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1. Introduction

The notions of distinguished extension and distinguished completion of a lattice

ordered group were investigated by R. N. Ball in [2], [4], [5].

The distinguished completion of a lattice ordered group G is denoted by E(G). It

is defined uniquely up to isomorphisms leaving all elements of G fixed.

In [4] and [5] it is proved that E(G) is in a certain sense better than several

other types of completions of the lattice ordered group G (cf. the diagram of such
completions which is given in [4]).

In [5], E(G) was described by applying the construction of the maximal essential

extension in the category of distributive lattices which was dealt with by Balbes [1]
and Ball [3].

Let A be an MV -algebra with the underlying set A. In view of the well-known
result of Mundici [9] there exists an abelian lattice ordered group G with a strong

unit u such that, under the notation as in [8] (cf. also Section 2 above) we have

(1) A = A0(G, u).

This implies that we obtain a lattice order on the set A; the corresponding lattice
will be denoted by �(A).
If B is an MV -algebra such that A is a subalgebra of B, then B is said to be an

extension of A. If, moreover, for each 0 < b ∈ B (= the underlying set of B) there
exists 0 < a ∈ A with a � b, then A is called a dense subalgebra of B.
In analogy with [5] (p. 89) we introduce the following definitions:
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1.1. Definition. Let A and B be MV -algebras such that B is an extension of
A. Suppose that
(i) A is dense in B;
(ii) if b1, b2 ∈ B and b1 < b2, then there are a1, a2 ∈ A such that a1 < a2 and the
interval [a1, a2] of �(B) is projective to a subinterval of [b1, b2] in �(B).

Then B is called a distinguished extension of A.

1.2. Definition. An MV -algebra is called distinguished if it has no proper

distinguished extension.

1.3. Definition. Let A and B be MV -algebras such that

(i) B is a distinguished extension of A;
(ii) the MV -algebra B is distinguished.

Then B is said to be a distinguished completion of A.

If a lattice ordered group G is an �-subgroup of a lattice ordered group H , then

we write G � H . Similarly, if an MV -algebra A is a subalgebra of an MV -algebra
B, then we express this fact by writing A � B.
In the present paper we prove the following results.

1.4. Proposition. Let G and H be abelian lattice ordered groups with G � H .

Suppose that u is a strong unit in both G and H . Further suppose that A and B are
MV -algebras such that

A = A0(G, u), B = A0(H, u).

Then the following conditions are equivalent:

(i) H is a distinguished extension of G;

(ii) B is a distinguished extension of A.

1.5. Proposition. Let A be an MV -algebra; suppose that (1) is valid. Put

G1 = E(G), B = A0(G′
1, u),

where G′
1 is the convex �-subgroup of G1 which is generated by the element u. Then

B is a distinguished completion of A.

We also prove that the distinguished completion of an MV -algebra A is defined
uniquely up to isomorphisms leaving all elements of A fixed.
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2. Preliminaries

First we remark that if in Definitions 1.1, 1.2 and 1.3 above the MV -algebras are

replaced by lattice ordered groups, then these modified definitions can be applied for
lattice ordered groups (cf. (∗) in Section 3 below, and the corresponding definitions
in [5]).
For MV -algebras we apply the terminology and the notation as in Gluschankof

[7] (cf. also the author’s paper [8]). Thus an MV -algebra is an algebraic system

A = (A;⊕,¬, ∗, 0, 1),

where A is a nonempty set, ⊕ and ∗ are binary operations, ¬ is a unary operation,
0 and 1 are unary operations on A such that the indentities (m1)–(m9) from [7] are

satisfied.
We will systematically apply the following results which are due to Mundici [9]

(Theorem 2.5 and 3.8); cf. also [8].

2.1. Proposition. Let G be an abelian lattice ordered group with a strong unit

u. Let A be the interval [0, u] of G. For each a and b in A we put

a⊕ b = (a+ b) ∧ u, ¬u = u− a, 1 = u.

Further, let the operation ∗ on A be defined by (m9). Then A = (A;⊕, ∗,¬, 0, u) is

an MV -algebra.

If G and A are as in 2.1, then we denote A = A0(G, u).

2.2. Proposition. Let A be an MV -algebra. Then there exists an abelian

lattice ordered group G with a strong unit u such that A = A0(G, u).

Let A be a givenMV -algebra. From the construction of the lattice ordered group
G with the property as in 2.2 performed in [9] we conclude that the following two

lemmas are valid.

2.3. Lemma. Let G and G′ be abelian lattice ordered groups with strong units u

and u′. Suppose that A is anMV -algebra such that A = A0(G, u) and A = (G′, u′).

Then u = u′ and there is an isomorphism ϕ of G onto G′ such that ϕ(a) = a for

each a ∈ A. Moreover, if G ⊆ G′ and u = u′, then G = G′.

2.4. Lemma. Let A and B be MV -algebras, A � B, A = A0(G, u). Then (i)
there exists an abelian lattice ordered group H such that u is a strong unit of H ,
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B = A0(H, u) and (ii) there is an isomorphism ϕ of G into H such that ϕ(a) = a for

each a ∈ A.

If a lattice ordered group H is a distinguished extension of a lattice ordered group

G, then we write

G �dist H.

An analogous notation will be applied for MV -algebras.

The following assertion is easy to verify.

2.5. Lemma. Let X, Y and Z be lattice ordered groups such that X � Z � Y .

If X �dist Y , then Z �dist Y and X �dist Z.

3. Proofs of 1.4 and 1.5

For the notion of projectivity of intervals in a lattice cf., e.g., Birkhoff [6].

Let L be a distributive lattice and let [a, b] be an interval in L. For each x ∈ L we
put x π ab = (x ∨ a) ∧ b. If, moreover, [c, d] is an interval in L such that c π ab = a

and d π ab = b, then we say that a and b distinguish c from d. (Cf. [5].)

An easy calculation shows that

(∗) a and b distinguish c from d if and only if the interval [a, b] is projective to
subinterval of [c, d].

The following lemma gives a deeper insight into the notion of projectivity of in-

tervals in a distributive lattice. It seems to be folklore; the proof will be omitted.

3.1. Lemma. Let L be a distributive lattice and let [a, b], [c, d] be intervals in

L. Denote

a ∧ c = u1, b ∧ d = v1, a ∨ c = u2, b ∨ d = v2.

Then the following conditions are equivalent:

(i) The intervals [a, b] and [c, d] are projective.
(ii) The relations

a ∧ v1 = u1, a ∨ v1 = b, c ∧ v1 = u1, c ∨ v1 = d,

b ∧ u2 = a, b ∨ u2 = v2, d ∧ u2 = c, d ∨ u2 = v2 are valid.

The distributive law immediately yields

3.2. Lemma. Let L be a distributive lattice. Let p, q ∈ L and let [a, b], [c, d] be

projective intervals in L. Denote x′ = (x∨ p) ∧ q for each x ∈ L. Then the intervals

[a′, b′] and [c′, d′] are projective in L.
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The following lemma is a corollary of 3.1.

3.3. Lemma. Let L1 be a sublattice of a distributive lattice L. Let [a, b],

[c, d] be intervals in L1 and let [a, b]0, [c, d]0 be the corresponding intervals (with the
endpoints a, b or c, d, respectively) in L. Then the following conditions are equivalent:

(i) The intervals [a, b] and [c, d] are projective in L1.

(ii) The intervals [a, b]0 and [c, d]0 are projective in L.

3.4. Lemma. Let G and H be abelian lattice ordered groups with the same

strong unit u. Suppose that H is a distinguished extension of G and that A =
A0(G, u), B = A0(H, u). Then B is a distinguished extension of A.

�����. In view of the definitions of A and B we conclude that B is an extension
of A. Let A or B be the underlying set of A and B, respectively. Let 0 < b ∈ B.
Then b ∈ H+ and thus there exists g ∈ G with 0 < g � b. We obtain g � u, whence

g ∈ A and therefore A is a dense subalgebra of B.
Let b1, b2 ∈ B, b1 < b2. Thus b1, b2 ∈ H . Hence there exist b′1, b

′
2 ∈ H and

g1, g2 ∈ G such that
b1 � b′1 < b′2 � b2, g1 < g2

and the intervals [b′1, b
′
2], [g1, g2] are projective in H . Denote

g′
1 = (g1 ∨ 0) ∧ u, g′

2 = (g2 ∨ 0) ∧ u.

Then in view of 3.2, the intervals [b′1, b
′
2] and [g

′
1, g

′
2] are projective in H . Clearly

g′
1, g

′
2 ∈ A. According to 3.3, the intervals [b′1, b

′
2], [g

′
1, g

′
2] are projective in B. There-

fore B is a distinguished extension of A. �

3.5. Lemma. Let G and H be abelian lattice ordered groups with the same

strong unit u. Suppose that H is an extension of G, A = A0(G, u), B = A0(H, u)

and that B is a distinguished extension of A. Then H is a distinguished extension

of G.

�����. a) First we verify that G is dense in H . Let 0 < h ∈ H . There

is a positive integer n with h � nu. Hence there are b1, b2, . . . , bn ∈ H such that
0 � bi � u for each i ∈ {1, 2, . . . , n} and h = b1+b2+. . .+bn. Then bi(1) > 0 for some

i(1) ∈ {1, 2, . . . , n}. Since bi(1) belongs to B there is ai(1) ∈ A with 0 < ai(1) � bi(1).
We get ai(1) � h and ai(1) ∈ G; thus G is dense in H .

b) Now let h1, h2 ∈ H , h1 < h2. Since u is a strong unit in H there exists a
positive integer n such that

(1) −nu � h1 < h2 � nu.
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Put uk = (−n+ k)u for k = 0, 1, 2, . . . , 2n. Hence we have a chain

(2) −nu = u0 < u1 < u2 < . . . < u2n = nu.

By considering the chains given in (1) and (2) and by applying the well-known

theorem on refinements of finite chains in a modular lattice (cf. e.g., Birkhoff [6],
Chapter V, Corollary to Theorem 5) we conclude that there is a chain

h1 = y0 � y1 � y2 � . . . � y2n = h2

such that for each k ∈ {0, 1, 2, . . . , 2n} we have

(3) [yk, yk+1] ∼ [zk, z′
k],

where the symbol ∼ denotes the projectivity of intervals in the lattice �(H) and
[zk, z′

k] is a subinterval of the interval [uk, uk+1] in �(H).

There exists k(1) ∈ {0, 1, 2, . . . , 2n} such that yk(1) < yk(1)+1. Then zk(1) < z′
k(1).

Denote

vk(1) = zk(1) − uk(1), v′
k(1) = z′

k(1) − uk(1).

Thus

0 � vk(1) < v′
k(1) � u.

Because B is a distinguished extension of A, there exists a subinterval [tk(1), t′k(1)] of
[vk(1), v

′
k(1)] such that

[tk(1), t
′
k(1)] ∼ [qk(1), q

′
k(1)],

where qk(1), q
′
k(1) are elements of A and qk(1) < q′k(1). Denote

pk(1) = qk(1) + uk(1), p′
k(1) = q′k(1) + uk(1).

Then pk(1), p
′
k(1) are elements of G, pk(1) < p′

k(1) and the interval [pk(1), p
′
k(1)] is

projective in �(H) with a subinterval of [zk(1), z
′
k(1)]. Since the relation of projectivity

is transitive, [pk(1), p
′
k(1)] is projective to a subinterval of [yk(1), yk(1)+1] (cf. (3)), and

therefore [pk(1), p
′
k(1))] is projective to a subinterval of [h1, h2] in H .

Hence H is a distinguished extension of G. �

From 3.4 and 3.5 we conclude that 1.4 is valid.

For an abelian lattice ordered group X let X
ω
and Xc have the same meaning as

in [5] (pp. 109–110). Thus X
ω
is the strong projectable completion of X and Xc is

the cut completion of X .
In view of Theorem 4.2 in [5] we have
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3.6. Proposition. Let X be an abelian lattice ordered group. Then E(X) =

(X
ω
)c.

From the definitions of X
ω
and Xc we immediately obtain

3.7. Lemma. Let X and Y be abelian lattice ordered groups such that X � Y .

Then X
ω � Y

ω
and Xc � Y c.

Now, 3.6 and 3.7 yield

3.7.1. Corollary. Let X and Y be as in 3.7. Then E(X) � E(Y ).

����� of 1.5. We apply the assumptions and the notation as in 1.5.
a) Since G �dist G1, from 2.5 we conclude that G �dist G′

1 and then, in view of
3.4, we obtain that

(4) A �dist B

is valid.
b) Suppose that B1 is anMV -algebra with the underlying set B1 such that B �dist

B1. Then in view of (4) we get

(4’) A �dist B1.

There exists an abelian lattice ordered group H with a strong unit u such that

B1 = A0(H, u).

According to 2.4 we can suppose, without loss of generality, that H is an extension
of G (cf. Fig. 1).

�
�
�

� �
�
�
�

�

H1

H ′
1

H

B1
B

G1

G′
1

G

A

Fig. 1
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Put H1 = E(H). In view of 3.6,

G1 = (G
ω
)c, H1 = (H

ω
)c.

According to 3.7.1 we have

(5) G1 � H1.

c) In view of (4’) and according to 1.4 we obtain

G �dist H.

Further, H �dist H1, thus G �dist H1. Hence by applying 2.5 and (5) we conclude
that

G1 �dist H1.

However, since G1 is distinguished we get G1 = H1. Then G′
1 = H ′

1, where H ′
1 is

defined analogously to G′
1.

Let b1 ∈ B1. Then b1 ∈ H and 0 � b1 � u, whence b1 ∈ H ′
1 = G′

1, thus b1 ∈ B.

Therefore B1 = B. We have verified that B is distinguished. �

3.8. Lemma. Let B0 be an MV -algebra which is distinguished. Suppose that

H0 is an abelian lattice ordered group with a weak unit u such that B0 = A0(H0, u).
Put H01 = E(H0) and let G10

′ be the convex �-subgroup of H01 which is generated by

the element u. Then G10
′ = H0.

�����. We have

H0 � G01
′ � H01 , H0 �dist H01 ,

whence in view of 2.5,

H0 �dist G01
′ �dist H01 .

Put B1 = A0(G01′, u). Then B0 � B1, and according to 1.4,

B0 �dist B1.

Since B0 is distinguished, we obtain B0 = B1. From this and from 2.3 we infer that
H0 = G01

′. �
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H01

G01

G01
′ = H0

B1G0

ϕ1

ϕ2
G1

G′
1

G

B

A
B0

Fig. 2

Again, consider the lattice ordered groups and the MV -algebras from Fig. 1. In

the proof of 1.5 we have verified that H ′
1 = G′

1 and H1 = G1.

Now let B0 be an arbitrary distinguished extension of A. In view of 2.4 there
exists an abelian lattice ordered group H0 with the strong unit u such that

(i) B0 = A0(H0, u),
(ii) there exists an isomorphisms ϕ1 of G into H0 such that ϕ1(a) = (a) for each

a ∈ A and G0 � H0, where G0 = ϕ1(G). (Cf. Fig. 2).

Put H01 = E(H0) and G01 = E(G0). Then according to 3.7, G01 � H01 . Further,
(ii) yields that there exists an isomorphism ϕ2 of G1 onto G01 such that

ϕ2(g) = ϕ1(g) for each g ∈ G.

Let G01
′ be as in 3.8. Then

ϕ2(G′
1) = G01

′.

Moreover, in view of 3.8, G01
′ = H0, hence ϕ2(G′

1) = H0.

This yields that ϕ2 maps isomorphically theMV -algebra B onto B0. Also, ϕ2(a) =
a for each a ∈ A. Therefore we have

3.9. Proposition. LetA be anMV -algebra. Then the distinguished completion

of A is defined uniquely up to isomorphisms leaving all elements of A fixed.

3.10. Proposition. Let A, G, G1 and G′
1 be as in 1.5. Then the following

conditions are equivalent:

(i) The MV -algebra A is distinguished.
(ii) G = G′

1.
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�����. In view of 3.8, the implication (i)⇒(ii) is valid. Assume that (ii) holds.
Then (under the notation as in 1.5) we have B = A, whence 1.5 yields that A is
distinguished. �
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