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COMPLETE LATTICE

Kent Merryfield and James D. Stein Jr., Long Beach

(Received February 6, 1997)

Introduction

Tarski’s well-known result, that an isotone map on a complete lattice L has a
fixed point, was accompanied by the generalization that commuting isotone maps on

a complete lattice have a common fixed point [4, pp. 288–289]. We give the proof
here for a pair of isotone maps S and T (although the proof for a commuting family

is essentially identical), as the basic definitions and the central argument will appear
repeatedly throughout this paper.

Let H = {x ∈ L : Sx � x, Tx � x}. H is non-empty since 1 ∈ H , so let
h =

∧{x : x ∈ H}. If x ∈ H , h � x, and so Sh � Sx by the isotony of S. Since

x ∈ H =⇒ Sx � x, we see that Sh � x. Taking the greatest lower bound of H shows
that Sh � h. We can similarly show that Th � h, and so h ∈ H . Since S is isotone,

Sh � h =⇒ S(Sh) � Sh. Since TS = ST and Th � h, T (Sh) = S(Th) � Sh.
Therefore Sh ∈ H , and so h � Sh. Since both Sh � h and h � Sh, we see that
Sh = h. The identical argument also shows that Th = h.

Several well-known theorems on common fixed points, such as the Markov-
Kakutani fixed point theorem ([2], p. 456), rely on commutativity. In the case of

isotone maps on a complete lattice, however, it is possible to weaken substantially
the hypothesis of commutativity, or to alter it, and still ensure the existence of a

common fixed point.

A search of MathSciNet using the phrases

(1) complete lattices and simultaneous fixed points

(2) complete lattices and common fixed points

disclosed no papers covering the topics to be discussed here. As a result, it would not
be unreasonable to presume that some of the problems encountered but not solved
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in this paper are open, and the last section will consist of a list of some of those

questions.

Throughout this paper, L will denote a complete lattice, and S and T isotone

maps of L into itself. Many of the results of this paper apply to families of isotone
maps, rather than pairs, but a few of the results are most easily stated for pairs of

maps, so for consistency of presentation we will remain within this framework.

An examination of the proof of Tarski’s Theorem shows the reason that many
results concerning pairs of isotone maps can be easily generalized to families. The

proof essentially involves showing that, for each Q in the family, both Q(Qh) � Qh

and Q(Rh) � Rh for all R different from Q in the family. Proofs of simultaneous

fixed points almost invariably proceed by showing that Q(Rh) � Rh using only facts
about Q and R; even though all the other members of the family besides R satisfy

the hypotheses the proof looks only at a pair of maps rather that the entire family.

Broadly speaking, this paper concerns relations between S and T which will guar-
antee the existence of a common fixed point. These relations include algebraic equal-

ities (of which commutativity is an example), lattice equalities, inequalities, and
multiple equalities.

Most of the results presented require only algebraic or lattice hypotheses. However,

it is known ([3]) that hypotheses related to continuity enable common fixed point
theorems to be proved for commuting pairs of maps of the unit interval into itself;

we shall later introduce similar hypotheses for isotone maps which will enable us to
prove additional common fixed point theorems.

I. Preliminaries

In the proof of Tarski’s Theorem given previously, the definition of H = {x :
Sx � x, Tx � x} and h =

∧{x : x ∈ H} resulted in the conclusion that Sh � h

and Th � h, so h ∈ H . This idea, or its dual (H = {x : x � Sx, x � Tx},
h =

∨{x : x ∈ H} ⇒ Sh � h and Th � h, so h ∈ H), will recur in every proof, so
we shall merely define H , and use the conclusions just cited. We shall also use the

results that Sh � h =⇒ S(Sh) � Sh and Th � h =⇒ T (Th) � Th. Applying S

repeatedly to the inequality Sh � h implies that h � Sh � . . . � Snh � . . ., and

similarly for T . Finally, once it has been established that Sh ∈ H and Th ∈ H , the
fact that Sh = Th = h follows from the inequalities Sh � h � Sh and Th � h � Th.

Much of the effort in common fixed point proofs will be devoted to showing that
S(Th) � Th and/or T (Sh) � Sh.

We will also occasionally make use of the following facts about an isotone map T .

(1) T
( ∞∧

n=1
an

)
�
∞∧

n=1
Tan.
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(2) T
( ∞∨

n=1
an

)
�
∞∨

n=1
Tan.

Definition 1. Let I denote the identity map on L. Throughout this paper, G

will denote the semigroup under composition generated by S, T , and I.

Lemma 1. Assume that Q ∈ G. If H = {x : Sx � x, Tx � x}, then Qh � h.

�����. We can assume that Q is a word formed from the letters S, T , and I;
the length of the word is the number of letters S and T in Q. Since the result is

trivially true if Q is either S, T , or I, we can assume the conclusion holds for words
of length 0 (I is the only such word) or 1 (S and T are the only such words). If

the result is true for words of length n, then a word of length n+ 1 is either SQ or
TQ, where Q is a word of length n. Since S is isotone and Qh � h by the inductive

hypothesis, SQh � Sh � h; similarly TQh � h, establishing the desired result. �

As the following example will show, the set of pairs (S, T ) such that S and T have

a common fixed point possesses no easily-discernible algebraic or lattice structure.
Let L = {0, a, 1} with 0 < a < 1 the only relations (of course, this is the lattice

consisting of the integers 1, 2, and 3 with the usual order). Define operators S, T ,
U , V as follows:

S0 = Sa = S1 = 0,

T 0 = 0 Ta = T 1 = 1,

U0 = Ua = U1 = a,

V 0 = a, V a = V 1 = 1.

Note that 0 is a common fixed point for S and T . Elementary computations show

that S ∨ U = U and T ∨ U = V , so S ∨ U and T ∨ U do not have a common fixed
point. Since SUx = 0 and TUx = 1 for all x ∈ L, SU and TU do not have a common

fixed point. Finally, V S = U and V T = V , so V S and V T do not have a common
fixed point.

However, it is possible to use existing common fixed point theorems to generate
additional common fixed point theorems. We illustrate with a simple example, and

then present a generalization which is probably well-known, but which the authors
have been unable to locate in the literature.

Note that if STx = Tx = x, then Sx = S(Tx) = x, so Sx = Tx = x. This result
is simply a matter of manipulating equalities. Now suppose that S and T are isotone

maps of a complete lattice L into itself such that TST = ST 2. The latter equality
is simply a statement that the isotone maps ST and T commute, and therefore by

Tarski’s Theorem they have a common fixed point x. So STx = Tx = x, and by the
result above, Sx = Tx = x.
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This idea can be extended inductively. If TSTST = ST 2ST , then ST and TST

commute, and so they have a common fixed point, which we denote by x. Therefore
TSTx = STx = x. But then Tx = T (STx) = x, and as we have seen, STx = Tx =
x =⇒ Sx = Tx = x.

Theorem 1. Let X be a set, and let F , G, U , and V be maps of X into X . Let

Φ(U, V ) be an expression in U and V with the following property: if Φ(U, V )x =
V x = x, then Ux = x. Let I(U, V ) be a set of conditions on U and V which ensure

the existence of a common fixed point for U and V . (Note: In the example given
just prior to this theorem, Φ(U, V )x = V x = x is the equality UV x = V x = x, and
I(U, V ) is the condition that U and V commute.)

Let Q1 = F , Q2 = G, and define Qn+1 = Φ(Qn−1, Qn). If, for some integer N ,
the conditions I(QN+1, QN ) hold, then F and G have a common fixed point.

�����. Since the conditions I(QN+1, QN) hold, by assumption ∃x ∈ X such
that QN+1x = QNx = x. Since x = QNx = QN+1x = Φ(QN−1, QN)x, we see that

QN−1x = x by the hypothesis on Φ. So QN+1x = QNx = x =⇒ QNx = QN−1 = x.
We can continue this procedure inductively down to Q3x = Q2x = x. But then

Q3x = Φ(Q1, Q2)x = Q2x = x =⇒ Φ(F, G)x = Gx = x. Therefore Fx = x. �

Although Theorem 1 is formulated on an abstract set, the set may satisfy addi-

tional conditions which can be incorporated into the definition of both Φ and I.
As a simple example, if L is a complete lattice, requiring that I ∧ ST = T is

sufficient to guarantee the existence of a common fixed point for S and T . Let
H = {x : Sx � x, Tx � x}. We see that, by Lemma 1, STh = h ∧ STh =

(I ∧ ST )h = Th, so S(Th) � Th. Therefore (combining this with the always-known
fact that T (Th) � Th), Th ∈ H , and so Th = h. So STh = Th =⇒ Sh = h.

From Theorem 1, we therefore see that I∧TST = ST is sufficient to guarantee the
existence of a common fixed point for S and T . The above result shows the existence

of a common fixed point x for ST and T ; then STx = Tx = x, which implies that
Sx = x.

As we have stated, this paper will explore a wide range of conditions on S and T

which are sufficient to guarantee the existence of a common fixed point. If there is a

‘Holy Grail’ in this area, it would be the ability to decide whether a specific equality
relating S and T would guarantee the existence of a common fixed point without

having to generate a proof dependent upon the specific equality. Although none
of the proofs in this paper make use of deep theorems, some of the proofs require

accurate definitions and precise computations. As a result, it would seem that a
classification theorem of the type just described would be rather unlikely.
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II. Algebraic conditions ensuring common fixed points

Algebraic conditions are relations between maps in G; commutativity (ST = TS)
is a simple example of such a condition.

We start with a simple counterexample. Assume that Q and R are maps in G

such that at least one of the two, regarded as words in the letters S and T , contains

the letter T . Then no relation of the form SQ = SR will guarantee the existence
of a common fixed point. Let L be the lattice M4 (notation from [1], p. 4), which

consists of 4 elements {0, 1, a, b} with relations 0 < a < 1 and 0 < b < 1 (this is also
the lattice of all subsets of {0, 1}). Define Sx = a for all x ∈ L, and define T 0 = 0,
T 1 = 1, Ta = b, and Tb = a. Then SQ = SR = S, but S and T have no common

fixed points. We note in passing that Mn can be used as a counterexample for many
conjectures in this subject.

The simplest type of algebraic condition relating S and T is the equation Sp = T q.
It is possible to guarantee the existence of a common fixed point under weaker

conditions.

Theorem 2. Assume that for each x ∈ L there exist integers p = p(x), q = q(x),
i = i(x), and j = j(x) such that Spx � T qx and T ix � Sjx. Then S and T have a

common fixed point.

�����. Let H = {x ∈ L : Sx � x, Tx � x}, and then let u =
∧{Qkh : Q =

S, T ; k = 0, 1, 2, . . .}. We show that Tu � u.

Since u � T nh for any integer n, we see that Tu � T n+1h � T nh, so we must now
show that Tu � Snh for any integer n.

By assumption, there exist integers p1 and q1 such that T p1h � Sq1h. Having
chosen p1 < . . . < pk and q1 < . . . < qk such that T pjh � Sqj h for 1 � j � k,

by assumption there exist integers a and b such that T a(T pkh) � Sb(T pkh). Let
pk+1 = pk + a and qk+1 = qk + b. Then pk < pk+1, qk < qk+1, and T pk+1h =

T a(T pkh) � Sb(T pkh) � Sb(Sqkh) = Sqk+1h.

Let n � 0. We show that Tu � Snh. Choose k such that qk � n; then u �
T pk−1h =⇒ Tu � T pkh � Sqkh � Snh. Therefore Tu � u. A similar argument

shows that Su � u, and so u ∈ H . Therefore Th � h � u � Th and Sh � h � u �
Sh, so Th = Sh = h. �

This type of argument will occur frequently throughout this paper. It is often
easier to show that Sh or Th belongs to H by defining an auxiliary element (such as

u in the above proof), and showing that u belongs to H .

We can formalize the general idea. Suppose that K is a subset of L with the
following properties:
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(1) Sh ∈ K, Th ∈ K.

(2) For each k ∈ K, ∃k1 ∈ K such that Sk1 � k.
(3) For each k ∈ K, ∃k2 ∈ K such that Tk2 � k.
Then Sh = Th = h. If we let u =

∧{k : k ∈ K}, then (2) =⇒ Su � u and (3)

=⇒ Tu � u, so u ∈ H . But then (1) =⇒ Sh � h � u � Sh and Th � h � u � Th,
so Sh = Th = h.

The above argument demonstrates that the existence of K is a sufficient condition
for the existence of a common fixed point for S and T , but it is not a necessary one.

Let L = {0, 1, a, b, c}, where the relations are 0 < b < a < 1 and 0 < c < a < 1 (this
lattice is dual to the one pictured on p. 131 of [1]). Define

S1 = 1, Sa = Sb = Sc = S0 = b,

T 1 = 1, T a = Tb = Tc = T 0 = c.

S and T are isotone, H = {x : Sx � x, Tx � x} = {1, a}, and so h = a. 1 is a
common fixed point for S and T , but h = a isn’t, and all attempts to construct a

set K with the properties above are therefore doomed to fail.
Nonetheless, as will be demonstrated throughout this paper, the idea of construct-

ing a set K satisfying the three properties above is a fruitful one. One obvious can-
didate for K is {Qkh : Q = S, T ; k = 0, 1, 2, . . .}, which was utilized in Theorem 2.
This set has the property that S(Snh) = Sn+1h � Snh and T (T nh) = T n+1h � T nh,
so the easy part of the work is already done; we need only show that for each integer

n we can find elements k = k(n) and j = j(n) belonging to k such that Tk � Snh

and Sj � T nh. A similar remark applies to another likely candidate, {Qh : Q ∈ G}.
Even an answer to a question such as, “Which equalities relating S and T guarantee

that {Qkh : Q = S, T ; k = 0, 1, 2, . . .} satisfy properties (2) and (3) above?” would
certainly be helpful in discovering when S and T have a common fixed point, and
when they do not.

Corollary 2.1. If either of the equalities (ST )k = T n or (ST )kS = T n holds,

then S and T have a common fixed point.

�����. If (ST )kS = T n, then multiplying on the right by T yields (ST )k+1 =
T n+1, so it suffices to show that the equality (ST )k = T n ensures the existence of a

common fixed point for S and T . By Theorem 2, ST and T have a common fixed
point x, and so STx = Tx = x =⇒ Sx = STx = x. �

Tarski’s basic proof needs little modification to establish the following result.

Theorem 3. Assume that for some integer n, STSn = T . Then S and T have a

common fixed point.
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�����. Let H = {x ∈ L : Sx � x, Tx � x}. As usual, S(Sh) � Sh. Also

T (Sh) = STSn(Sh) = STSn+1h � Sh by Lemma 1, so Sh ∈ H , and therefore
Sh = h. But then Th = STSnh = STh, so S(Th) � Th. Since we always have
T (Th) � Th, we see that Th ∈ H , and therefore Th = h. �

Corollary 3.1. Assume that for some integer n, STSn = TSp, where n > p.

Then S and T have a common fixed point.

�����. In Theorem 3, replace T by TSp. The hypothesis of the Corollary now
becomes S(TSp)Sn−p = TSp, so S and TSp have a common fixed point, which we

denote by x. Using an argument familiar from Theorem 1, x = TSpx = Tx. �
Tarski’s basic proof can also be used to show that the equality ST = TSn guar-

antees the existence of a common fixed point. We shall later prove stronger results

than this, and so will bypass this for the present.
Let Q, R ∈ G. Note that no equality of the form SnTQ = TR can guarantee the

existence of common fixed points if n > 1. Let Mn+2 denote the lattice consisting
of {0, 1, a1, . . . , an}, where the only relations are 0 < aj < 1 for 1 � j � n. Let

π denote the cyclic permutation of the integers {1, . . . , n}, and define Tx = a1 for
x ∈ Mn+2, S0 = 0, S1 = 1, Saj = aπ(j) for 1 � j � n. Then Sn = I, and since

TQ = TR = T we see that T = IT = SnTQ = TR, but clearly S and T have no
common fixed points.

However, under the right circumstances, two equalities of this type can ensure the
existence of common fixed points.

Theorem 4. Let p, q, and r be positive integers, and assume that GCD(p, q) = 1.

Suppose further that

(1) SpT = TS,

(2) SqT = TSr.

Then S and T have a common fixed point.

�����. Let H = {x : Sx � x, Tx � x}. Note that T (Sh) = Sp(Th) � Sph �
Sp−1h � . . . � Sh, and since S(Sh) � Sh as usual, we see that Sh ∈ H . Therefore

Sh = h.
We now prove that Spn

T nh = T nh. For n = 1, SpTh = TSh = Th. If it holds

for n, then Spn+1
T n+1h = (Sp)p

n

TT nh = (Sp)p
n−1SpTT nh = (Sp)p

n−1TST nh =
(Sp)p

n−2SpTST nh = (Sp)p
n−2TS2T nh = . . . = TSpn

T nh = TT nh = T n+1h.

Let u =
∞∧

n=0

pn−1∧
k=0

SkT nh.

Fix n, k with 0 � k � pn − 1. If 1 � k � pn − 1, u � Sk−1T nh =⇒ Su � SkT nh.

If k = 0, u � Spn−1T nh =⇒ Su � Spn

T nh = T nh. Since Su � SkT nh for any n, k

with 0 � k � pn − 1, we see that Su � u.
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We now show Tu � u. Since GCD(p, q) = 1, GCD(pn, q) = 1 for any n. Fix n, k

with 0 � k � pn−1. Since GCD(pn, q) = 1, choose j such that jq = k (mod pn). Let
m be an integer such that jq = k+mpn. Then u � SjrT nh =⇒ Tu � T (SjrT nh) =
TSrS(j−1)rT nh = SqTS(j−1)rT nh = SqTSrS(j−2)rT nh = S2qTS(j−2)rT nh = . . . =

SjqT n+1h � SjqT nh, since Th � h =⇒ T n+1h � T nh. So Tu � SjqT nh =
Sk+mpn

T nh = Sk+(m−1)pn

Spn

T nh = Sk+(m−1)pn

T nh = . . . = SkT nh. Since Tu �
SkT nh for any n, k with 0 � k � pn − 1, we see that Tu � u.

So u ∈ H ; therefore h � u. But u � SkT nh for 0 � k � pn − 1. Letting k = 0
and n = 1, we see that h � u � Th � h, and so Th = h. �

The next two theorems involve symmetric conditions on S and T .

Theorem 5. Assume that for each x ∈ L, there exist integers n = n(x) and
k = k(x) such that ST nx � T nSx and TSkx � SkTx. Then S and T have a

common fixed point.

�����. Let H = {x : Sx � x, Tx � x}. Choose n such that ST nh � T nSh.

Then Th � h =⇒ T n(Th) � T nh, and so T (T nh) � T nh. Since Sh � h, S(T nh) �
T n(Sh) � T nh. Therefore T nh ∈ H , and so T nh � . . . � Th � h � T nh =⇒ Th =

h. This argument also shows that Sh = h. �

The following theorem also utilizes the idea of symmetric conditions.

Theorem 6. Suppose that for each x ∈ L, there exist maps Q = Q(X) and

R = R(x) belonging to G such that STx = TSQx and TSx = STRx. Then S and

T have a common fixed point.

�����. This is just the Tarski proof combined with Lemma 1. Let H =
{x : Sx � x, Tx � x}. Choose Q = Q(h) such that STh � TSQh. Then S(Th) =

TSQh � Th, since SQ ∈ G. Since T (Th) � Th as usual, Th ∈ H , and so Th = h.
Similarly, Sh = h. �

Theorems 2, 5, and 6 involve ‘pointwise’ hypotheses. Rather than require that

ST = TSQ and TS = STR in Theorem 6, we allow the choice of Q and R to
vary with x. Undoubtedly many of the theorems on common fixed points can be

proved under ‘pointwise’ hypotheses. For instance, if one weakens the hypothesis of
Theorem 3 to assume that for each x ∈ L there is an integer n = n(x) such that
STSnx = Tx it is easy to see that the exact same proof can be used, because at the

crucial moment one need only choose the integer n = n(h) for the relevant equality.
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III. Lattice conditions ensuring common fixed points

In the previous section we investigated conditions in which the operators S and
T were combined using composition of maps. The lattice structure of L naturally

imparts a lattice structure to the maps of L into L, and in this section we investigate
the effect of imposing lattice conditions on the maps S and T .

In a complete lattice, it is possible to define inferior and superior limits.

lim
n→∞

inf an =
∞∨

N=1

∞∧

n=N

an,

lim
n→∞

supan =
∞∧

N=1

∞∨

n=N

an.

We first investigate the existence of common fixed points when we have an equality
of the form Φ(S) = Ψ(T ), where Φ(S) is an expression from the complete lattice
generated by the powers of S, and Ψ(T ) is an expression from the complete lattice

generated by the powers of T .

Theorem 7. Each of the equalities below ensures the existence of common fixed
points for S and T .

(a)
∞∨

n=1
Sn =

∞∨
n=1

T n,

(b)
∞∨

n=1
Sn =

∞∧
n=1

T n,

(c)
∞∨

n=1
Sn =

∞∨
N=1

∞∧
n=N

T n,

(d)
∞∨

n=1
Sn =

∞∧
N=1

∞∨
n=N

T n,

(e)
∞∨

N=1

∞∧
n=N

Sn =
∞∨

N=1

∞∧
n=N

T n,

(f)
∞∧

N=1

∞∨
n=N

Sn =
∞∨

N=1

∞∧
n=N

T n.

�����. (a) Let H = {x : Sx � x, Tx � x}. Then Sh =
∞∨

n=1
Snh =

∞∨
n=1

T nh =

Th. Since S(Sh) � Sh and T (Sh) = T (Th) � Th = Sh, we see that Sh ∈ H , and

so Sh = h. Therefore Th = Sh = h as well.

(b) Let H = {x : Sx � x, Tx � x}. Then Sh =
∞∨

n=1
Snh =

∞∧
n=1

T nh. Since

S(Sh) � Sh and T (Sh) = T
( ∞∧

n=1
T nh

)
�

∞∧
n=1

T n+1h =
∞∧

n=1
T nh =

∞∨
n=1

Snh = Sh.

So Sh ∈ H , and therefore Sh = h.
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Therefore h = Sh =
∞∧

n=1
T nh � Th � h, and Th = h.

(c) and (d) Let H = {x : Sx � x, Tx � x}. Then
∞∨

N=1

∞∧
n=N

T nh =
∞∧

N=1

∞∨
n=N

T nh =

∞∧
n=1

T nh. In both (c) and (d), Sh =
∞∨

n=1
Snh =

∞∧
n=1

T nh. So S(Sh) � Sh and

T (Sh) = T
( ∞∧

n=1
T nh

)
�

∞∧
n=1

T nh = Sh. So Sh ∈ H , and therefore Sh = h. But

then h = Sh =
∞∧

n=1
T nh � Th � h, and so Th = h.

(e) and (f) Let H = {x : Sx � x, Tx � x}. Then
∞∨

N=1

∞∧
n=N

T nh =
∞∧

N=1

∞∨
n=N

T nh =

∞∧
n=1

T nh, and also
∞∨

N=1

∞∧
n=N

Snh =
∞∧

n=1
Snh. Therefore, in both (e) and (f),

∞∧
n=1

T nh =

∞∧
n=1

Snh; denote this element by u. Then u � Snh =⇒ Su � Sn+1h � Snh =⇒ Su �
u, and an analogous argument shows that Tu � u. So u ∈ H , and therefore both
Sh � h � u � Sh and Th � h � u � Th. So Sh = Th = h. �

The next few theorems give some indication of the extent to which the hypothesis

of commutativity in Tarski’s Theorem can be weakened.

Theorem 8. Assume that

(1) ST � T
( ∞∨

n=1
Sn

)
.

(2) For each x ∈ L, there is an integer n = n(x) such that STx � TSnx.

Then S and T have a common fixed point.

�����. Let H = {x : Sx � x, Tx � x}. Since Snh � h, STh � T
( ∞∨

n=1
Snh

)
�

Th. As usual, T (Th) � Th, so Th ∈ H =⇒ Th = h.

Let u =
∞∧

n=1
Snh. From assumption (2), ∃n1 such that TSn1h � STh = Sh. As-

sume that np > . . . > n1 such that TSnph � Sph. Choose k such that TSk(Snph) �
ST (Snph), and let np+1 = np + k. Then TSnp+1h = TSk(Snph) � ST (Snph) �
S(Sph) = Sp+1h. Now u � Snph =⇒ Tu � TSnph � Sph =⇒ Tu � u, and

also u � Snh =⇒ Su � Sn+1h � Snh =⇒ Su � u. So u ∈ H , and therefore
Sh � h � u � Sh. Therefore Sh = h, and so h is a common fixed point for S

and T . �

From the standpoint of symmetry, as well as the improvement of Theorem 8, it

would be nice to replace hypothesis (2) with the dual of hypothesis (1). In the next
section we will introduce another condition which will enable us to achieve this result.
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We are interested in discovering situations in which F (S, T ) = G(S, T ) leads to

common fixed points, where F and G are expressions (algebraic, lattice, or anything
else) in S and T .

Theorem 9. Throughout this theorem, all meets and joins are taken over sets of
integers, each of which contains 1.

Each of the following equalities ensures the existence of a common fixed point for

S and T .

(a) (
∨

Sn)(
∨

T k) = (
∨

T k)(
∨

Sn).

(b) (
∨

Sn)(
∧

T k) = (
∧

T k)(
∨

Sn).

�����. In both (a) and (b), let H = {x : Sx � x, Tx � x}. Because of the
restriction that 1 be a member of each index set, and since both {Snh} and {T kh}
are descending chains, we see that

∨
Snh = Sh and

∨
T kh = Th.

(a) (
∨

Sn)(
∨

T k)h =
∨

SnTh; similarly (
∨

T k)(
∨

Sn)h =
∨

T kSh. So
∨

SnTh =∨
T kSh. Therefore STh �

∨
SnTh =

∨
T kSh �

∨
T kh = Th. As usual, T (Th) �

Th, so Th ∈ H , and therefore Th = h. The proof that Sh = h just interchanges
both the letters S and T , and n and k.

(b) Since
∨

Snh = Sh, we see that (
∨

Sn)(
∧

T kh) =
∧

T kSh. So S(
∧

T kh) �
(
∨

Sn)(
∧

T kh) =
∧

T kSh �
∧

T kh. Since T (
∧

T kh) �
∧

T k+1h =
∧

T kh, there-
fore u =

∧
T kh ∈ H , and so Th � h � u � Th. So Th = h.

As a result, Sh = (
∨

Snh) = (
∨

Sn)(
∧

T kh) =
∧

T kSh. So Sh � TSh, and

applying T repeatedly to this inequality yields Sh � TSh � T 2Sh � . . .. Therefore∧
T kSh = TSh, and so Sh = TSh. Since both T (Sh) = Sh � Sh and S(Sh) � Sh

as usual, we see that Sh ∈ H . Therefore Sh = h. �

Theorem 10. Let Q, R be isotone maps of L into L such that Q �
∞∧

n=1
Sn and

R � T (
∧{U : U ∈ G}). Assume that N is a positive integer such that ST ∧ Q =

TSN ∧R. Then S and T have a common fixed point.

�����. Let H = {x : Sx � x, Tx � x}. Since Snh � Sh for all n, Qh � Sh.

Also Th � h =⇒ STh � Sh. Since U ∈ G =⇒ Uh � h by Lemma 1, we see that
Rh � Th. So TSNh ∧Rh = STh ∧Qh � Sh =⇒ TSNh � Sh.

Assume that TSkNh � Skh. Then ST (SkNh)∧QSkNh = TSN(SkNh)∧RSkNh.

But ST (SkNh) � S(Skh) = Sk+1h, and for each n, Sn(SkNh) � Sk+1h, so Q �
∞∧

n=1
Sn =⇒ Q(SkNh) � Sk+1h. Therefore Sk+1h � TSN(SkNh) ∧ RSkNh =⇒

TS(k+1)Nh � Sk+1h.
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Let u =
∞∨

n=1
Snh. Then u � SkNh =⇒ Tu � TSkNh � Skh for all k, so Tu � u.

Since u � Skh =⇒ Su � Sk+1h � Skh, we see that Su � u. So u ∈ H . Therefore

Sh � h � u � Sh =⇒ Sh = h.

So STh∧Qh = TSNh∧Rh = Th∧Rh. But U ∈ G =⇒ Uh � h by Lemma 1, and
so

∧{Uh : U ∈ G} � h. Therefore Rh � Th, and so Th ∧ Rh = Th. Consequently

STh ∧Qh = Th, which implies that S(Th) � Th. Since T (Th) � Th as usual, we
see that Th ∈ H , and so Th = h, completing the proof. �

The following theorem investigates the result of changing the equality ST ∧Q =

TSN ∧R to ST ∨Q = TSN ∧R.

Theorem 11. Assume that there exist an integer N and maps Q and R (not

necessarily isotone) of L into L such that for each x ∈ L there exist integers j = j(x)

and k = k(x) with 0 � k � N and j � 1 such that Qx � Sjx, Rx � TSkx. Assume

also that ST ∨Q = TSN ∧R. Then S and T have a common fixed point.

�����. Let H = {x : Sx � x, Tx � x}. Choose j and k subject to the above

restrictions such that Qh � Sjh, Rh � TSkh. Then (Q ∨ ST )h = Qh ∨ STh =
(TSN ∧ R)h = TSNh ∧ Rh. So STh � TSNh � Th, since SNh � h. As usual,

T (Th) � Th, so Th ∈ H , and therefore Th = h.

So (Q ∨ ST )h = Qh ∨ STh = Qh ∨ Sh = Sh, since Qh � Sjh � Sh. Also
(TSN ∧R)h = TSNh ∧Rh = TSNh, since Rh � TSkh. Therefore TSNh = Sh.

Assume inductively that TSiNh = Sih. Choose j � 1 such that Q(SiNh) �
Sj(SiNh) = Sj+iNh and k with 0 � k � N such that R(SiNh) � TSk(SiNh) =

TSk+iNh. Then (Q ∨ ST )(SiNh) = Q(SiNh) ∨ STSiNh = Q(SiNh) ∨ Si+1h =
Si+1h. Also (TSN ∧R)(SiNh) = TS(i+1)Nh∧RSiNh = TS(i+1)Nh, since RSiNh �
TSk+iNh � TSN+iNh = TS(i+1)Nh. So we can conclude by induction that TSiNh =

Sih.

Let u =
∞∧

i=1
Sih. Then u � Sih =⇒ Su � Si+1h � Sih, so Su � u. Also

u � SiNh =⇒ Tu � TSiNh = Sih, so Tu � u. Therefore u ∈ H , and so Sh � h �
u � Sh. So Sh = h = Th. �

The following result is similar to Theorem 11, but does not appear to be a direct

consequence of it.

Theorem 12. Each of the following conditions the existence of a common fixed
points for S and T .

(a) (S ∨ T )S = (S ∧ T )T .

(b) S(S ∨ T ) = T (S ∧ T ).
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�����. (a) Let H = {x : Sx � x, Tx � x}. Since (S ∨ T )Sh = S2h ∨ TSh and

(S∧T )Th = STh∧T 2h, we see that S2h∨TSh = STh∧T 2h. So TSh � STh � Sh,
since Th � h. As usual, S(Sh) � Sh, and so Sh ∈ H . Therefore Sh = h.
So S2h ∨ TSh = h ∨ Th = h, and therefore h = S2h ∨ TSh = STh ∧ T 2h. So

h � T 2h � Th � h, and therefore Th = h.
(b) Let H = {x : Sx � x, Tx � x}. Note that S(S ∨ T )h = S(Sh ∨ Th) � S2h ∨

STh and T (S ∧ T )h = T (Sh∧ Th) � TSh∧ T 2h. Since Sh � h, STh � TSh � Th.
We also have T (Th) � Th, so Th ∈ H . Therefore Th = h.

Consequently, S(S ∨ T )h = S(Sh ∨ Th) = S(Sh ∨ h) = Sh, and T (S ∧ T )h =
T (Sh ∧ Th) = T (Sh ∧ h) = TSh. So Sh = TSh. Assume inductively that TSnh =

Snh. Then S(S ∨ T )(Snh) = S(Sn+1h ∨ TSnh) = S(Sn+1h ∨ Snh) = Sn+1h, and
T (S ∧ T )(Snh) = T (Sn+1h∧ TSnh) = T (Sn+1h∧ Snh) = TSn+1h. We conclude by

induction that TSnh = Snh for all n.
Let u =

∞∧
n=1

Snh. Since u � Snh, Su � Sn+1h � Snh for any n, and so Su � u.

Since u � Snh, we also have Tu � TSnh = Snh for any n, and so Tu � u. Therefore
u ∈ H . So Sh � h � u � Sh, and so Sh = h, completing the proof. �

The identity map I does not enter the hypotheses in Theorems 8 through 12.

Nonetheless, there are numerous common fixed point theorems which may be proved
in which I appears. An example of this was given after Theorem 1. The following

theorem is neither exhaustive nor best possible, but simply gives an idea of the types
of equalities involving I that can guarantee the existence of common fixed points.

Theorem 13. Each of the following equalities ensures the existence of common
fixed points for S and T .

(a) I ∧ ST = I ∨ S.

(b) I ∧ ST = S ∨ T .

(c) I ∧ ST = S ∨ TS.

(d) I ∧ ST = T ∨ TS.

(e) I ∧ ST = T ∧ TS.

(f) (I ∨ S) ∧ T = (I ∧ S) ∨ T .

(g) S(I ∧ T ) = T (I ∧ S).

(h) S(I ∧ T ) = T (I ∨ S).
(i) (I ∧ T )S = (I ∨ S)T .

�����. (a) let H = {x : Sx � x, Tx � x}. Note that STh = h ∧ STh =

(I ∧ST )h = (I ∨S)h = h∨Sh = h. But Th � h =⇒ h = STh � Sh, and combining
this with the fact that Sh � h shows that Sh = h. We also have (I ∧ ST )(Th) =

(I ∨S)(Th), so Th∧ST 2h = Th∨STh = Th∨h = h. This shows that h � Th, and
since Th � h, we see that Th = h.
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(b) Let H = {x : Sx � x, Tx � x}. Note that Th � h =⇒ STh � Sh � h, so

h = (I ∧ ST )h = (S ∨ T )h = Sh ∨ Th. Therefore Sh � h � Sh and Th � h � Th,
and so Sh = Th = h.

(c) Let H = {x : Sx � x, Tx � x}. Note that STh = h ∧ STh = (I ∧ ST )h =
(S ∨ TS)h = Sh ∨ TSh, so TSh � STh. But Th � h =⇒ STh � Sh, and so
TSh � Sh. As usual, S(Sh) � Sh, and so Sh ∈ H . Therefore Sh = h. So

STh = Sh ∨ TSh = h ∨ TSh = h.

Now Th∧ST 2h = (I ∧ST )(Th) = (S ∨TS)(Th) = STh∨T (STh) = STh∨Th =

h ∨ Th = h, so h � Th � h =⇒ Th = h.

(d) Let H = {x : Sx � x, Tx � x}. Note that STh = h ∧ STh = (I ∧ ST )h =

(T ∨ TS)h = Th ∨ TSh. As in (c), TSh � STh, which leads to Sh = h. But then
Th = Th ∨ Th = Th ∨ TSh = STh, and so S(Th) � Th. As usual, T (Th) � Th,

and so Th ∈ H . Therefore Th = h.

(e) Let H = {x : Sx � x, Tx � x}. Then STh = h ∧ STh = (I ∧ ST )h =

(T ∧ TS)h = Th ∧ TSh. Therefore STh � Th. Combining this with Th � h =⇒
T (Th) � Th, we see that Th ∈ H . Therefore Th = h.

Since Sh = STh = Th∧ TSh = h∧ TSh = TSh, we have T (Sh) � Sh. As usual,
S(Sh) � Sh, and so Sh ∈ H . Therefore Sh = h.

(f) Let H = {x : Sx � x, Tx � x}. Since Sh � h, (I ∨ S)h = h ∨ Sh = h, so
Th = h ∧ Th = [(I ∨ S) ∧ T ]h = [(I ∧ S) ∨ T ]h = (h ∧ Sh) ∨ Th = Sh ∨ Th. So

Sh � Th.

Note that (I ∨ S)(Sh) = Sh, since Sh � h =⇒ S(Sh) � Sh, and also [(I ∨ S) ∧
T ](Sh) = [(I ∧ S) ∨ T ](Sh). Since (I ∧ S)(Sh) = S2h, we see that Sh ∧ T (Sh) =
S2h ∨ T (Sh). Therefore T (Sh) � Sh. As usual, S(Sh) � Sh, and so Sh ∈ H .

Therefore Sh = h. But then h = Sh � Th � h =⇒ Sh = Th = h.

(g) Let H = {x : Sx � x, Tx � x}. Since Sh � h, we see that both (I ∧S)h = Sh

and S(Sh) � Sh. Similarly, (I∧T )h = Th and T (Th) � Th. So T (Sh) = T (I∧S)h =
S(I∧T )h = S(Th) � Sh, since Th � h, and so Sh ∈ H . Therefore Sh = h. Similarly,

S(Th) = S(I ∧ T )h = T (I ∧S)h = T (Sh) � Th, and so Th ∈ H . Therefore Th = h.

(h) Let H = {x : Sx � x, Tx � x}. Note that S(I ∧ T )h = S(h ∧ Th) = S(Th),

since Th � h. Also, since Sh � h, we have T (I ∨ S)h = T (h ∨ Sh) = Th, so STh =
Th � Th. As usual, T (Th) � Th, so Th ∈ H . Therefore Th = h. Substituting this

into STh = Th, we see that Sh = h.

(i) Let H = {x : Sx � x, Tx � x}. Note that (I ∧ T )(Sh) = Sh ∧ TSh and

(I ∨ S)(Th) = Th ∨ STh, so Th ∨ STh = Sh ∧ TSh. Therefore STh � TSh � Th,
since Sh � h. Since T (Th) � Th, we see that Th ∈ H , and so Th = h.

Since Th∨STh = h∨Sh = h, we see that h = Th∨STh = Sh∧TSh, so h � Sh.
But Sh � h, and so Sh = h. �
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We now prove a theorem in which equalities involving commutation with inferior

and superior limits ensures the existence of common fixed points.

Theorem 14. Each of the following equalities ensures the existence of common
fixed points for S and T .

(a) S
( ∞∨

N=1

∞∧
n=N

T n
)
=
∞∨

n=1
T nS.

(b) S
( ∞∨

N=1

∞∧
n=N

T n
)
=
∞∧

n=1
T nS.

�����. (a) Let H = {x : Sx � x, Tx � x}. Since Th � . . . � T nh � . . .,

we see that
∞∨

N=1

∞∧
n=N

T nh =
∞∨

n=1
T nh, and so S(

∞∨
n=1

T nh) =
∞∨

n=1
T nSh �

∞∨
n=1

T nh.

Also, T
( ∞∨

n=1
T nh

)
�

∞∨
n=1

T n+1h =
∞∨

n=1
T nh since Th � T 2h � . . . � T nh � . . ., so

∞∨
n=1

T nh ∈ H . Therefore Th �
∞∨

n=1
T nh � h � Th, and so Th = h.

Substituting Th = h into the assumed equality, we obtain Sh =
∞∨

n=1
T nSh, and

so Sh � TSh. Applying T repeatedly to this inequality, we get TSh � T 2Sh �
. . . � T nSh � . . ., and so TSh =

∞∨
n=1

T nSh. Therefore TSh = Sh � Sh, and since

S(Sh) � Sh as usual, we see that Sh ∈ H . Therefore Sh = h.
(b) The proof here is essentially the same as that of (a). We define H = {x : Sx �

x, Tx � x}, and use the identical arguments to show that
∞∧

n=1
T nh ∈ H , which can be

used to show that Th = h. This result is then substituted into the assumed equality
to show that Sh ∈ H in the same way as this was done in (a). �

IV. A continuity condition ensuring common fixed points

Assume that a1 � a2 � . . . � an � . . .. Although for any isotone map T we

have T
( ∞∧

n=1
an

)
�
∞∧

n=1
Tan, in general equality need not hold. A simple example of

this situation can be found on the unit interval [0, 1] by defining T 0 = 0, Tx = 1 if

x > 0. We say that T is continuous from above when equality holds. An analogous
definition can be made for increasing sequences; in which case we say T is continuous

from below.
This definition allows a significant strengthening of Theorem 8.

Theorem 15. Let S be continuous from above, and assume further that

T
( ∞∧

n=0
Sn

)
� ST � T

( ∞∨
n=0

Sn
)
. Then S and T have a common fixed point.
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�����. Let H = {x : Sx � x, Tx � x}. Since STh � T
( ∞∨

n=0
Snh

)
� Th, and

T (Th) � Th as usual, we see that Th ∈ H . So Th = h.

Therefore Sh = STh � T
( ∞∧

n=0
Snh

)
. Since S is continuous from above, if

we assume that Skh � T
( ∞∧

n=0
Snh

)
, then Sk+1h = S(Skh) � ST

( ∞∧
n=0

Snh
)

�

T
( ∞∧

j=0
Sj

( ∞∧
n=0

Snh
))
= T

( ∞∧
j=0

∞∧
n=0

Sj+nh
)
= T

( ∞∧
n=0

Snh
)
, since h � Sh � . . . �

Snh � . . .. So Skh � T
( ∞∧

n=0
Snh

)
for all k, and therefore

∞∧
n=0

Snh � T
( ∞∧

n=0
Snh

)
.

Since S is continuous from above, we also have S
( ∞∧

n=0
Snh

)
=
∞∧

n=0
Sn+1h =

∞∧
n=0

Snh,

and so u =
∞∧

n=0
Snh ∈ H . Therefore Sh � h � u � Sh, and so Sh = h. �

Assuming continuity from above also enables us to prove additional common fixed

point theorems involving superior and inferior limits.

Theorem 16. Assume that T is continuous from above, and that

S

( ∞∨

N=1

∞∧

n=N

T n

)
=

( ∞∨

N=1

∞∧

n=N

T n

)
S.

Then S and T have a common fixed point.

�����. Let H = {x : Sx � x, Tx � x}. Since Th � T 2h � . . . � T nh �
. . ., we see that

∞∨
N=1

∞∧
n=N

T nh =
∞∨

N=1

∞∧
n=1

T nh =
∞∧

n=1
T nh. So S

( ∞∧
n=1

T nh
)
=

S
( ∞∨

N=1

∞∧
n=N

T nh
)
=

∞∨
N=1

∞∧
n=N

T nSh �
∞∨

N=1

∞∧
n=N

T nh =
∞∧

n=1
T nh. Since we also have

T
( ∞∧

n=1
T nh

)
�

∞∧
n=1

T n+1h =
∞∧

n=1
T nh, we see that u =

∞∧
n=1

T nh ∈ H . Therefore

Th � h � u � Th, so Th = h.

Therefore Sh = S
( ∞∨

N=1

∞∧
n=N

T nh
)
=

∞∨
N=1

∞∧
n=N

T nSh. So, for any N , Sh �
∞∧

n=N

T nSh. Since T is continuous from above, we see that TSh � T
( ∞∧

n=N

T nSh
)
=

∞∧
n=N

T n+1Sh, and so TSh �
∞∨

N=1

∞∧
n=N

T n+1Sh =
∞∨

N=2

∞∧
n=N

T nSh. Since TSh = T 1Sh,

we have TSh �
∞∨

N=1

∞∧
n=N

T nSh = Sh. Applying T repeatedly to Sh � TSh, we ob-

tain Sh � TSh � T 2Sh � . . . � T nSh � . . .. Therefore Sh =
∞∨

N=1

∞∧
n=N

T nSh =

∞∨
N=1

T NSh. Since Sh � TSh � T 2Sh � . . . � T NSh � . . ., we see that Sh =
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∞∨
N=1

T NSh =⇒ Sh � TSh. Since S(Sh) � Sh as usual and T (Sh) � Sh, we see that

Sh ∈ H . So Sh = h. �

The next result shows that Theorem 16 holds with the superior limit on the left
side of the equality instead of the inferior limit.

Theorem 17. Assume that T is continuous from above, and that

S

( ∞∧

N=1

∞∨

n=N

T n

)
=

( ∞∨

N=1

∞∧

n=N

T n

)
S.

Then S and T have a common fixed point.

�����. Let H = {x : Sx � x, Tx � x}. Since Th � T 2h � . . . �
T nh � . . ., we see that

∞∧
N=1

∞∨
n=N

T nh =
∞∧

N=1
T Nh. Consequently, S

( ∞∧
n=1

T nh
)
=

S
( ∞∧

N=1

∞∨
n=N

T nh
)
=

∞∨
N=1

∞∧
n=N

T nSh �
∞∨

N=1

∞∧
n=N

T nh =
∞∧

n=1
T nh. Since we also have

T
( ∞∧

n=1
T nh

)
�

∞∧
n=1

T n+1h =
∞∧

n=1
T nh, we see that u =

∞∧
n=1

T nh ∈ H . Therefore

Th � h � u � Th, so Th = h. The second paragraph of the proof of Theorem 16
now suffices to establish the theorem. �

V. Open questions

Some of these may have easy answers that have eluded the authors; some, in
particular the first two, may be fairly deep.

(1) Does there exist a rule which would enable one to decide when an algebraic
equality relating S and T ensures the existence of a common fixed point, without

the necessity of generating an equality-specific proof? Alternatively, can it be shown
(possibly by metamathematical techniques) that no such rule exists?

(2) Let L(T ) be the complete lattice generated by the powers of T . Does there
exist a rule which would enable one to decide when Q ∈ L(T ), SQ = QS implies

that S and T have a common point? Alternatively, can it be shown that no such
rule exists?

(3) Do there exist other theorems in addition to Theorem 1 which provide ways
to obtain additional common fixed point theorems from already-known results?

(4) Does the equality ST k = TSn guarantee the existence of common fixed points,
if k > 1 and n > 1?

(5) Does there exist a single equality relating three (or more) isotone maps which
would guarantee a simultaneous fixed point for those maps?
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(6) Can the hypothesis of continuity from above (or below) be eliminated from

those theorems where it was used?
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