϕ′′(r)ϕ(r)
ϕ′(r)2

<∞.

Thus (3.3) ensures the conclusion of Theorem 2.1.
A slightly stronger condition

(3.4) lim sup
r→1

|ϕ′′(r)|ϕ(r)
ϕ′(r)2

<∞

means that there is a constant m > 0 such that both ϕm and ϕ−m are convex

near 1. If ψ satisfies (U) + (L) and ϕ is defined by (3.2)′, then ϕ satisfies (3.4). A
consequence of this and (ii) is that every majorant satisfying (N) is “proportional”

to one satisfying (3.4).
(iv) There is a large class of majorants, including (1.1), for which (3.4) holds.

Sometimes it is convenient to represent ϕ as

ϕ(r) = F
( 1
1− r

)
,

where F is a positive, continuous function defined on some [A,∞), A > 0, and such

that F (∞) =∞. In [8], such an F is called a weight. With this notation we have

Proposition 3.1. Let F be a weight such that F is C2 and F ′ > 0. Then
condition (3.4) is equivalent to

(3.5) lim sup
x→∞

|F ′′(x)|F (x)
F ′(x)2

<∞.

�����. The validity of the implication (3.4) ⇒ (3.5) follows from the formula

F ′′(x)F (x)
F ′(x)2

=
ϕ′′(r)ϕ(r)
ϕ′(r)2

− 2ϕ(r)
(1− r)ϕ′(r)

, x = (1 − r)−1
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and the facts that (3.4) implies (L+) and (L+) implies (2.2). In the opposite direction

we use the formula
ϕ′′(r)ϕ(r)
ϕ′(r)2

=
F ′′(x)F (x)
F ′(x)2

+
2F (x)
xF ′(x)

and the fact (3.5) means that there is a constant m > 0 such that Fm and F−m are
convex near ∞. In particular, if F satisfies (3.5), then there is a c > 0 such that

F (x)m − F (c)m

x− c
� mF ′(x)F (x)m−1, x > c.

Hence lim sup
x→∞

F (x)/xF ′(x) � m, which concludes the proof.

(v) A remarkable result of Hardy (cf. [1], Ch. V) makes the verification of (3.5)
for a large class of weights almost trivial. Let h(x) be an expression composed

from {ex, log x, constants} by successive applications of arithmetic operations and
substitutions. We write h ∈ (H) if h(x) is defined in a neighbourhood of ∞. The
result of Hardy states that sign h(x), for h ∈ (H), is constant near ∞. And since
h′ ∈ (H) whenever h ∈ (H) it follows that the limit lim

x→∞
h(x) exists. Then it is

easily shown that if a weight F belongs to (H), then the limit

lim
x→∞

F ′′(x)F (x)
F ′(x)2

=: L(F )

exists (finite or not). Then by the L’Hospital rule

0 � lim
x→∞

F (x)/F ′(x)
x

= 1− L(F ).

This shows that when ϕ(r) = F (1/(1 − r)), F ∈ (H), conditions (L), (L+), (3.3),
(3.4) and (3.5) are equivalent. Moreover, each of them is implied by the existence of

an α > 0 such that

lim
x→∞

F (x)/xα =∞.

A concrete example is

F (x) = xa(log x)b exp(cxd + k(log x)m),

where c > 0, d > 0 or c = 0, k > 0, m > 1.
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4. A problem

The “norm” in hp(ϕ) can be defined as follows. Choose r0 < 1 such that ϕ > 0
on [r0, 1) and let

‖u‖ = sup
r0<r<1

Mp(u, r)/ϕ(r).

Then, using Lemma 2.1, one shows that the norm convergence in hp(ϕ) implies the

uniform convergence on compact subsets of ∆. A consequence is that hp(ϕ) is norm
complete. The space Hp(ϕ) spanned by analytic functions is a closed subspace of
hp(ϕ).

Problem. If ϕ satisfies (L+) and lim sup
r→1

ϕ(r)/ϕ(r2) = ∞, is the space hp(ϕ)

isomorphic to Hp(ϕ)?

This simplest case is that where ϕ(r) = exp(1/(1− r)).

It is not hard to prove that if hp(ϕ) is self-conjugate, then the space hp(ϕ(r)) is
isomorphic to Hp(ϕ(r2)) via the operator T defined by

(Tu)(z) = f(z2) + zg(z2),

where f, g are the unique analytic functions such that u(z) = f(z) + g(z), g(0) = 0.

�
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