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1. Introduction

Consider the linear differential equation of the fourth order with quasi-derivatives

(L) L(y) ≡ L4y + P (t)L2y +Q(t)y = 0,

where

L0y(t) = y(t),

L1y(t) = p1(t)y
′(t) = p1(t) dy(t)/ dt,

L2y(t) = p2(t)(p1(t)y′(t))′ = p2(t)(L1y(t))′,

L3y(t) = p3(t)(p2(t)(p1(t)y′(t))′)′ = p3(t)(L2y(t))′,

L4y(t) = (p3(t)(p2(t)(p1(t)y
′(t))′)′)′ = (L3y(t))

′,

P (t), Q(t), pi(t), i = 1, 2, 3, are real-valued continuous functions on an interval I =

[a,∞), −∞ < a < ∞. It is assumed throughout that

P (t) � 0, Q(t) � 0, pi(t) > 0, i = 1, 2, 3, t ∈ I and(A)

Q(t) is not identically zero in any subinterval of I.
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This paper is a continuation of [TP] where monotone (See Definitions 1, 6.) as

well as Kneser (See Definition 6.) solutions of (L) have been studied. The main
results of this article are presented in three theorems.
Theorems 1, 2 give sufficient conditions for (L) to be oscillatory. (See Defini-

tions 4, 5.) Theorem 3 deals with sufficient conditions for the fundamental system
of solutions of (L) on I to consist of two oscillatory solutions, one monotone solution

which tends to infinity for t →∞, and one Kneser solution which converges to zero
for t →∞.
Similar problems for n-th order (n = 3, 4) ordinary differential equations have

been studied, for example, in [G], [Gr], [H], [LN], [Ro], [S], [Š] and [Šv].

In the end of this part we note that some results mentioned above are general-
izations of those in [R], where J. Regenda considered the equation (L), pi(t) ≡ 1,
i = 1, 2, 3. (See Remarks 1, 2, 3.)

2. Definitions and preliminary results

Definition 1. A solution y(t) of (L) on I is called positively (negatively) non-
oscillatory iff there exists t0 � a such that y(t) > 0 (y(t) < 0), t � t0.

Definition 2. A solution y(t) of (L) on I is called non-oscillatory iff y(t) is
positively or negatively non-oscillatory.

Definition 3. The equation (L) is called non-oscillatory iff every non-trivial

solution of (L) on I is non-oscillatory.

Definition 4. A non-trivial solution y(t) of (L) on I is called oscillatory on I

iff its set of all zeros on I is not bounded from above.

Definition 5. The equation (L) is called oscillatory iff there exists at least one

oscillatory solution of (L) on I.

Definition 6. A positively non-oscillatory solution y(t) of (L) on I such that

y(t) > 0 for t � t0 � a is called monotone (Kneser) solution on [t0,∞) iff Lky(t) > 0
((−1)kLky(t) > 0), k = 0, 1, 2, 3, t � t0.

Lemma 1. [H, Lemma 2.2] Let f(t) be a real valued function defined in [t0,∞)
for some real number t0 � 0. Suppose that f(t) > 0 and that f ′(t) and f ′′(t) exist

for t � t0. Suppose also that if f ′(t) � 0 eventually, then lim
t→∞

f(t) = A < ∞. Then

lim inf
t→∞

|tαf ′′(t)− αtα−1f ′(t)| = 0

for any α � 2.
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Lemma 2. [TP, Lemma 3] Let (A) and
∞∫
(1/p1(t)) dt =∞ hold. Then for every

non-oscillatory solution y(t) of (L) there exists a number t0 � a such that

either(y(t)L1y(t) > 0, y(t)L2y(t) > 0) or (y(t)L1y(t) < 0, y(t)L2y(t) > 0) or

(y(t)L1y(t) > 0, y(t)L2y(t) < 0) for all t � t0.

Lemma 3. [TP, Lemma 4] Suppose that (A) holds and let y(t) be a non-trivial

solution of (L) satisfying the initial conditions

y(t0) = y0 � 0, L1y(t0) = y′0 � 0,
L2y(t0) = y′′0 � 0, L3y(t0) = y′′′0 � 0

(t0 ∈ I arbitrary and y0 + y′0 + y′′0 + y′′′0 �= 0). Then

y(t) > 0, L1y(t) > 0, L2y(t) > 0, L3y(t) > 0 for all t > t0.

Lemma 4. [TP, Lemma 5] Suppose that (A) holds and let y(t) be a non-trivial
solution of (L) satisfying the initial conditions

y(t0) = y0 � 0, L1y(t0) = y′0 � 0, L2y(t0) = y′′0 � 0, L3y(t0) = y′′′0 � 0,

(t0 ∈ I arbitrary, y20 + y
′2
0 + y

′′2
0 + y

′′′2
0 > 0). Then

y(t) > 0, L1y(t) < 0, L2y(t) > 0, L3y(t) < 0 for all t ∈ [a, t0).

Lemma 5. [TP, Theorem 2] Suppose that (A) holds. Then there exists a solution
y(t) of (L) such that

y(t) > 0, L1y(t) < 0, L2y(t) > 0, L3y(t) < 0 for all t ∈ I = [a,∞).
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3. Results

Lemma 6. Let (A) hold. If every positively non-oscillatory solution of (L) on I
is either monotone or Kneser, then (L) is oscillatory.

�����. We construct two oscillatory solutions u+(t) and v+(t) similar to what
was done in [S], Theorem 3. Since there are some differences in proving their oscil-

lation, we go through the whole proof.

Let functions zk(t), k = 0, 1, 2, 3 form the fundamental system of solutions of (L)
on I such that Lkzm(a) = δkm, k, m = 0, 1, 2, 3 where δkm is the Kronecker symbol.

It is obvious that there exist real numbers b0n, b3n, c2n and c3n such that

b20n + b23n = c22n + c23n = 1,

b0nz0(n) + b3nz3(n) = 0,

c2nz2(n) + c3nz3(n) = 0

for all natural numbers n > a. Let us put for n > a

u+n (t) = b0nz0(t) + b3nz3(t),

v+n (t) = c2nz2(t) + c3nz3(t).

Because of the boundedness of b0n, b3n, c2n and c3n, there exist real numbers b0,
b3, c2 and c3 such that

b0nk
→ b0, b3nk

→ b3, c2nk
→ c2 and c3nk

→ c3 for k →∞,

b20 + b23 = c22 + c23 = 1.

If we put

u+(t) = b0z0(t) + b3z3(t),

v+(t) = c2z2(t) + c3z3(t),

it is obvious that u+(t) and v+(t) are non-trivial solutions of (L) on I. Now we prove
their oscillation.

Let, for example, u+(t) be non-oscillatory. Without loss of generality, we can

assume u+(t) is positively non-oscillatory. (If it were not so, then u+(t) would be
negatively non-oscillatory, and to obtain a contradiction, we should take into account

the function −u+(t).) Then u+(t) is either monotone or Kneser. If it is monotone,
then there exists t0 � a such that Lku+(t) > 0 on [t0,∞), k = 0, 1, 2, 3. Let us take
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any fixed τ > t0. Then there exists an integer positive number n0 > a such that

Liu
+
nk
(τ) > 0 for nk > n0, i = 0, 1, 2, 3. If nk is any fixed number satisfying the

condition nk > max{n0, τ}, then Lemma 3 yields u+nk
(nk) > 0. However, this is a

contradiction because u+nk
(nk) = 0.

If u+(t) is a Kneser solution of (L) on I, then there exists t1 > a such that
(−1)kLku+(t) > 0 for t � t1, k = 0, 1, 2, 3.Then Lemma 4 implies (−1)kLku+(t) > 0

on [a, t1). In particular, L1u
+(a) < 0. But L1u

+(a) = b0L1z0(a) + b3L1z3(a) = 0,
which is a contradiction.

In the case of v+(t) the proof is practically the same, hence it will be omitted.
The lemma is proved. �

Later, in Theorem 3, we will show linear independence of u+(t) and v+(t) on I.

Lemma 7. Let (A) hold, let p1(t) be non-increasing on [b,∞), b ∈ I, p′3(t) � 0
on [b,∞),

∫∞(1/p2(t)) dt =
∫∞−t2Q(t) dt = ∞. Then for every positively non-

oscillatory solution y(t) of (L) on I there exists c � b such that y(t) is monotone on

[c,∞) or y(t) is Kneser on [c,∞) or y(t) > 0, L1y(t) > 0, L2y(t) < 0 on [c,∞).
�����. We have

∫∞(1/p1(t)) dt =∞ because p1(t) is non-increasing on [b,∞),
b ∈ I. Let y(t) (in accordance with the first (or the second) part of the assertion of
Lemma 2) be a positively non-oscillatory solution of (L) on I. Then y(t) > 0, L2y(t) >

0 on [t0,∞), t0 � b. It follows from (A) that L4y(t) ≡ −P (t)L2y(t) − Q(t)y(t) � 0
and L4y(t) = 0 at isolated points only, i.e. L3y(t) is an increasing function on [t0,∞).
So only the following five cases (involving the third part of the assertion of Lemma 2)
may occur:

a) y(t) > 0, L1y(t) > 0, L2y(t) > 0, L3y(t) > 0 on [t1,∞), t1 � t0,
b) y(t) > 0, L1y(t) > 0, L2y(t) > 0, L3y(t) < 0 on [t0,∞),
c) y(t) > 0, L1y(t) < 0, L2y(t) > 0, L3y(t) < 0 on [t0,∞),
d) y(t) > 0, L1y(t) < 0, L2y(t) > 0, L3y(t) > 0 on [t2,∞), t2 � t0,

e) y(t) > 0, L1y(t) > 0, L2y(t) < 0, on [t0,∞).
Let b) be valid. Then y′(t) is a positive and non-decreasing function on [t0,∞)

because L1y(t) = p1(t)y′(t) is increasing and p1(t) is non-increasing. So

y(t) = y(t0)+
∫ t

t0

y′(s) ds � y(t0)+ y′(t0)
∫ t

t0

ds = y(t0)+ y′(t0)(t− t0) on [t0,∞).

From (L) it follows that

∫ t

t0

sL4y(s) ds =
∫ t

t0

−sP (s)L2y(s) ds+
∫ t

t0

−sQ(s)y(s) ds �
∫ t

t0

−sQ(s)y(s) ds

� y(t0)
∫ t

t0

−sQ(s) ds+ y′(t0)
∫ t

t0

−sQ(s)(s− t0) ds →∞ for t →∞.
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Integration of sL4y(s) by parts over [t0, t] yields
∫ t

t0

L3y(s) ds = tL3y(t)− t0L3y(t0)−
∫ t

t0

sL4y(s) ds → −∞ for t →∞.

However,
∫ t

t0

L3y(s) ds =
∫ t

t0

p3(s)(L2y(s))′ ds

= p3(t)L2y(t)− p3(t0)L2y(t0) +
∫ t

t0

−p′3(s)L2y(s) ds

� − p3(t0)L2y(t0) = const. > −∞, t > t0.

This contradiction proves the impossibility of the case b).

So let d) be valid. Then (t � t2)

L2y(t) = L2y(t2) +
∫ t

t2

L3y(s)
p3(s)

ds � L2y(t2).

Consequently

L1y(t) = L1y(t2) +
∫ t

t2

L2y(s)
p2(s)

ds � L1y(t2) + L2y(t2)
∫ t

t2

ds
p2(s)

→∞ for t →∞,

which contradicts L1y(t) < 0 on [t2,∞). The lemma is proved. �

Lemma 8. Let (A) and
∫∞(1/p1(t)) dt =

∫∞(1/p2(t)) dt =
∫∞−Q(t) dt = ∞

hold. Then for every positively non-oscillatory solution y(t) of (L) on I there exists

t0 � a such that y(t) is monotone on [t0,∞) or y(t) is Kneser on [t0,∞) or y(t) > 0,
L1y(t) > 0, L2y(t) < 0 on [t0,∞).
�����. It is obvious that for every positively non-oscillatory solution y(t) of

(L) on I, only the cases a), b), c), d) and e) (mentioned in the proof of Lemma 7)

can occur.
Let b) be valid. Then from (L) we have (t � t0)

L3y(t) = L3y(t0) +
∫ t

t0

L4y(s) ds = L3y(t0) +
∫ t

t0

−P (s)L2y(s) ds+
∫ t

t0

−Q(s)y(s) ds

� L3y(t0) + y(t0)
∫ t

t0

−Q(s) ds →∞ for t →∞

because y(t) is an increasing function. This contradicts L3y(t) < 0 on [t0,∞). So
the case b) is not valid.
The impossibility of d) is proved in the same way as in Lemma 7. The lemma is

established.
�
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Now the main results will be introduced.

Theorem 1. Let (A) hold, let p1(t) be non-increasing on [b,∞), p′2(t) � 0 on
[b,∞), p′3(t) � 0 on [b,∞), (tp3(t))′ � 0 on [b,∞), t2P (t) � −M on [b,∞), where
M is a real positive constant, b � max{0, a},

∫∞−t2Q(t) dt = ∞. Then (L) is

oscillatory.

�����. The assumption p′2(t) � 0 implies
∫∞(1/p2(t)) dt =∞. Lemma 7 yields

the following three possibilities for every positively non-oscillatory solution y(t):
a) y(t) is monotone on [t0,∞), t0 � b,

b) y(t) is Kneser on [t0,∞), t0 � b,
c) y(t) > 0, L1y(t) > 0, L2y(t) < 0 on [t0,∞), t0 � b.

Now we prove the impossibility of c). Let us assume for a while that c) is valid.
Then

(1) L4y(t) + P (t)L2y(t) +Q(t)y(t) = 0 on [t0,∞).

Multiplying (1) by t2 and integrating (1) over [t0, t], t � t0, we obtain by a little
rearrangement of (1)

t2L3y(t)− t20L3y(t0)− 2tp3(t)L2y(t) + 2t0p3(t0)L2y(t0)(2)

+
∫ t

t0

s2P (s)L2y(s) ds+
∫ t

t0

(2sp3(s))′L2y(s) ds+
∫ t

t0

s2Q(s)y(s) ds

= 0 on [t0,∞).

Now we present (2) in the form

A(t) +B(t) + C(t) +D(t) + E(t) = 0 on [t0,∞), where
A(t) = t2L3y(t)− 2tp3(t)L2y(t),
B(t) = − t20L3y(t0) + 2t0p3(t0)L2y(t0),

C(t) =
∫ t

t0

s2P (s)L2y(s) ds,

D(t) =
∫ t

t0

(2sp3(s))′L2y(s) ds,

E(t) =
∫ t

t0

s2Q(s)y(s) ds.

We have A(t) = p3(t)[t2f ′′(t)−2tf ′(t)], where f ′(t) = L2y(t) on [t0,∞). The function
f(t) can be expressed in the following way:

f(t) = f(t0)+
∫ t

t0

L2y(s) ds = f(t0)−p2(t0)L1y(t0)+p2(t)L1y(t)−
∫ t

t0

p′2(s)L1y(s) ds.
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It is obvious that we can choose f(t0) such that f(t) > 0 on [t0,∞). Because of
p3(t) � p3(t0) on [t0,∞), Lemma 1 yields lim inf

t→∞
|A(t)| = 0. So B(t) = B = const.,

and

C(t) =
∫ t

t0

s2P (s)L2y(s) ds � −M

∫ t

t0

L2y(s) ds = −M

∫ t

t0

f ′(s) ds

=M [f(t0)− f(t)] � Mf(t0) < ∞

because f(t) > 0 on [t0,∞), D(t) � 0 on [t0,∞), E(t) � y(t0)
∫ t

t0
s2Q(s) ds because

y(t) is increasing on [t0,∞). Hence lim
t→∞

E(t) = −∞. We have

0 = lim inf
t→∞

0 = lim inf
t→∞

(A(t) +B(t) + C(t) +D(t) + E(t))

� lim inf
t→∞

(|A(t)| +B +Mf(t0) + 0 + E(t))

= B +Mf(t0) + lim inf
t→∞

(|A(t)| + E(t)) = −∞,

which is a contradiction. Then Lemma 6 yields the assertion of the theorem. �

Remark 1. Theorem 1.5 in [R] is a special case of the previous theorem for
pk(t) ≡ 1, k = 1, 2, 3.

Theorem 2. Let (A),
∫∞
(1/pk(t)) dt =

∫∞−Q(t) dt = ∞, k = 1, 2, 3, p2(t) �
m on [t0,∞), t0 � a, −m � P (t) on [t0,∞) hold, where m is a positive real constant.

Then (L) is oscillatory.

�����. Let us assume (L) to be non-oscillatory for a while. Then Lemma

6 yields the existence of a positively non-oscillatory solution y(t) such that y(t) is
neither monotone nor Kneser on any [t1,∞), t1 � a. Lemma 8 implies the existence

of t0 � a such that y(t) > 0, L1y(t) > 0, L2y(t) < 0 on [t0,∞). So we have

L4y(t) + P (t)L2y(t) = (L3y(t))′ + P (t)p2(t)(L1y(t))′

� (L3y(t))′ + P (t)m(L1y(t))
′ � (L3y(t))′ −m2(L1y(t))

′

= (L3y(t)−m2L1y(t))′ for t � t0.

Hence

(L3y(t)−m2L1y(t))′ +Q(t)y(t) � 0 for t � t0.

Integration of the last expression over [t0, t], t > t0 yields

L3y(t) � m2L1y(t) + L3y(t0)−m2L1y(t0)−
∫ t

t0

Q(s)y(s) ds →∞ for t →∞
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because L1y(t) > 0 on [t0,∞), y(t) is increasing on [t0,∞). Hence

L2y(t) = L2y(t0) +
∫ t

t0

L3y(s)
p3(s)

ds →∞ for t →∞.

This fact is a contradiction with L2y(t) < 0 on [t0,∞). The theorem is established.
�

Remark 2. Theorem 1.6 in [R] is a special case of the previous theorem for
pk(t) ≡ 1, k = 1, 2, 3.

Theorem 3. Let the assumptions of Theorem 1 or Theorem 2 be valid. Then
the fundamental system of solutions of (L) on I consists of two oscillatory solutions,

one monotone and one Kneser solution on I. The monotone solution tends to infinity

for t →∞ and the Kneser solution converges to zero for t →∞.

�����. Let the functions zk(t), k = 0, 1, 2, 3 be the same as in the proof of
Lemma 6. Then Lemma 5 ensures the existence of a Kneser solution k(t) on I.

Lemma 3 yields that m(t), where Lim(a) = 1, i = 0, 1, 2, L3m(a) = L3k(a)/L1k(a),
is monotone on I = [a,∞). According to Theorems 1,2 and Lemma 6, there exist
two oscillatory solutions u+(t) = b0z0(t)+b3z3(t), v+(t) = c2z2(t)+c3z3(t) on I. Let
W (m(t), k(t), u+(t), v+(t)) denote the Wronski determinant of the functions m(t),

k(t), u+(t), v+(t). So

W (m(t), k(t), u+(t), v+(t)) =

∣∣∣∣∣∣∣∣

m(t), k(t), u+(t), v+(t)
L1m(t), L1k(t), L1u

+(t), L1v
+(t)

L2m(t), L2k(t), L2u
+(t), L2v

+(t)
L3m(t), L3k(t), L3u

+(t), L3v
+(t)

∣∣∣∣∣∣∣∣
.

Thus

W (m(a), k(a), u+(a), v+(a)) =

∣∣∣∣∣∣∣∣

1, k(a), b0, 0
1, L1k(a), 0, 0

1, L2k(a), 0, c2
L3k(a)/L1k(a), L3k(a), b3, c3

∣∣∣∣∣∣∣∣

= b0c3[L2k(a)− L1k(a)] + b3c2[k(a)− L1k(a)].

We want to proveW (m(a), k(a), u+(a), v+(a)) �= 0. Because of non-triviality of u+(t)
on I, we have that at least one of the numbers b0, b3 is not equal to zero. If b0 = 0,
b3 �= 0 (b0 �= 0, b3 = 0), then u+(t) = b3z3(t) (u+(t) = b0z0(t)) is non-oscillatory

according to Lemma 3, which is impossible. So b0 �= 0 �= b3. Similarly it can be
proved that c2 �= 0 �= c3. It is obvious that b0b3 < 0, c2c3 < 0. If not so, then
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b0b3 > 0, c2c3 > 0 and the lastmentioned lemma yields that u+(t) = b0z0(t) +

b3z3(t), v+(t) = c2z2(t) + c3z3(t) are non-oscillatory. Without loss of generality we
can assume b0 > 0, b3 < 0, c2 < 0, c3 > 0. Then W (m(a), k(a), u+(a), v+(a)) �= 0
because L2k(a)−L1k(a) > 0, k(a)−L1k(a) > 0. Therefore, m(t), k(t), u+(t), v+(t)

are linearly independent on I.

From the assumptions of Theorem 1 (p1(t) is non-increasing on [b,∞), b �
max{0, a}) as well as from Theorem 2 we find that

∫∞(1/p1(s)) ds = ∞. We have

L1m(t) > 0 on I and L1m(t) is increasing on I because L2m(t) = p2(t)(L1m(t))′ > 0.
So (t > b)

m(t) = m(b) +
∫ t

b

L1m(s)
p1(s)

ds � m(b) + L1m(b)
∫ t

b

ds
p1(s)

→∞ for t →∞,

which was to prove.

Now it is sufficient to show that k(t) → 0, t → ∞. Since k(t) > 0, L1k(t) =
p1(t)k′(t) < 0 on I, there exists a real constant c � 0 such that k(t) → c, t → ∞.

Let c > 0. It is obvious that k(t) > c on I. There are the following two possibilities:

a) Let the assumptions of Theorem 1 be fulfilled. Multiplying the left-hand side
of (L) by t2, where y(t) = k(t), integrating it over [b, t], t > b and rearranging a little

we obtain

0 = t2L3k(t)− b2L3k(b) +
∫ t

b

−2sp3(s)(L2k(s))′ ds+
∫ t

b

s2P (s)L2k(s) ds

+
∫ t

b

s2Q(s)k(s) ds � t2L3k(t)− b2L3k(b) + p3(b)
∫ t

b

−2s(L2k(s))′ ds

+
∫ t

b

s2P (s)L2k(s) ds+
∫ t

b

s2Q(s)k(s) ds.

If we replace the term p3(b)
∫ t

b
−2s(L2k(s))′ ds in the previous formula by the term

(which is equal to the former)

2bp3(b)L2k(b)− 2tp3(b)L2k(t) + 2p3(b)p2(t)L1k(t)

− 2p3(b)p2(b)L1k(b)− 2p3(b)
∫ t

b

p′2(s)L1k(s) ds,
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we obtain (after little arrangement)

t2L3k(t) � b2L3k(b)− 2bp3(b)L2k(b) + 2tp3(b)L2k(t)

− 2p3(b)p2(t)L1k(t) + 2p3(b)p2(b)L1k(b) + 2p3(b)
∫ t

b

p′2(s)L1k(s) ds

−
∫ t

b

s2P (s)L2k(s) ds−
∫ t

b

s2Q(s)k(s) ds

� b2L3k(b)− 2bp3(b)L2k(b) + 2p3(b)p2(b)L1k(b)

− c

∫ t

b

s2Q(s) ds →∞ for t →∞,

which is a contradiction with L3k(t) < 0 on I.

b) Let the assumptions of Theorem 2 be fulfilled. Then an integration of L4k(t) =
−P (t)L2k(t)−Q(t)k(t) over [a, t], t > a yields (c > 0)

L3k(t) = L3k(a)−
∫ t

a

P (s)L2k(s) ds−
∫ t

a

Q(s)k(s) ds

� L3k(a)−
∫ t

a

P (s)L2k(s) ds− c

∫ t

a

Q(s) ds →∞ for t →∞,

which is a contradiction with L3k(t) < 0 on I. The theorem is proved. �

Remark 3. The hypotheses of Theorem 1.7 in [R] consist of the disjunction of
the three assumptions. The second as well as the third of them is a special case of

the previous theorem for pk(t) ≡ 1, k = 1, 2, 3. In this case we note that the assertion
of Theorem 1.7 in [R] is weaker than the analogous one in our Theorem 3.

Example 1. The equation

(
1√
t

(1
t

(
(2 + e−t)y′

)′)′
)′
− 1

t2
√
1 + t2

1
t
((2 + e−t)y′)′ − 1

t2
y ≡ 0

is oscillatory (I = [1,∞)) according to Theorem 1. We note that Theorem 2 cannot
be used because

∫∞
1 −Q(t) dt =

∫∞
1 t−2 dt < ∞.

Example 2. The equation

(
3
√

t
( t+ 1

t
(ty′)′

)′)′
+ (− arctan t)

t+ 1
t
(ty′)′ − t2y ≡ 0

is oscillatory (I = [a,∞), a > 0) according to Theorem 2. The assumptions of
Theorem 1 are not fulfilled because p1(t) = t, p′1(t) = 1 > 0 on [a,∞).
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Theorem 3 in both the examples yields that the fundamental system of solutions

consists of two oscillatory solutions, one monotone solution which tends to infinity
for t →∞, and one Kneser solution which converges to zero for t →∞.

References

[G] Gera, M.: Nichtoszillatorische und oszillatorische Differentialgleichungen dritter Ord-
nung. Čas. Pěst. Mat., 96 (1971), 278–293.

[Gr] Greguš, M.: Oszillatorische Eigenschaften der Lösungen der linearen Differentialgle-
ichung dritter Ordnung y′′′ + 2Ay′ + (A′ + b)y = 0, wo A = A(x) � 0 ist. Czechoslovak
Math. J., 9(84) (1959), 416–428.

[H] Heidel, J. W.: Qualitative behavior of solutions of a third order nonlinear differential
equation. Pac. J. Math., 27 (1968), 507–526.

[LN] Leighton, W. and Nehari, Z.: On the oscillation of solutions of self-adjoint linear differ-
ential equations of the fourth order. Trans. Amer. Math. Soc., 89 (1958), 325–377.

[R] Regenda, J.: Oscillation criteria for fourth-order linear differential equations. Math.
Slovaca, 29 (1979), 3–16.

[Ro] Rovder, J.: Oscillation criteria for third-order linear differential equations. Mat. Čas.,
25 (1975), 231–244.

[S] Shair, A.: On the oscillation of solutions of a class of linear fourth order differential
equations. Pac. J. Math., 34 (1970), 289–299.

[Š] Šoltés, V.: Oscillatory properties of solutions of a fourth-order nonlinear differential
equation. Math. Slovaca, 29 (1979), 73–82.

[Šv] Švec, M.: Einige asymptotische und oszillatorische Eigenschaften der Differential-
gleichung y′′′ + A(x)y′ +B(x)y = 0. Czechoslovak Math. J., 15 (1965), 378–393.

[TP] Tóthová, M. and Palumbíny, O.: On monotone solutions of the fourth order ordinary
differential equations. Czechoslovak Math. J., 45(120) (1995), 737–746.

Author’s address: Department of Mathematics, Faculty of Material Sciences and Tech-
nology, Slovak University of Technology in Bratislava, Paulínska 16, 917 24 Trnava, Slovakia,
e-mail palum@mtf.stuba.sk.

790


		webmaster@dml.cz
	2020-07-03T12:19:17+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




