Czechoslovak Mathematical Journal

Kent Merryfield; James D. Stein

Common fixed points of two isotone maps on a complete lattice

Czechoslovak Mathematical Journal, Vol. 49 (1999), No. 4, 849-866
Persistent URL: http://dml.cz/dmlcz/127535

Terms of use:

© Institute of Mathematics AS CR, 1999

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://dml.cz

COMMON FIXED POINTS OF TWO ISOTONE MAPS ON A COMPLETE LATTICE

Kent Merryfield and James D. Stein Jr., Long Beach

(Received February 6, 1997)

Introduction

Tarski's well-known result, that an isotone map on a complete lattice L has a fixed point, was accompanied by the generalization that commuting isotone maps on a complete lattice have a common fixed point [4, pp. 288-289]. We give the proof here for a pair of isotone maps S and T (although the proof for a commuting family is essentially identical), as the basic definitions and the central argument will appear repeatedly throughout this paper.

Let $H=\{x \in L: S x \leqslant x, T x \leqslant x\}$. H is non-empty since $1 \in H$, so let $h=\bigwedge\{x: x \in H\}$. If $x \in H, h \leqslant x$, and so $S h \leqslant S x$ by the isotony of S. Since $x \in H \Longrightarrow S x \leqslant x$, we see that $S h \leqslant x$. Taking the greatest lower bound of H shows that $S h \leqslant h$. We can similarly show that $T h \leqslant h$, and so $h \in H$. Since S is isotone, $S h \leqslant h \Longrightarrow S(S h) \leqslant S h$. Since $T S=S T$ and $T h \leqslant h, T(S h)=S(T h) \leqslant S h$. Therefore $S h \in H$, and so $h \leqslant S h$. Since both $S h \leqslant h$ and $h \leqslant S h$, we see that $S h=h$. The identical argument also shows that $T h=h$.

Several well-known theorems on common fixed points, such as the MarkovKakutani fixed point theorem ([2], p. 456), rely on commutativity. In the case of isotone maps on a complete lattice, however, it is possible to weaken substantially the hypothesis of commutativity, or to alter it, and still ensure the existence of a common fixed point.

A search of MathSciNet using the phrases
(1) complete lattices and simultaneous fixed points
(2) complete lattices and common fixed points
disclosed no papers covering the topics to be discussed here. As a result, it would not be unreasonable to presume that some of the problems encountered but not solved
in this paper are open, and the last section will consist of a list of some of those questions.

Throughout this paper, L will denote a complete lattice, and S and T isotone maps of L into itself. Many of the results of this paper apply to families of isotone maps, rather than pairs, but a few of the results are most easily stated for pairs of maps, so for consistency of presentation we will remain within this framework.

An examination of the proof of Tarski's Theorem shows the reason that many results concerning pairs of isotone maps can be easily generalized to families. The proof essentially involves showing that, for each Q in the family, both $Q(Q h) \leqslant Q h$ and $Q(R h) \leqslant R h$ for all R different from Q in the family. Proofs of simultaneous fixed points almost invariably proceed by showing that $Q(R h) \leqslant R h$ using only facts about Q and R; even though all the other members of the family besides R satisfy the hypotheses the proof looks only at a pair of maps rather that the entire family.

Broadly speaking, this paper concerns relations between S and T which will guarantee the existence of a common fixed point. These relations include algebraic equalities (of which commutativity is an example), lattice equalities, inequalities, and multiple equalities.

Most of the results presented require only algebraic or lattice hypotheses. However, it is known ([3]) that hypotheses related to continuity enable common fixed point theorems to be proved for commuting pairs of maps of the unit interval into itself; we shall later introduce similar hypotheses for isotone maps which will enable us to prove additional common fixed point theorems.

I. Preliminaries

In the proof of Tarski's Theorem given previously, the definition of $H=\{x$: $S x \leqslant x, T x \leqslant x\}$ and $h=\bigwedge\{x: x \in H\}$ resulted in the conclusion that $S h \leqslant h$ and $T h \leqslant h$, so $h \in H$. This idea, or its dual $(H=\{x: x \leqslant S x, x \leqslant T x\}$, $h=\bigvee\{x: x \in H\} \Rightarrow S h \geqslant h$ and $T h \geqslant h$, so $h \in H$), will recur in every proof, so we shall merely define H, and use the conclusions just cited. We shall also use the results that $S h \leqslant h \Longrightarrow S(S h) \leqslant S h$ and $T h \leqslant h \Longrightarrow T(T h) \leqslant T h$. Applying S repeatedly to the inequality $S h \leqslant h$ implies that $h \geqslant S h \geqslant \ldots \geqslant S^{n} h \geqslant \ldots$, and similarly for T. Finally, once it has been established that $S h \in H$ and $T h \in H$, the fact that $S h=T h=h$ follows from the inequalities $S h \leqslant h \leqslant S h$ and $T h \leqslant h \leqslant T h$. Much of the effort in common fixed point proofs will be devoted to showing that $S(T h) \leqslant T h$ and/or $T(S h) \leqslant S h$.

We will also occasionally make use of the following facts about an isotone map T.
(1) $T\left(\bigwedge_{n=1}^{\infty} a_{n}\right) \leqslant \bigwedge_{n=1}^{\infty} T a_{n}$.
$T\left(\bigvee_{n=1}^{\infty} a_{n}\right) \geqslant \bigvee_{n=1}^{\infty} T a_{n}$.
Definition 1. Let I denote the identity map on L. Throughout this paper, G will denote the semigroup under composition generated by S, T, and I.

Lemma 1. Assume that $Q \in G$. If $H=\{x: S x \leqslant x, T x \leqslant x\}$, then $Q h \leqslant h$.
Proof. We can assume that Q is a word formed from the letters S, T, and I; the length of the word is the number of letters S and T in Q. Since the result is trivially true if Q is either S, T, or I, we can assume the conclusion holds for words of length 0 (I is the only such word) or 1 (S and T are the only such words). If the result is true for words of length n, then a word of length $n+1$ is either $S Q$ or $T Q$, where Q is a word of length n. Since S is isotone and $Q h \leqslant h$ by the inductive hypothesis, $S Q h \leqslant S h \leqslant h$; similarly $T Q h \leqslant h$, establishing the desired result.

As the following example will show, the set of pairs (S, T) such that S and T have a common fixed point possesses no easily-discernible algebraic or lattice structure. Let $L=\{0, a, 1\}$ with $0<a<1$ the only relations (of course, this is the lattice consisting of the integers 1,2 , and 3 with the usual order). Define operators S, T, U, V as follows:

$$
\begin{aligned}
& S 0=S a=S 1=0 \\
& T 0=0 \quad T a=T 1=1, \\
& U 0=U a=U 1=a \\
& V 0=a, \quad V a=V 1=1 .
\end{aligned}
$$

Note that 0 is a common fixed point for S and T. Elementary computations show that $S \vee U=U$ and $T \vee U=V$, so $S \vee U$ and $T \vee U$ do not have a common fixed point. Since $S U x=0$ and $T U x=1$ for all $x \in L, S U$ and $T U$ do not have a common fixed point. Finally, $V S=U$ and $V T=V$, so $V S$ and $V T$ do not have a common fixed point.

However, it is possible to use existing common fixed point theorems to generate additional common fixed point theorems. We illustrate with a simple example, and then present a generalization which is probably well-known, but which the authors have been unable to locate in the literature.

Note that if $S T x=T x=x$, then $S x=S(T x)=x$, so $S x=T x=x$. This result is simply a matter of manipulating equalities. Now suppose that S and T are isotone maps of a complete lattice L into itself such that $T S T=S T^{2}$. The latter equality is simply a statement that the isotone maps $S T$ and T commute, and therefore by Tarski's Theorem they have a common fixed point x. So $S T x=T x=x$, and by the result above, $S x=T x=x$.

This idea can be extended inductively. If $T S T S T=S T^{2} S T$, then $S T$ and $T S T$ commute, and so they have a common fixed point, which we denote by x. Therefore $T S T x=S T x=x$. But then $T x=T(S T x)=x$, and as we have seen, $S T x=T x=$ $x \Longrightarrow S x=T x=x$.

Theorem 1. Let X be a set, and let F, G, U, and V be maps of X into X. Let $\Phi(U, V)$ be an expression in U and V with the following property: if $\Phi(U, V) x=$ $V x=x$, then $U x=x$. Let $\Im(U, V)$ be a set of conditions on U and V which ensure the existence of a common fixed point for U and V. (Note: In the example given just prior to this theorem, $\Phi(U, V) x=V x=x$ is the equality $U V x=V x=x$, and $\Im(U, V)$ is the condition that U and V commute.)

Let $Q_{1}=F, Q_{2}=G$, and define $Q_{n+1}=\Phi\left(Q_{n-1}, Q_{n}\right)$. If, for some integer N, the conditions $\Im\left(Q_{N+1}, Q_{N}\right)$ hold, then F and G have a common fixed point.

Proof. Since the conditions $\mathfrak{I}\left(Q_{N+1}, Q_{N}\right)$ hold, by assumption $\exists x \in X$ such that $Q_{N+1} x=Q_{N} x=x$. Since $x=Q_{N} x=Q_{N+1} x=\Phi\left(Q_{N-1}, Q_{N}\right) x$, we see that $Q_{N-1} x=x$ by the hypothesis on Φ. So $Q_{N+1} x=Q_{N} x=x \Longrightarrow Q_{N} x=Q_{N-1}=x$. We can continue this procedure inductively down to $Q_{3} x=Q_{2} x=x$. But then $Q_{3} x=\Phi\left(Q_{1}, Q_{2}\right) x=Q_{2} x=x \Longrightarrow \Phi(F, G) x=G x=x$. Therefore $F x=x$.

Although Theorem 1 is formulated on an abstract set, the set may satisfy additional conditions which can be incorporated into the definition of both Φ and \mathfrak{I}.

As a simple example, if L is a complete lattice, requiring that $I \wedge S T=T$ is sufficient to guarantee the existence of a common fixed point for S and T. Let $H=\{x: S x \leqslant x, T x \leqslant x\}$. We see that, by Lemma 1, STh $=h \wedge S T h=$ $(I \wedge S T) h=T h$, so $S(T h) \leqslant T h$. Therefore (combining this with the always-known fact that $T(T h) \leqslant T h), T h \in H$, and so $T h=h$. So $S T h=T h \Longrightarrow S h=h$.

From Theorem 1, we therefore see that $I \wedge T S T=S T$ is sufficient to guarantee the existence of a common fixed point for S and T. The above result shows the existence of a common fixed point x for $S T$ and T; then $S T x=T x=x$, which implies that $S x=x$.

As we have stated, this paper will explore a wide range of conditions on S and T which are sufficient to guarantee the existence of a common fixed point. If there is a 'Holy Grail' in this area, it would be the ability to decide whether a specific equality relating S and T would guarantee the existence of a common fixed point without having to generate a proof dependent upon the specific equality. Although none of the proofs in this paper make use of deep theorems, some of the proofs require accurate definitions and precise computations. As a result, it would seem that a classification theorem of the type just described would be rather unlikely.

II. Algebraic conditions ensuring common fixed points

Algebraic conditions are relations between maps in G; commutativity ($S T=T S$) is a simple example of such a condition.

We start with a simple counterexample. Assume that Q and R are maps in G such that at least one of the two, regarded as words in the letters S and T, contains the letter T. Then no relation of the form $S Q=S R$ will guarantee the existence of a common fixed point. Let L be the lattice M_{4} (notation from [1], p. 4), which consists of 4 elements $\{0,1, a, b\}$ with relations $0<a<1$ and $0<b<1$ (this is also the lattice of all subsets of $\{0,1\}$). Define $S x=a$ for all $x \in L$, and define $T 0=0$, $T 1=1, T a=b$, and $T b=a$. Then $S Q=S R=S$, but S and T have no common fixed points. We note in passing that M_{n} can be used as a counterexample for many conjectures in this subject.

The simplest type of algebraic condition relating S and T is the equation $S^{p}=T^{q}$. It is possible to guarantee the existence of a common fixed point under weaker conditions.

Theorem 2. Assume that for each $x \in L$ there exist integers $p=p(x), q=q(x)$, $i=i(x)$, and $j=j(x)$ such that $S^{p} x \leqslant T^{q} x$ and $T^{i} x \leqslant S^{j} x$. Then S and T have a common fixed point.

Proof. Let $H=\{x \in L: S x \leqslant x, T x \leqslant x\}$, and then let $u=\bigwedge\left\{Q^{k} h: Q=\right.$ $S, T ; k=0,1,2, \ldots\}$. We show that $T u \leqslant u$.

Since $u \leqslant T^{n} h$ for any integer n, we see that $T u \leqslant T^{n+1} h \leqslant T^{n} h$, so we must now show that $T u \leqslant S^{n} h$ for any integer n.

By assumption, there exist integers p_{1} and q_{1} such that $T^{p_{1}} h \leqslant S^{q_{1}} h$. Having chosen $p_{1}<\ldots<p_{k}$ and $q_{1}<\ldots<q_{k}$ such that $T^{p_{j}} h \leqslant S^{q_{j}} h$ for $1 \leqslant j \leqslant k$, by assumption there exist integers a and b such that $T^{a}\left(T^{p_{k}} h\right) \leqslant S^{b}\left(T^{p_{k}} h\right)$. Let $p_{k+1}=p_{k}+a$ and $q_{k+1}=q_{k}+b$. Then $p_{k}<p_{k+1}, q_{k}<q_{k+1}$, and $T^{p_{k+1}} h=$ $T^{a}\left(T^{p_{k}} h\right) \leqslant S^{b}\left(T^{p_{k}} h\right) \leqslant S^{b}\left(S^{q_{k}} h\right)=S^{q_{k+1}} h$.

Let $n \geqslant 0$. We show that $T u \leqslant S^{n} h$. Choose k such that $q_{k} \geqslant n$; then $u \leqslant$ $T^{p_{k}-1} h \Longrightarrow T u \leqslant T^{p_{k}} h \leqslant S^{q_{k}} h \leqslant S^{n} h$. Therefore $T u \leqslant u$. A similar argument shows that $S u \leqslant u$, and so $u \in H$. Therefore $T h \leqslant h \leqslant u \leqslant T h$ and $S h \leqslant h \leqslant u \leqslant$ $S h$, so $T h=S h=h$.

This type of argument will occur frequently throughout this paper. It is often easier to show that $S h$ or $T h$ belongs to H by defining an auxiliary element (such as u in the above proof), and showing that u belongs to H.

We can formalize the general idea. Suppose that K is a subset of L with the following properties:
(1) $S h \in K, T h \in K$.
(2) For each $k \in K, \exists k_{1} \in K$ such that $S k_{1} \leqslant k$.
(3) For each $k \in K, \exists k_{2} \in K$ such that $T k_{2} \leqslant k$.

Then $S h=T h=h$. If we let $u=\bigwedge\{k: k \in K\}$, then (2) $\Longrightarrow S u \leqslant u$ and (3) $\Longrightarrow T u \leqslant u$, so $u \in H$. But then $(1) \Longrightarrow S h \leqslant h \leqslant u \leqslant S h$ and $T h \leqslant h \leqslant u \leqslant T h$, so $S h=T h=h$.

The above argument demonstrates that the existence of K is a sufficient condition for the existence of a common fixed point for S and T, but it is not a necessary one. Let $L=\{0,1, a, b, c\}$, where the relations are $0<b<a<1$ and $0<c<a<1$ (this lattice is dual to the one pictured on p. 131 of [1]). Define

$$
\begin{array}{ll}
S 1=1, & S a=S b=S c=S 0=b \\
T 1=1, & T a=T b=T c=T 0=c
\end{array}
$$

S and T are isotone, $H=\{x: S x \leqslant x, T x \leqslant x\}=\{1, a\}$, and so $h=a .1$ is a common fixed point for S and T, but $h=a$ isn't, and all attempts to construct a set K with the properties above are therefore doomed to fail.

Nonetheless, as will be demonstrated throughout this paper, the idea of constructing a set K satisfying the three properties above is a fruitful one. One obvious candidate for K is $\left\{Q^{k} h: Q=S, T ; k=0,1,2, \ldots\right\}$, which was utilized in Theorem 2. This set has the property that $S\left(S^{n} h\right)=S^{n+1} h \leqslant S^{n} h$ and $T\left(T^{n} h\right)=T^{n+1} h \leqslant T^{n} h$, so the easy part of the work is already done; we need only show that for each integer n we can find elements $k=k(n)$ and $j=j(n)$ belonging to k such that $T k \leqslant S^{n} h$ and $S j \leqslant T^{n} h$. A similar remark applies to another likely candidate, $\{Q h: Q \in G\}$.

Even an answer to a question such as, "Which equalities relating S and T guarantee that $\left\{Q^{k} h: Q=S, T ; k=0,1,2, \ldots\right\}$ satisfy properties (2) and (3) above?" would certainly be helpful in discovering when S and T have a common fixed point, and when they do not.

Corollary 2.1. If either of the equalities $(S T)^{k}=T^{n}$ or $(S T)^{k} S=T^{n}$ holds, then S and T have a common fixed point.

Proof. If $(S T)^{k} S=T^{n}$, then multiplying on the right by T yields $(S T)^{k+1}=$ T^{n+1}, so it suffices to show that the equality $(S T)^{k}=T^{n}$ ensures the existence of a common fixed point for S and T. By Theorem $2, S T$ and T have a common fixed point x, and so $S T x=T x=x \Longrightarrow S x=S T x=x$.

Tarski's basic proof needs little modification to establish the following result.
Theorem 3. Assume that for some integer $n, S T S^{n}=T$. Then S and T have a common fixed point.

Proof. Let $H=\{x \in L: S x \leqslant x, T x \leqslant x\}$. As usual, $S(S h) \leqslant S h$. Also $T(S h)=S T S^{n}(S h)=S T S^{n+1} h \leqslant S h$ by Lemma 1, so $S h \in H$, and therefore $S h=h$. But then $T h=S T S^{n} h=S T h$, so $S(T h) \leqslant T h$. Since we always have $T(T h) \leqslant T h$, we see that $T h \in H$, and therefore $T h=h$.

Corollary 3.1. Assume that for some integer $n, S T S^{n}=T S^{p}$, where $n>p$. Then S and T have a common fixed point.

Proof. In Theorem 3 , replace T by $T S^{p}$. The hypothesis of the Corollary now becomes $S\left(T S^{p}\right) S^{n-p}=T S^{p}$, so S and $T S^{p}$ have a common fixed point, which we denote by x. Using an argument familiar from Theorem $1, x=T S^{p} x=T x$.

Tarski's basic proof can also be used to show that the equality $S T=T S^{n}$ guarantees the existence of a common fixed point. We shall later prove stronger results than this, and so will bypass this for the present.

Let $Q, R \in G$. Note that no equality of the form $S^{n} T Q=T R$ can guarantee the existence of common fixed points if $n>1$. Let M_{n+2} denote the lattice consisting of $\left\{0,1, a_{1}, \ldots, a_{n}\right\}$, where the only relations are $0<a_{j}<1$ for $1 \leqslant j \leqslant n$. Let π denote the cyclic permutation of the integers $\{1, \ldots, n\}$, and define $T x=a_{1}$ for $x \in M_{n+2}, S 0=0, S 1=1, S a_{j}=a_{\pi(j)}$ for $1 \leqslant j \leqslant n$. Then $S^{n}=I$, and since $T Q=T R=T$ we see that $T=I T=S^{n} T Q=T R$, but clearly S and T have no common fixed points.

However, under the right circumstances, two equalities of this type can ensure the existence of common fixed points.

Theorem 4. Let p, q, and r be positive integers, and assume that $G C D(p, q)=1$. Suppose further that
(1) $S^{p} T=T S$,
(2) $S^{q} T=T S^{r}$.

Then S and T have a common fixed point.
Proof. Let $H=\{x: S x \leqslant x, T x \leqslant x\}$. Note that $T(S h)=S^{p}(T h) \leqslant S^{p} h \leqslant$ $S^{p-1} h \leqslant \ldots \leqslant S h$, and since $S(S h) \leqslant S h$ as usual, we see that $S h \in H$. Therefore $S h=h$.

We now prove that $S^{p^{n}} T^{n} h=T^{n} h$. For $n=1, S^{p} T h=T S h=T h$. If it holds for n, then $S^{p^{n+1}} T^{n+1} h=\left(S^{p}\right)^{p^{n}} T T^{n} h=\left(S^{p}\right)^{p^{n}-1} S^{p} T T^{n} h=\left(S^{p}\right)^{p^{n}-1} T S T^{n} h=$ $\left(S^{p}\right)^{p^{n}-2} S^{p} T S T^{n} h=\left(S^{p}\right)^{p^{n}-2} T S^{2} T^{n} h=\ldots=T S^{n} T^{n} h=T T^{n} h=T^{n+1} h$.

Let $u=\bigwedge_{n=0}^{\infty} \bigwedge_{k=0}^{p^{n}-1} S^{k} T^{n} h$.
Fix n, k with $0 \leqslant k \leqslant p^{n}-1$. If $1 \leqslant k \leqslant p^{n}-1, u \leqslant S^{k-1} T^{n} h \Longrightarrow S u \leqslant S^{k} T^{n} h$. If $k=0, u \leqslant S^{p^{n}-1} T^{n} h \Longrightarrow S u \leqslant S^{p^{n}} T^{n} h=T^{n} h$. Since $S u \leqslant S^{k} T^{n} h$ for any n, k with $0 \leqslant k \leqslant p^{n}-1$, we see that $S u \leqslant u$.

We now show $T u \leqslant u$. Since $G C D(p, q)=1, G C D\left(p^{n}, q\right)=1$ for any n. Fix n, k with $0 \leqslant k \leqslant p^{n}-1$. Since $G C D\left(p^{n}, q\right)=1$, choose j such that $j q=k\left(\bmod p^{n}\right)$. Let m be an integer such that $j q=k+m p^{n}$. Then $u \leqslant S^{j r} T^{n} h \Longrightarrow T u \leqslant T\left(S^{j r} T^{n} h\right)=$ $T S^{r} S^{(j-1) r} T^{n} h=S^{q} T S^{(j-1) r} T^{n} h=S^{q} T S^{r} S^{(j-2) r} T^{n} h=S^{2 q} T S^{(j-2) r} T^{n} h=\ldots=$ $S^{j q} T^{n+1} h \leqslant S^{j q} T^{n} h$, since $T h \leqslant h \Longrightarrow T^{n+1} h \leqslant T^{n} h$. So $T u \leqslant S^{j q} T^{n} h=$ $S^{k+m p^{n}} T^{n} h=S^{k+(m-1) p^{n}} S^{p^{n}} T^{n} h=S^{k+(m-1) p^{n}} T^{n} h=\ldots=S^{k} T^{n} h$. Since $T u \leqslant$ $S^{k} T^{n} h$ for any n, k with $0 \leqslant k \leqslant p^{n}-1$, we see that $T u \leqslant u$.

So $u \in H$; therefore $h \leqslant u$. But $u \leqslant S^{k} T^{n} h$ for $0 \leqslant k \leqslant p^{n}-1$. Letting $k=0$ and $n=1$, we see that $h \leqslant u \leqslant T h \leqslant h$, and so $T h=h$.

The next two theorems involve symmetric conditions on S and T.

Theorem 5. Assume that for each $x \in L$, there exist integers $n=n(x)$ and $k=k(x)$ such that $S T^{n} x \leqslant T^{n} S x$ and $T S^{k} x \leqslant S^{k} T x$. Then S and T have a common fixed point.

Proof. Let $H=\{x: S x \leqslant x, T x \leqslant x\}$. Choose n such that $S T^{n} h \leqslant T^{n} S h$. Then $T h \leqslant h \Longrightarrow T^{n}(T h) \leqslant T^{n} h$, and so $T\left(T^{n} h\right) \leqslant T^{n} h$. Since $S h \leqslant h, S\left(T^{n} h\right) \leqslant$ $T^{n}(S h) \leqslant T^{n} h$. Therefore $T^{n} h \in H$, and so $T^{n} h \leqslant \ldots \leqslant T h \leqslant h \leqslant T^{n} h \Longrightarrow T h=$ h. This argument also shows that $S h=h$.

The following theorem also utilizes the idea of symmetric conditions.

Theorem 6. Suppose that for each $x \in L$, there exist maps $Q=Q(X)$ and $R=R(x)$ belonging to G such that $S T x=T S Q x$ and $T S x=S T R x$. Then S and T have a common fixed point.

Proof. This is just the Tarski proof combined with Lemma 1. Let $H=$ $\{x: S x \leqslant x, T x \leqslant x\}$. Choose $Q=Q(h)$ such that $S T h \leqslant T S Q h$. Then $S(T h)=$ $T S Q h \leqslant T h$, since $S Q \in G$. Since $T(T h) \leqslant T h$ as usual, $T h \in H$, and so $T h=h$. Similarly, $S h=h$.

Theorems 2, 5, and 6 involve 'pointwise' hypotheses. Rather than require that $S T=T S Q$ and $T S=S T R$ in Theorem 6, we allow the choice of Q and R to vary with x. Undoubtedly many of the theorems on common fixed points can be proved under 'pointwise' hypotheses. For instance, if one weakens the hypothesis of Theorem 3 to assume that for each $x \in L$ there is an integer $n=n(x)$ such that $S T S^{n} x=T x$ it is easy to see that the exact same proof can be used, because at the crucial moment one need only choose the integer $n=n(h)$ for the relevant equality.

III. Lattice conditions ensuring common fixed points

In the previous section we investigated conditions in which the operators S and T were combined using composition of maps. The lattice structure of L naturally imparts a lattice structure to the maps of L into L, and in this section we investigate the effect of imposing lattice conditions on the maps S and T.

In a complete lattice, it is possible to define inferior and superior limits.

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \inf a_{n}=\bigvee_{N=1}^{\infty} \bigwedge_{n=N}^{\infty} a_{n}, \\
& \lim _{n \rightarrow \infty} \sup a_{n}=\bigwedge_{N=1}^{\infty} \bigvee_{n=N}^{\infty} a_{n} .
\end{aligned}
$$

We first investigate the existence of common fixed points when we have an equality of the form $\Phi(S)=\Psi(T)$, where $\Phi(S)$ is an expression from the complete lattice generated by the powers of S, and $\Psi(T)$ is an expression from the complete lattice generated by the powers of T.

Theorem 7. Each of the equalities below ensures the existence of common fixed points for S and T.
(a) $\bigvee_{n=1}^{\infty} S^{n}=\bigvee_{n=1}^{\infty} T^{n}$,
(b) $\bigvee_{n=1}^{\infty} S^{n}=\bigwedge_{n=1}^{\infty} T^{n}$,
(c) $\bigvee_{n=1}^{\infty} S^{n}=\bigvee_{N=1}^{\infty} \bigwedge_{n=N}^{\infty} T^{n}$,
(d) $\bigvee_{n=1}^{\infty} S^{n}=\bigwedge_{N=1}^{\infty} \bigvee_{n=N}^{\infty} T^{n}$,
(e) $\bigvee_{N=1}^{\infty} \bigwedge_{n=N}^{\infty} S^{n}=\bigvee_{N=1}^{\infty} \bigwedge_{n=N}^{\infty} T^{n}$,
(f) $\bigwedge_{N=1}^{\infty} \bigvee_{n=N}^{\infty} S^{n}=\bigvee_{N=1}^{\infty} \bigwedge_{n=N}^{\infty} T^{n}$.

Proof. (a) Let $H=\{x: S x \leqslant x, T x \leqslant x\}$. Then $S h=\bigvee_{n=1}^{\infty} S^{n} h=\bigvee_{n=1}^{\infty} T^{n} h=$ $T h$. Since $S(S h) \leqslant S h$ and $T(S h)=T(T h) \leqslant T h=S h$, we see that $S h \in H$, and so $S h=h$. Therefore $T h=S h=h$ as well.
(b) Let $H=\{x: S x \leqslant x, T x \leqslant x\}$. Then $S h=\bigvee_{n=1}^{\infty} S^{n} h=\bigwedge_{n=1}^{\infty} T^{n} h$. Since $S(S h) \leqslant S h$ and $T(S h)=T\left(\bigwedge_{n=1}^{\infty} T^{n} h\right) \leqslant \bigwedge_{n=1}^{\infty} T^{n+1} h=\bigwedge_{n=1}^{\infty} T^{n} h=\bigvee_{n=1}^{\infty} S^{n} h=S h$. So $S h \in H$, and therefore $S h=h$.

Therefore $h=S h=\bigwedge_{n=1}^{\infty} T^{n} h \leqslant T h \leqslant h$, and $T h=h$.
(c) and (d) Let $H=\{x: S x \leqslant x, T x \leqslant x\}$. Then $\bigvee_{N=1}^{\infty} \bigwedge_{n=N}^{\infty} T^{n} h=\bigwedge_{N=1}^{\infty} \bigvee_{n=N}^{\infty} T^{n} h=$ $\bigwedge_{n=1}^{\infty} T^{n} h$. In both (c) and (d), Sh $=\bigvee_{n=1}^{\infty} S^{n} h=\bigwedge_{n=1}^{\infty} T^{n} h . \quad$ So $S(S h) \leqslant S h$ and $T(S h)=T\left(\bigwedge_{n=1}^{\infty} T^{n} h\right) \leqslant \bigwedge_{n=1}^{\infty} T^{n} h=S h$. So $S h \in H$, and therefore $S h=h$. But then $h=S h=\bigwedge_{n=1}^{\infty} T^{n} h \leqslant T h \leqslant h$, and so $T h=h$.
(e) and (f) Let $H=\{x: S x \leqslant x, T x \leqslant x\}$. Then $\bigvee_{N=1}^{\infty} \bigwedge_{n=N}^{\infty} T^{n} h=\bigwedge_{N=1}^{\infty} \bigvee_{n=N}^{\infty} T^{n} h=$ $\bigwedge_{n=1}^{\infty} T^{n} h$, and also $\bigvee_{N=1}^{\infty} \bigwedge_{n=N}^{\infty} S^{n} h=\bigwedge_{n=1}^{\infty} S^{n} h$. Therefore, in both (e) and (f), $\bigwedge_{n=1}^{\infty} T^{n} h=$ $\bigwedge_{n=1}^{\infty} S^{n} h$; denote this element by u. Then $u \leqslant S^{n} h \Longrightarrow S u \leqslant S^{n+1} h \leqslant S^{n} h \Longrightarrow S u \leqslant$ u, and an analogous argument shows that $T u \leqslant u$. So $u \in H$, and therefore both $S h \leqslant h \leqslant u \leqslant S h$ and $T h \leqslant h \leqslant u \leqslant T h$. So $S h=T h=h$.

The next few theorems give some indication of the extent to which the hypothesis of commutativity in Tarski's Theorem can be weakened.

Theorem 8. Assume that
(1) $S T \leqslant T\left(\bigvee_{n=1}^{\infty} S^{n}\right)$.
(2) For each $x \in L$, there is an integer $n=n(x)$ such that $S T x \geqslant T S^{n} x$.

Then S and T have a common fixed point.
Proof. Let $H=\{x: S x \leqslant x, T x \leqslant x\}$. Since $S^{n} h \leqslant h, S T h \leqslant T\left(\bigvee_{n=1}^{\infty} S^{n} h\right) \leqslant$ $T h$. As usual, $T(T h) \leqslant T h$, so $T h \in H \Longrightarrow T h=h$.

Let $u=\bigwedge_{n=1}^{\infty} S^{n} h$. From assumption (2), $\exists n_{1}$ such that $T S^{n_{1}} h \leqslant S T h=S h$. Assume that $n_{p}>\ldots>n_{1}$ such that $T S^{n_{p}} h \leqslant S^{p} h$. Choose k such that $T S^{k}\left(S^{n_{p}} h\right) \leqslant$ $S T\left(S^{n_{p}} h\right)$, and let $n_{p+1}=n_{p}+k$. Then $T S^{n_{p+1}} h=T S^{k}\left(S^{n_{p}} h\right) \leqslant S T\left(S^{n_{p}} h\right) \leqslant$ $S\left(S^{p} h\right)=S^{p+1} h$. Now $u \leqslant S^{n_{p}} h \Longrightarrow T u \leqslant T S^{n_{p}} h \leqslant S^{p} h \Longrightarrow T u \leqslant u$, and also $u \leqslant S^{n} h \Longrightarrow S u \leqslant S^{n+1} h \leqslant S^{n} h \Longrightarrow S u \leqslant u$. So $u \in H$, and therefore $S h \leqslant h \leqslant u \leqslant S h$. Therefore $S h=h$, and so h is a common fixed point for S and T.

From the standpoint of symmetry, as well as the improvement of Theorem 8, it would be nice to replace hypothesis (2) with the dual of hypothesis (1). In the next section we will introduce another condition which will enable us to achieve this result.

We are interested in discovering situations in which $F(S, T)=G(S, T)$ leads to common fixed points, where F and G are expressions (algebraic, lattice, or anything else) in S and T.

Theorem 9. Throughout this theorem, all meets and joins are taken over sets of integers, each of which contains 1.

Each of the following equalities ensures the existence of a common fixed point for S and T.
(a) $\left(\bigvee S^{n}\right)\left(\bigvee T^{k}\right)=\left(\bigvee T^{k}\right)\left(\bigvee S^{n}\right)$.
(b) $\left(\bigvee S^{n}\right)\left(\bigwedge T^{k}\right)=\left(\bigwedge T^{k}\right)\left(\bigvee S^{n}\right)$.

Proof. In both (a) and (b), let $H=\{x: S x \leqslant x, T x \leqslant x\}$. Because of the restriction that 1 be a member of each index set, and since both $\left\{S^{n} h\right\}$ and $\left\{T^{k} h\right\}$ are descending chains, we see that $\bigvee S^{n} h=S h$ and $\bigvee T^{k} h=T h$.
(a) $\left(\bigvee S^{n}\right)\left(\bigvee T^{k}\right) h=\bigvee S^{n} T h$; similarly $\left(\bigvee T^{k}\right)\left(\bigvee S^{n}\right) h=\bigvee T^{k} S h$. So $\bigvee S^{n} T h=$ $\bigvee T^{k} S h$. Therefore $S T h \leqslant \bigvee S^{n} T h=\bigvee T^{k} S h \leqslant \bigvee T^{k} h=T h$. As usual, $T(T h) \leqslant$ $T h$, so $T h \in H$, and therefore $T h=h$. The proof that $S h=h$ just interchanges both the letters S and T, and n and k.
(b) Since $\bigvee S^{n} h=S h$, we see that $\left(\bigvee S^{n}\right)\left(\bigwedge T^{k} h\right)=\bigwedge T^{k} S h$. So $S\left(\bigwedge T^{k} h\right) \leqslant$ $\left(\bigvee S^{n}\right)\left(\bigwedge T^{k} h\right)=\bigwedge T^{k} S h \leqslant \bigwedge T^{k} h$. Since $T\left(\bigwedge T^{k} h\right) \leqslant \bigwedge T^{k+1} h=\bigwedge T^{k} h$, therefore $u=\bigwedge T^{k} h \in H$, and so $T h \leqslant h \leqslant u \leqslant T h$. So $T h=h$.

As a result, $S h=\left(\bigvee S^{n} h\right)=\left(\bigvee S^{n}\right)\left(\bigwedge T^{k} h\right)=\bigwedge T^{k} S h . \quad$ So $S h \leqslant T S h$, and applying T repeatedly to this inequality yields $S h \leqslant T S h \leqslant T^{2} S h \leqslant \ldots$.. Therefore $\wedge T^{k} S h=T S h$, and so $S h=T S h$. Since both $T(S h)=S h \leqslant S h$ and $S(S h) \leqslant S h$ as usual, we see that $S h \in H$. Therefore $S h=h$.

Theorem 10. Let Q, R be isotone maps of L into L such that $Q \geqslant \bigwedge_{n=1}^{\infty} S^{n}$ and $R \geqslant T(\bigwedge\{U: U \in G\})$. Assume that N is a positive integer such that $S T \wedge Q=$ $T S^{N} \wedge R$. Then S and T have a common fixed point.

Proof. Let $H=\{x: S x \geqslant x, T x \geqslant x\}$. Since $S^{n} h \geqslant S h$ for all $n, Q h \geqslant S h$. Also $T h \geqslant h \Longrightarrow S T h \geqslant S h$. Since $U \in G \Longrightarrow U h \geqslant h$ by Lemma 1, we see that $R h \geqslant T h$. So $T S^{N} h \wedge R h=S T h \wedge Q h \geqslant S h \Longrightarrow T S^{N} h \geqslant S h$.

Assume that $T S^{k N} h \geqslant S^{k} h$. Then $S T\left(S^{k N} h\right) \wedge Q S^{k N} h=T S^{N}\left(S^{k N} h\right) \wedge R S^{k N} h$. But $S T\left(S^{k N} h\right) \geqslant S\left(S^{k} h\right)=S^{k+1} h$, and for each $n, S^{n}\left(S^{k N} h\right) \geqslant S^{k+1} h$, so $Q \geqslant$ $\bigwedge_{n=1}^{\infty} S^{n} \Longrightarrow Q\left(S^{k N} h\right) \geqslant S^{k+1} h$. Therefore $S^{k+1} h \leqslant T S^{N}\left(S^{k N} h\right) \wedge R S^{k N} h \Longrightarrow$ $T S^{(k+1) N} h \geqslant S^{k+1} h$.

Let $u=\bigvee_{n=1}^{\infty} S^{n} h$. Then $u \geqslant S^{k N} h \Longrightarrow T u \geqslant T S^{k N} h \geqslant S^{k} h$ for all k, so $T u \geqslant u$. Since $u \geqslant S^{k} h \Longrightarrow S u \geqslant S^{k+1} h \geqslant S^{k} h$, we see that $S u \geqslant u$. So $u \in H$. Therefore $S h \geqslant h \geqslant u \geqslant S h \Longrightarrow S h=h$.

So $S T h \wedge Q h=T S^{N} h \wedge R h=T h \wedge R h$. But $U \in G \Longrightarrow U h \geqslant h$ by Lemma 1, and so $\bigwedge\{U h: U \in G\} \geqslant h$. Therefore $R h \geqslant T h$, and so $T h \wedge R h=T h$. Consequently $S T h \wedge Q h=T h$, which implies that $S(T h) \geqslant T h$. Since $T(T h) \geqslant T h$ as usual, we see that $T h \in H$, and so $T h=h$, completing the proof.

The following theorem investigates the result of changing the equality $S T \wedge Q=$ $T S^{N} \wedge R$ to $S T \vee Q=T S^{N} \wedge R$.

Theorem 11. Assume that there exist an integer N and maps Q and R (not necessarily isotone) of L into L such that for each $x \in L$ there exist integers $j=j(x)$ and $k=k(x)$ with $0 \leqslant k \leqslant N$ and $j \geqslant 1$ such that $Q x \leqslant S^{j} x, R x \geqslant T S^{k} x$. Assume also that $S T \vee Q=T S^{N} \wedge R$. Then S and T have a common fixed point.

Proof. Let $H=\{x: S x \leqslant x, T x \leqslant x\}$. Choose j and k subject to the above restrictions such that $Q h \leqslant S^{j} h, R h \geqslant T S^{k} h$. Then $(Q \vee S T) h=Q h \vee S T h=$ $\left(T S^{N} \wedge R\right) h=T S^{N} h \wedge R h$. So $S T h \leqslant T S^{N} h \leqslant T h$, since $S^{N} h \leqslant h$. As usual, $T(T h) \leqslant T h$, so $T h \in H$, and therefore $T h=h$.

So $(Q \vee S T) h=Q h \vee S T h=Q h \vee S h=S h$, since $Q h \leqslant S^{j} h \leqslant S h$. Also $\left(T S^{N} \wedge R\right) h=T S^{N} h \wedge R h=T S^{N} h$, since $R h \geqslant T S^{k} h$. Therefore $T S^{N} h=S h$.

Assume inductively that $T S^{i N} h=S^{i} h$. Choose $j \geqslant 1$ such that $Q\left(S^{i N} h\right) \leqslant$ $S^{j}\left(S^{i N} h\right)=S^{j+i N} h$ and k with $0 \leqslant k \leqslant N$ such that $R\left(S^{i N} h\right) \geqslant T S^{k}\left(S^{i N} h\right)=$ $T S^{k+i N} h$. Then $(Q \vee S T)\left(S^{i N} h\right)=Q\left(S^{i N} h\right) \vee S T S^{i N} h=Q\left(S^{i N} h\right) \vee S^{i+1} h=$ $S^{i+1} h$. Also $\left(T S^{N} \wedge R\right)\left(S^{i N} h\right)=T S^{(i+1) N} h \wedge R S^{i N} h=T S^{(i+1) N} h$, since $R S^{i N} h \geqslant$ $T S^{k+i N} h \geqslant T S^{N+i N} h=T S^{(i+1) N} h$. So we can conclude by induction that $T S^{i N} h=$ $S^{i} h$.

Let $u=\bigwedge_{i=1}^{\infty} S^{i} h$. Then $u \leqslant S^{i} h \Longrightarrow S u \leqslant S^{i+1} h \leqslant S^{i} h$, so $S u \leqslant u$. Also $u \leqslant S^{i N} h \Longrightarrow T u \leqslant T S^{i N} h=S^{i} h$, so $T u \leqslant u$. Therefore $u \in H$, and so $S h \leqslant h \leqslant$ $u \leqslant S h$. So $S h=h=T h$.

The following result is similar to Theorem 11, but does not appear to be a direct consequence of it.

Theorem 12. Each of the following conditions the existence of a common fixed points for S and T.
(a) $(S \vee T) S=(S \wedge T) T$.
(b) $S(S \vee T)=T(S \wedge T)$.

Proof. (a) Let $H=\{x: S x \leqslant x, T x \leqslant x\}$. Since $(S \vee T) S h=S^{2} h \vee T S h$ and $(S \wedge T) T h=S T h \wedge T^{2} h$, we see that $S^{2} h \vee T S h=S T h \wedge T^{2} h$. So $T S h \leqslant S T h \leqslant S h$, since $T h \leqslant h$. As usual, $S(S h) \leqslant S h$, and so $S h \in H$. Therefore $S h=h$.

So $S^{2} h \vee T S h=h \vee T h=h$, and therefore $h=S^{2} h \vee T S h=S T h \wedge T^{2} h$. So $h \leqslant T^{2} h \leqslant T h \leqslant h$, and therefore $T h=h$.
(b) Let $H=\{x: S x \leqslant x, T x \leqslant x\}$. Note that $S(S \vee T) h=S(S h \vee T h) \geqslant S^{2} h \vee$ $S T h$ and $T(S \wedge T) h=T(S h \wedge T h) \leqslant T S h \wedge T^{2} h$. Since $S h \leqslant h, S T h \leqslant T S h \leqslant T h$. We also have $T(T h) \leqslant T h$, so $T h \in H$. Therefore $T h=h$.

Consequently, $S(S \vee T) h=S(S h \vee T h)=S(S h \vee h)=S h$, and $T(S \wedge T) h=$ $T(S h \wedge T h)=T(S h \wedge h)=T S h$. So $S h=T S h$. Assume inductively that $T S^{n} h=$ $S^{n} h$. Then $S(S \vee T)\left(S^{n} h\right)=S\left(S^{n+1} h \vee T S^{n} h\right)=S\left(S^{n+1} h \vee S^{n} h\right)=S^{n+1} h$, and $T(S \wedge T)\left(S^{n} h\right)=T\left(S^{n+1} h \wedge T S^{n} h\right)=T\left(S^{n+1} h \wedge S^{n} h\right)=T S^{n+1} h$. We conclude by induction that $T S^{n} h=S^{n} h$ for all n.

Let $u=\bigwedge_{n=1}^{\infty} S^{n} h$. Since $u \leqslant S^{n} h, S u \leqslant S^{n+1} h \leqslant S^{n} h$ for any n, and so $S u \leqslant u$. Since $u \leqslant S^{n} h$, we also have $T u \leqslant T S^{n} h=S^{n} h$ for any n, and so $T u \leqslant u$. Therefore $u \in H$. So $S h \leqslant h \leqslant u \leqslant S h$, and so $S h=h$, completing the proof.

The identity map I does not enter the hypotheses in Theorems 8 through 12. Nonetheless, there are numerous common fixed point theorems which may be proved in which I appears. An example of this was given after Theorem 1. The following theorem is neither exhaustive nor best possible, but simply gives an idea of the types of equalities involving I that can guarantee the existence of common fixed points.

Theorem 13. Each of the following equalities ensures the existence of common fixed points for S and T.
(a) $I \wedge S T=I \vee S$.
(b) $I \wedge S T=S \vee T$.
(c) $I \wedge S T=S \vee T S$.
(d) $I \wedge S T=T \vee T S$.
(e) $I \wedge S T=T \wedge T S$.
(f) $(I \vee S) \wedge T=(I \wedge S) \vee T$.
(g) $S(I \wedge T)=T(I \wedge S)$.
(h) $S(I \wedge T)=T(I \vee S)$.
(i) $(I \wedge T) S=(I \vee S) T$.

Proof. (a) let $H=\{x: S x \leqslant x, T x \leqslant x\}$. Note that $S T h=h \wedge S T h=$ $(I \wedge S T) h=(I \vee S) h=h \vee S h=h$. But $T h \leqslant h \Longrightarrow h=S T h \leqslant S h$, and combining this with the fact that $S h \leqslant h$ shows that $S h=h$. We also have $(I \wedge S T)(T h)=$ $(I \vee S)(T h)$, so $T h \wedge S T^{2} h=T h \vee S T h=T h \vee h=h$. This shows that $h \leqslant T h$, and since $T h \leqslant h$, we see that $T h=h$.
(b) Let $H=\{x: S x \geqslant x, T x \geqslant x\}$. Note that $T h \geqslant h \Longrightarrow S T h \geqslant S h \geqslant h$, so $h=(I \wedge S T) h=(S \vee T) h=S h \vee T h$. Therefore $S h \leqslant h \leqslant S h$ and $T h \leqslant h \leqslant T h$, and so $S h=T h=h$.
(c) Let $H=\{x: S x \leqslant x, T x \leqslant x\}$. Note that $S T h=h \wedge S T h=(I \wedge S T) h=$ $(S \vee T S) h=S h \vee T S h$, so $T S h \leqslant S T h$. But $T h \leqslant h \Longrightarrow S T h \leqslant S h$, and so $T S h \leqslant S h$. As usual, $S(S h) \leqslant S h$, and so $S h \in H$. Therefore $S h=h$. So $S T h=S h \vee T S h=h \vee T S h=h$.

Now $T h \wedge S T^{2} h=(I \wedge S T)(T h)=(S \vee T S)(T h)=S T h \vee T(S T h)=S T h \vee T h=$ $h \vee T h=h$, so $h \leqslant T h \leqslant h \Longrightarrow T h=h$.
(d) Let $H=\{x: S x \leqslant x, T x \leqslant x\}$. Note that $S T h=h \wedge S T h=(I \wedge S T) h=$ $(T \vee T S) h=T h \vee T S h$. As in (c), $T S h \leqslant S T h$, which leads to $S h=h$. But then $T h=T h \vee T h=T h \vee T S h=S T h$, and so $S(T h) \leqslant T h$. As usual, $T(T h) \leqslant T h$, and so $T h \in H$. Therefore $T h=h$.
(e) Let $H=\{x: S x \leqslant x, T x \leqslant x\}$. Then $S T h=h \wedge S T h=(I \wedge S T) h=$ $(T \wedge T S) h=T h \wedge T S h$. Therefore $S T h \leqslant T h$. Combining this with $T h \leqslant h \Longrightarrow$ $T(T h) \leqslant T h$, we see that $T h \in H$. Therefore $T h=h$.

Since $S h=S T h=T h \wedge T S h=h \wedge T S h=T S h$, we have $T(S h) \leqslant S h$. As usual, $S(S h) \leqslant S h$, and so $S h \in H$. Therefore $S h=h$.
(f) Let $H=\{x: S x \leqslant x, T x \leqslant x\}$. Since $S h \leqslant h,(I \vee S) h=h \vee S h=h$, so $T h=h \wedge T h=[(I \vee S) \wedge T] h=[(I \wedge S) \vee T] h=(h \wedge S h) \vee T h=S h \vee T h$. So $S h \leqslant T h$.

Note that $(I \vee S)(S h)=S h$, since $S h \leqslant h \Longrightarrow S(S h) \leqslant S h$, and also $[(I \vee S) \wedge$ $T](S h)=[(I \wedge S) \vee T](S h)$. Since $(I \wedge S)(S h)=S^{2} h$, we see that $S h \wedge T(S h)=$ $S^{2} h \vee T(S h)$. Therefore $T(S h) \leqslant S h$. As usual, $S(S h) \leqslant S h$, and so $S h \in H$. Therefore $S h=h$. But then $h=S h \leqslant T h \leqslant h \Longrightarrow S h=T h=h$.
(g) Let $H=\{x: S x \leqslant x, T x \leqslant x\}$. Since $S h \leqslant h$, we see that both $(I \wedge S) h=S h$ and $S(S h) \leqslant S h$. Similarly, $(I \wedge T) h=T h$ and $T(T h) \leqslant T h$. So $T(S h)=T(I \wedge S) h=$ $S(I \wedge T) h=S(T h) \leqslant S h$, since $T h \leqslant h$, and so $S h \in H$. Therefore $S h=h$. Similarly, $S(T h)=S(I \wedge T) h=T(I \wedge S) h=T(S h) \leqslant T h$, and so $T h \in H$. Therefore $T h=h$.
(h) Let $H=\{x: S x \leqslant x, T x \leqslant x\}$. Note that $S(I \wedge T) h=S(h \wedge T h)=S(T h)$, since $T h \leqslant h$. Also, since $S h \leqslant h$, we have $T(I \vee S) h=T(h \vee S h)=T h$, so $S T h=$ $T h \leqslant T h$. As usual, $T(T h) \leqslant T h$, so $T h \in H$. Therefore $T h=h$. Substituting this into $S T h=T h$, we see that $S h=h$.
(i) Let $H=\{x: S x \leqslant x, T x \leqslant x\}$. Note that $(I \wedge T)(S h)=S h \wedge T S h$ and $(I \vee S)(T h)=T h \vee S T h$, so $T h \vee S T h=S h \wedge T S h$. Therefore $S T h \leqslant T S h \leqslant T h$, since $S h \leqslant h$. Since $T(T h) \leqslant T h$, we see that $T h \in H$, and so $T h=h$.

Since $T h \vee S T h=h \vee S h=h$, we see that $h=T h \vee S T h=S h \wedge T S h$, so $h \leqslant S h$. But $S h \leqslant h$, and so $S h=h$.

We now prove a theorem in which equalities involving commutation with inferior and superior limits ensures the existence of common fixed points.

Theorem 14. Each of the following equalities ensures the existence of common fixed points for S and T.
(a) $S\left(\bigvee_{N=1}^{\infty} \bigwedge_{n=N}^{\infty} T^{n}\right)=\bigvee_{n=1}^{\infty} T^{n} S$.
(b) $S\left(\bigvee_{N=1}^{\infty} \bigwedge_{n=N}^{\infty} T^{n}\right)=\bigwedge_{n=1}^{\infty} T^{n} S$.

Proof. (a) Let $H=\{x: S x \geqslant x, T x \geqslant x\}$. Since $T h \leqslant \ldots \leqslant T^{n} h \leqslant \ldots$, we see that $\bigvee_{N=1}^{\infty} \bigwedge_{n=N}^{\infty} T^{n} h=\bigvee_{n=1}^{\infty} T^{n} h$, and so $S\left(\bigvee_{n=1}^{\infty} T^{n} h\right)=\bigvee_{n=1}^{\infty} T^{n} S h \geqslant \bigvee_{n=1}^{\infty} T^{n} h$. Also, $T\left(\bigvee_{n=1}^{\infty} T^{n} h\right) \geqslant \bigvee_{n=1}^{\infty} T^{n+1} h=\bigvee_{n=1}^{\infty} T^{n} h$ since $T h \leqslant T^{2} h \leqslant \ldots \leqslant T^{n} h \leqslant \ldots$, so $\bigvee_{n=1}^{\infty} T^{n} h \in H$. Therefore $T h \leqslant \bigvee_{n=1}^{\infty} T^{n} h \leqslant h \leqslant T h$, and so $T h=h$.

Substituting $T h=h$ into the assumed equality, we obtain $S h=\bigvee_{n=1}^{\infty} T^{n} S h$, and so $S h \geqslant T S h$. Applying T repeatedly to this inequality, we get $T S h \geqslant T^{2} S h \geqslant$ $\ldots \geqslant T^{n} S h \geqslant \ldots$, and so $T S h=\bigvee_{n=1}^{\infty} T^{n} S h$. Therefore $T S h=S h \geqslant S h$, and since $S(S h) \geqslant S h$ as usual, we see that $S h \in H$. Therefore $S h=h$.
(b) The proof here is essentially the same as that of (a). We define $H=\{x: S x \leqslant$ $x, T x \leqslant x\}$, and use the identical arguments to show that $\bigwedge_{n=1}^{\infty} T^{n} h \in H$, which can be used to show that $T h=h$. This result is then substituted into the assumed equality to show that $S h \in H$ in the same way as this was done in (a).

IV. A continuity condition ensuring common fixed points

Assume that $a_{1} \geqslant a_{2} \geqslant \ldots \geqslant a_{n} \geqslant \ldots$. Although for any isotone map T we have $T\left(\bigwedge_{n=1}^{\infty} a_{n}\right) \leqslant \bigwedge_{n=1}^{\infty} T a_{n}$, in general equality need not hold. A simple example of this situation can be found on the unit interval $[0,1]$ by defining $T 0=0, T x=1$ if $x>0$. We say that T is continuous from above when equality holds. An analogous definition can be made for increasing sequences; in which case we say T is continuous from below.

This definition allows a significant strengthening of Theorem 8.

Theorem 15. Let S be continuous from above, and assume further that $T\left(\bigwedge_{n=0}^{\infty} S^{n}\right) \leqslant S T \leqslant T\left(\bigvee_{n=0}^{\infty} S^{n}\right)$. Then S and T have a common fixed point.

Proof. Let $H=\{x: S x \leqslant x, T x \leqslant x\}$. Since $S T h \leqslant T\left(\bigvee_{n=0}^{\infty} S^{n} h\right) \leqslant T h$, and $T(T h) \leqslant T h$ as usual, we see that $T h \in H$. So $T h=h$.

Therefore $S h=S T h \geqslant T\left(\bigwedge_{n=0}^{\infty} S^{n} h\right)$. Since S is continuous from above, if we assume that $S^{k} h \geqslant T\left(\bigwedge_{n=0}^{\infty} S^{n} h\right)$, then $S^{k+1} h=S\left(S^{k} h\right) \geqslant S T\left(\bigwedge_{n=0}^{\infty} S^{n} h\right) \geqslant$ $T\left(\bigwedge_{j=0}^{\infty} S^{j}\left(\bigwedge_{n=0}^{\infty} S^{n} h\right)\right)=T\left(\bigwedge_{j=0}^{\infty} \bigwedge_{n=0}^{\infty} S^{j+n} h\right)=T\left(\bigwedge_{n=0}^{\infty} S^{n} h\right)$, since $h \geqslant S h \geqslant \ldots \geqslant$ $S^{n} h \geqslant \ldots$ So $S^{k} h \geqslant T\left(\bigwedge_{n=0}^{\infty} S^{n} h\right)$ for all k, and therefore $\bigwedge_{n=0}^{\infty} S^{n} h \geqslant T\left(\bigwedge_{n=0}^{\infty} S^{n} h\right)$. Since S is continuous from above, we also have $S\left(\bigwedge_{n=0}^{\infty} S^{n} h\right)=\bigwedge_{n=0}^{\infty} S^{n+1} h=\bigwedge_{n=0}^{\infty} S^{n} h$, and so $u=\bigwedge_{n=0}^{\infty} S^{n} h \in H$. Therefore $S h \leqslant h \leqslant u \leqslant S h$, and so $S h=h$.

Assuming continuity from above also enables us to prove additional common fixed point theorems involving superior and inferior limits.

Theorem 16. Assume that T is continuous from above, and that

$$
S\left(\bigvee_{N=1}^{\infty} \bigwedge_{n=N}^{\infty} T^{n}\right)=\left(\bigvee_{N=1}^{\infty} \bigwedge_{n=N}^{\infty} T^{n}\right) S
$$

Then S and T have a common fixed point.
Proof. Let $H=\{x: S x \leqslant x, T x \leqslant x\}$. Since $T h \geqslant T^{2} h \geqslant \ldots \geqslant T^{n} h \geqslant$..., we see that $\bigvee_{N=1}^{\infty} \bigwedge_{n=N}^{\infty} T^{n} h=\bigvee_{N=1}^{\infty} \bigwedge_{n=1}^{\infty} T^{n} h=\bigwedge_{n=1}^{\infty} T^{n} h$. So $S\left(\bigwedge_{n=1}^{\infty} T^{n} h\right)=$ $S\left(\bigvee_{N=1}^{\infty} \bigwedge_{n=N}^{\infty} T^{n} h\right)=\bigvee_{N=1}^{\infty} \bigwedge_{n=N}^{\infty} T^{n} S h \leqslant \bigvee_{N=1}^{\infty} \bigwedge_{n=N}^{\infty} T^{n} h=\bigwedge_{n=1}^{\infty} T^{n} h$. Since we also have $T\left(\bigwedge_{n=1}^{\infty} T^{n} h\right) \leqslant \bigwedge_{n=1}^{\infty} T^{n+1} h=\bigwedge_{n=1}^{\infty} T^{n} h$, we see that $u=\bigwedge_{n=1}^{\infty} T^{n} h \in H$. Therefore $T h \leqslant h \leqslant u \leqslant T h$, so $T h=h$.

Therefore $S h=S\left(\bigvee_{N=1}^{\infty} \bigwedge_{n=N}^{\infty} T^{n} h\right)=\bigvee_{N=1}^{\infty} \bigwedge_{n=N}^{\infty} T^{n} S h$. So, for any $N, S h \geqslant$ $\bigwedge_{n=N}^{\infty} T^{n} S h$. Since T is continuous from above, we see that $T S h \geqslant T\left(\bigwedge_{n=N}^{\infty} T^{n} S h\right)=$ $\bigwedge_{n=N}^{\infty} T^{n+1} S h$, and so $T S h \geqslant \bigvee_{N=1}^{\infty} \bigwedge_{n=N}^{\infty} T^{n+1} S h=\bigvee_{N=2}^{\infty} \bigwedge_{n=N}^{\infty} T^{n} S h$. Since $T S h=T^{1} S h$, we have $T S h \geqslant \bigvee_{N=1}^{\infty} \bigwedge_{n=N}^{\infty} T^{n} S h=S h$. Applying T repeatedly to $S h \leqslant T S h$, we obtain $S h \leqslant T S h \leqslant T^{2} S h \leqslant \ldots \leqslant T^{n} S h \leqslant \ldots$ Therefore $S h=\bigvee_{N=1}^{\infty} \bigwedge_{n=N}^{\infty} T^{n} S h=$ $\bigvee_{N=1}^{\infty} T^{N} S h$. Since $S h \leqslant T S h \leqslant T^{2} S h \leqslant \ldots \leqslant T^{N} S h \leqslant \ldots$, we see that $S h=$
$\bigvee^{\infty} T^{N} S h \Longrightarrow S h \geqslant T S h$. Since $S(S h) \leqslant S h$ as usual and $T(S h) \leqslant S h$, we see that $N=1$ $S h \in H$. So $S h=h$.

The next result shows that Theorem 16 holds with the superior limit on the left side of the equality instead of the inferior limit.

Theorem 17. Assume that T is continuous from above, and that

$$
S\left(\bigwedge_{N=1}^{\infty} \bigvee_{n=N}^{\infty} T^{n}\right)=\left(\bigvee_{N=1}^{\infty} \bigwedge_{n=N}^{\infty} T^{n}\right) S
$$

Then S and T have a common fixed point.
Proof. Let $H=\{x: S x \leqslant x, T x \leqslant x\}$. Since $T h \geqslant T^{2} h \geqslant \ldots \geqslant$ $T^{n} h \geqslant \ldots$, we see that $\bigwedge_{N=1}^{\infty} \bigvee_{n=N}^{\infty} T^{n} h=\bigwedge_{N=1}^{\infty} T^{N} h$. Consequently, $S\left(\bigwedge_{n=1}^{\infty} T^{n} h\right)=$ $S\left(\bigwedge_{N=1}^{\infty} \bigvee_{n=N}^{\infty} T^{n} h\right)=\bigvee_{N=1}^{\infty} \bigwedge_{n=N}^{\infty} T^{n} S h \leqslant \bigvee_{N=1}^{\infty} \bigwedge_{n=N}^{\infty} T^{n} h=\bigwedge_{n=1}^{\infty} T^{n} h$. Since we also have $T\left(\bigwedge_{n=1}^{\infty} T^{n} h\right) \leqslant \bigwedge_{n=1}^{\infty} T^{n+1} h=\bigwedge_{n=1}^{\infty} T^{n} h$, we see that $u=\bigwedge_{n=1}^{\infty} T^{n} h \in H$. Therefore $T h \leqslant h \leqslant u \leqslant T h$, so $T h=h$. The second paragraph of the proof of Theorem 16 now suffices to establish the theorem.

V. Open questions

Some of these may have easy answers that have eluded the authors; some, in particular the first two, may be fairly deep.
(1) Does there exist a rule which would enable one to decide when an algebraic equality relating S and T ensures the existence of a common fixed point, without the necessity of generating an equality-specific proof? Alternatively, can it be shown (possibly by metamathematical techniques) that no such rule exists?
(2) Let $L(T)$ be the complete lattice generated by the powers of T. Does there exist a rule which would enable one to decide when $Q \in L(T), S Q=Q S$ implies that S and T have a common point? Alternatively, can it be shown that no such rule exists?
(3) Do there exist other theorems in addition to Theorem 1 which provide ways to obtain additional common fixed point theorems from already-known results?
(4) Does the equality $S T^{k}=T S^{n}$ guarantee the existence of common fixed points, if $k>1$ and $n>1$?
(5) Does there exist a single equality relating three (or more) isotone maps which would guarantee a simultaneous fixed point for those maps?
(6) Can the hypothesis of continuity from above (or below) be eliminated from those theorems where it was used?

References

[1] G. Birkhoff: Lattice Theory. American Mathematical Society, Providence R.I., 1967.
[2] N. Dunford and J. Schwartz: Linear Operators, Part I. Interscience, New York N.Y., 1958.
[3] J. Jachymski: Equivalent Conditions Involving Common Fixed Points for Maps on the Unit Interval. Proc. Amer. Math. Soc. 124 (1996), 3229-3233.
[4] A. Tarski: A Lattice-Theoretical Fixpoint Theorem and Its Applications. Pacific. J. Math. 5 (1955), 285-309.

Authors' address: Kent Merryfield and James D. Stein Jr., Department of Mathematics, California State University, Long Beach, 1250 Bellflower Blvd., Long Beach, Ca. 90840 . U.S.A., e-mail: kmerry@csulb.edu, jimstein@csulb.edu.

The correspondence should be addressed to J. D. Stein Jr.

