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ON L2w-QUASI-DERIVATIVES FOR SOLUTIONS OF PERTURBED

GENERAL QUASI-DIFFERENTIAL EQUATIONS

Sobhy El-sayed Ibrahim, Benha

(Received March 11, 1997)

Abstract. This paper is concerned with square integrable quasi-derivatives for any solu-
tion of a general quasi-differential equation of nth order with complex coefficients M [y] −
λwy = wf(t, y[0], . . . , y[n−1]), t ∈ [a, b) provided that all rth quasi-derivatives of solutions
of M [y]− λwy = 0 and all solutions of its normal adjoint M+[z]− λwz = 0 are in L2w(a, b)
and under suitable conditions on the function f .

Keywords: quasi-differential operators, regular, singular, bounded and square integrable
solutions
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1. Introduction

In [16] Anton Zettl proved, under suitable conditions on f , that y(j) ∈ L2[0,∞),
j = 0, 1, . . . , n−1 for any solution y ofM [y] = f(t, y) provided that all jth derivatives
of solutions of M [y] = 0 and all solutions of M+[y] = 0 are in L2[0,∞), when M is

a regular ordinary linear differential operator of order n with coefficients which are
locally integrable on [0,∞) and M+ is the formal adjoint of M . The case j = 0 was

considered in [16] for a general nth order M and for n = 2 by Bradley [1]. Also,
in [14] Wong proved that all solutions of a perturbed linear differential equation

belong to L2[0,∞) assuming that all solutions of the unperturbed equation possess
the same property. These results were generalized by Ibrahim in [10] for general

ordinary quasi-differential equations of nth order.

Our objective in this paper is to extend the results of Ibrahim, Wong and Zettl in

[10], [14], [15] and [16] to a general ordinary quasi-differential expression M of order
n with complex coefficients and to prove, under suitable conditions on f , that the
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quasi-derivatives y[r] ∈ L2w(a, b), r = 0, 1, . . . , n− 1 for any solution y of

(1.1) M [y]− λwy = wf(t, y[0], . . . , y[n−1]) (λ ∈ � ) on [a, b)

provided that all rth quasi-derivatives of solutions of the equation

(1.2) M [y]− λwy = 0

and all solutions of

(1.3) M+[y]− λwy = 0

are in L2w(a, b). These results are extensions of those proved by Ibrahim in [10].

Our approach is based on an extension of Gronwall’s inequality used by Bradley
and due to Gollwitzer [6], on a technical lemma from Goldberg’s book [5] and on an

appropriate formulation of the variation of parameters formula.
We deal throughout with a quasi-differential expression M of an arbitrary order

n defined by a Shin-Zettl matrix on the interval I = (a, b). The left-hand end-point
of I is assumed to be regular but the right-hand end-point may be either regular or

singular.

2. Notation and preliminaries

The set Zn(I) of Shin-Zettl matrices on the interval I consists of n×n-matricesA =
{ars} whose entries are complex-valued functions on I which satisfy the following

conditions:

(2.1)





ars ∈ L1loc(I), (1 � r, s � n, n � 2),
ar,r+1 �= 0 a.e. on I, (1 � r � n− 1),
ars = 0 a.e. on I, (2 � r + 1 < s � n).

For A ∈ Zn(I), the quasi-derivatives associated with A are defined by

(2.2)





y[0] := y,

y[r] := a−1r,r+1

{
(y[r−1])′ −

r∑

s=1

arsy
[s−1]

}
, (1 � r � n− 1),

y[n] := (y[n−1])′ −
n∑

s=1

ansy
[s−1]

where the prime ′ denotes differentiation.
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The quasi-differential expression M associated with A is given by

(2.3) M [y] = iny[n], (n � 2),

this being defined on the set

(2.4) V (M) := {y : y[r−1] ∈ ACloc(I), r = 1, 2, . . . , n},

where ACloc(I) denotes the set of all functions which are absolutely continuous on
every compact subinterval of I.

The formal adjoint M+ of M is defined by the matrix A+ ∈ Zn(I) given by

(2.5) A+ = −L−1A∗L,

where A∗ is the conjugate transpose of A and L is the non-singular n× n-matrix,

(2.6) L :=
{
(−1)rδr,n+1−s

}
, (1 � r, s � n),

δ being the Kronecker delta. If A+ = {a+rs}, then it follows that

(2.7) a+rs = (−1)r+s+1an−s+1,n−r+1 for each r and s.

The quasi-derivatives associated with A+ are therefore

(2.8)





y
[0]
+ := y,

y
[r]
+ := (a)

−1
n−r,n−r+1

{
(y[r−1]+ )′ −

r∑

s=1

(−1)r+s+1an−s+1,n−r+1y
[s−1]
+

}
,

(1 � r � n− 1),

y
[n]
+ := (y

[n−1]
+ )′ −

n∑

s=1

(−1)n+s+1an−s+1,1y
[s−1]
+

and

(2.9) M+[y] = iny
[n]
+ (n � 2)

for all y in

(2.10) V (M+) := {y : y
[r−1]
+ ∈ ACloc(I), r = 1, 2, . . . , n}.

Note that (A+)+ = A and so (M+)+ = M . We refer to [3], [9] and [17] for a full
account of the above and the subsequent results on quasi-differential expressions.
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Let the interval I have end-points a and b, −∞ � a < b � ∞, and let w be a

function which satisfies

(2.11) w > 0 almost everywhere on I, w ∈ L1loc(I).

The equation

(2.12) M [y] = λwy (λ ∈ � )

on I is said to be regular at the left end-point a if for all X ∈ (a, b),

(2.13) a ∈ �, ars ∈ L1[a, X ], (r, s = 1, 2, . . . , n).

Otherwise (2.12) is said to be singular at a. Similarly we define the terms regular
and singular at b. If (2, 12) is regular at both end-points, then it is said to be regular;

in this case we have

(2.14) a, b ∈ �, ars ∈ L1(a, b) (r, s = 1, 2, . . . , n);

see [2], [8] and [9].

We shall be concerned with the case when a is a regular end-point for (2.12), the
end-point b being allowed to be either regular or singular. Note that in view of (2.7),

an end-point of the interval I is regular for (2, 12) if and only if it is regular for the
equation

(2.15) M+[y] = λwy (λ ∈ � ).

Let L2w(a, b) denote the usual weighted L2-space with the inner-product

(2.16) (f, g) =
∫ b

a

f(x)g(x)w(x) dx

and the norm ‖f‖ := (f, f)1/2; this is a Hilbert space provided we identify functions

which differ only on a null space.

Denote by S(M) and S(M+) the sets of all solutions of

M [y]− λwy = 0 and M+[y]− λwy = 0,

respectively, and let Sr(M) = {y[r]|M [y] − λwy = 0, r = 0, 1, . . . , n − 1} denote
the set of all quasi-derivatives of solutions of M [y]− λwy = 0, etc. Let ϕk(t, λ) for
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k = 1, 2, . . . , n be the solutions of the homogeneous equation (1.2) determined by the

initial conditions

(2.17) ϕ
[r]
k (t0, λ) = δk,r+1 for all t0 ∈ [a, b),

(k = 1, 2, . . . , n; r = 0, 1, . . . , n − 1). Then ϕ
[r]
k (t0, λ) is continuous in (t, λ) for

a < t < b, |λ| < ∞, and for fixed t it is entire in λ. Let ϕ+k (t, λ) for k = 1, 2, . . . , n be

the solutions of the homogeneous equation (1.3) determined by the initial conditions

(2.18) (ϕ+k )
[r](t0) = (−1)k+rδk,n−r, for all t0 ∈ [a, b)

(k = 1, 2, . . . , n; r = 0, 1, . . . , n− 1).
Suppose a < t0 < b. According to Gilbert [4, Section 3] and Ibrahim [11, Section

3], a solution of M [ϕ] − λwϕ = wf , f ∈ L1w(a, b) satisfying ϕ[r](t0, λ) = αr+1,

r = 0, 1, . . . , n− 1, is given by

ϕ(t, λ) =
n∑

j=1

αj(λ)ϕj(t, λ0) +
(
(λ− λ0)/(i

n)
) n∑

j,k=1

ξjkϕj(t, λ0)(2.19)

×
∫ t

t0

ϕ+j (s, λ0)f(s)w(s) ds

where ϕ+k (t, λ) stands for the complex conjugate of ϕk(t, λ), and for each j, k, ξjk is

a constant which is independent of t, λ (but does depend in general on t), also see
[9, Corollary 3.10] and [17, Theorem 3].

Theorem 2.1 (Existence and Uniqueness Theorem). Suppose f ∈ L1w(a, b)
and suppose that the conditions (2.1) are satisfied. Then given any complex numbers

αj ∈ � , j = 0, . . . , n−1 and t0 ∈ (a, b) there exists a unique solution ofM [ϕ]−λϕw =
wf in (a, b) which satisfies

ϕ[r](t0, λ) = αr+1, r = 0, . . . , n− 1.

�����. See [2, Theorem 3.10.1], [8, Theorem 16.2.2] and [9, Theorem 1.11]. �
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3. Some technical lemmas

Our first lemma is a form of the variation of parameters formula. However it is

different from the form of this formula generally found in textbooks and literature.
For the variation of parameters formula for general quasi-differential equations, see

[11, Section 3] and [17, Theorem 3]. These contain Lemma 3.1 as a special case,
see [16].

Lemma 3.1. Suppose f is a locally L1w(a, b) function and ϕ(t, λ) is the solution

of M [y]− λwy = wf satisfying

ϕ[r](t0, λ) = αr+1(λ), t0 ∈ [a, b) for all r = 0, 1, . . . , n− 1.

Then

ϕ[r](t, λ) =
n∑

j=1

αj(λ)ϕ
[r]
j (t, λ0) +

(
(λ− λ0)/(in)

) n∑

j,k=1

ξjkϕ
[r]
j (t, λ0)(3.1)

×
∫ t

a

ϕ+j (s, λ0)f(s)w(s) ds for r = 0, 1, . . . , n− 1.

Crucial in the study of boundedness of solutions of quasi-differential equations is
the fundamental inequality of Gronwall, see [7]. Here, we will also need the following

variant which may be found in [13].

Lemma 3.2. Let u(t), v(t) be two non-negative functions, locally integrable on
[a, b). Then the inequality

u(t) � c0 +
∫ t

a

v(s)up(s) ds, c0 > 0,

for 0 � p < 1, implies that

(3.2) u(t) �
(

c1−p
0 + (1− p)

∫ t

a

v(s) ds

)1/(1−p)

.

In particular, if v(t) ∈ L1(a, b), then (3.2) implies that u(t) is bounded.

The next lemma is a special case of an extension of the well-known Gronwall
inequality due to Gollwitzer [6] (See also Willett [12] and Willet-Wong [13]).
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Lemma 3.3. Let u, z, g, h be continuous non-negative functions on [a, b) and

suppose that

u(t) � z(t) + g(t)

(∫ t

a

u2(s)h(s) ds

) 1
2

for t � a.

Then

u(t) � z(t) + g(t)

(∫ t

a

2z2(s)h(s) exp

[∫ s

a

2g2(x)h(x) dx

]
ds

) 1
2

for t � a.

The next two lemmas have been proved in [9] for the general case.

Lemma 3.4 ([9, Proposition 3.23]). If all solutions of M [ϕ] = λ0wϕ are bounded

on [a, b) for some λ0 ∈ � and ϕ+j ∈ L1w(a, b) for j = 1, 2, . . . , n, then all solutions of
M [ϕ] = λwϕ are also bounded on [a, b) for all λ ∈ � .

Lemma 3.5 ([9, Proposition 3.24]). If all solutions ofM [ϕ] = λ0wϕ andM+[ϕ] =
λ0wϕ are in L2w(a, b) for some λ0 ∈ � , then all solutions of M [ϕ] = λwϕ and

M+[ϕ] = λwϕ are in L2w(a, b) for all λ ∈ � .

4. Main results

Suppose there exist non-negative continuous functions k(t) and hi(t), i = 0, . . . ,
n− 1 such that

(4.1) |f(t, y[0], . . . , y[n−1])| � k(t) +
n−1∑

i=0

hi(t)|y[i]|σ

for t � a, −∞ < y[i] < ∞, for each i = 0, . . . , n− 1; 0 � σ � 1.

Theorem 4.1. Suppose f satisfies (4.1) with σ = 1, sr(M) ∪ S(M+) ⊂ L∞(a, b)

for some r = 0, 1, . . . , n− 1 and some λ0 ∈ � and

(i) k(t) ∈ L1w(a, b) for all t ∈ [a, b),

(ii) hi(t) ∈ L1w(a, b) for all t ∈ [a, b), i = 0, 1, . . . , n− 1.
Then ϕ[r](t, λ) is bounded on [a, b) for any solution ϕ(t, λ) of the equation (1.1)

for all λ ∈ � .

�����. Note that (4.1) and Theorem 2.1 imply that all solutions exist on the
entire interval [a, b), see [2, Chapter 3], [10], [14] and [15].
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Let {ϕ1(t, λ0), . . . , ϕn(t, λ0)} and {ϕ+1 (t, λ0), . . . , ϕ+n (t, λ0)} be two sets of linearly
independent solutions of (1.2) and (1.3), respectively and let ϕ(t, λ) be any solution
of (1.1) on [a, b). Then by Lemma 3.1 we have

ϕ[r](t, λ) =
n∑

j=1

αj(λ)ϕ
[r]
j (t, λ0) +

(
(λ− λ0)/(i

n)
) n∑

j,k=1

ξjkϕ
[r]
j (t, λ0)(4.2)

×
∫ t

a

ϕ+j (s, λ0)f(s, ϕ
[0], . . . , ϕ[n−1])w(s) ds

for r = 0, . . . , n− 1.

Hence

|ϕ[r](t, λ)| �
n∑

j=1

|αj(λ)||ϕ[r]j (t, λ0)|+ |λ− λ0|
n∑

j,k=1

|ξjk||ϕ[r]j (t, λ0)|(4.3)

×
∫ t

a

|ϕ+k (s, λ0)|
(

k(s) +
n−1∑

i=0

hi(s)|ϕ[i](s, λ)|
)

w(s) ds,

r = 0, 1, . . . , n− 1.

Since k(t) ∈ L1w(a, b) and ϕ+j (t, λ0) is bounded on [a, b) for some λ0 ∈ � , we have

ϕ+j k ∈ L1w(a, b), j = 1, 2, . . . , n for some λ0 ∈ � . Setting

(4.4) cj = |λ− λ0|
n∑

j,k=1

|ξjk|
∫ b

a

|ϕ+j (s, λ0)|k(s)w(s) ds, (j = 1, 2, . . . , n),

then

|ϕ[r](t, λ)| �
n∑

j=1

(
cj + |αj(λ)|

)
|ϕ[r]j (t, λ0)|(4.5)

+ |λ− λ0|
n∑

j,k=1

n−1∑

i=0

|ξjk||ϕ[r]j (t, λ0)|

×
∫ t

a

|ϕ+j (s, λ0)|hi(s)|ϕ[i](s, λ)|w(s) ds,

r = 0, 1, . . . , n− 1.

By hypothesis, there exist positive constants K0 and K1 such that

|ϕ[r]j (t, λ0)| � K0 and |ϕ+j (t, λ0)| � K1 for all t ∈ [a, b),
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j = 1, 2, . . . , n and some r = 0, 1, . . . , n − 1. Hence, by summing both sides of (4.5)
from r = 0, . . . , n− 1 we get

n−1∑

r=0

|ϕ[r](t, λ)| � (n− 1)K0
n∑

j=1

(
cj + |αj(λ)|

)
+ (n− 1)K0K1|λ− λ0|(4.6)

×
n∑

j,k=1

|ξjk|
∫ t

a

(
max

0�i�n−1
hi(s)

)(n−1∑

i=0

|ϕ[i](s, λ)|
)

w(s) ds.

Applying Gronwall’s inequality to (4.6) and using (ii), we deduce that
n−1∑
r=0

|ϕ[r](t, λ)|
is finite and hence the result. �

Remark. From [16, Section 3] and [9, Lemma 3.3], ϕ and ϕ[j] ∈ L2w(a, b) implies
that ϕ[r] ∈ L2w(a, b) for any solution ϕ of the equation (1.1) for all r = 1, . . . , j − 1,
1 � j � n− 1.

Theorem 4.2. Suppose f satisfies (4.1) with σ = 1, Sr(M) ∪ S(M+) ⊂ L2w(a, b)

for some λ0 ∈ � and some r = 0, 1, . . . , n− 1 and that
(i) k(t) ∈ L2w(a, b),

(ii) hi(t) ∈ L∞(a, b), i = 0, 1, . . . , n−1, for all t ∈ [a, b). Then ϕ[r](t, λ) ∈ L2w(a, b)
for any solution ϕ(t, λ) of the equation (1.1) for all λ ∈ � .

�����. Applying the Cauchy Schwartz inequality to the integral in (4.5) we get

|ϕ[r](t, λ)| �
n∑

j=1

(
cj + |αj(λ)|

)
|ϕ[r]j (t, λ0)|(4.7)

+ |λ− λ0|
n∑

j,k=1

n−1∑

i=0

|ξjk||ϕ[r]j (t, λ0)|

×
(∫ t

a

|ϕ+j (s, λ0)|2|hi(s)|w ds
) 1
2
(∫ t

a

|hi(s)||ϕ[i](s, λ)|2w ds
) 1
2

,

r = 0, 1, . . . , n− 1.

Since ϕ+j (t, λ0) ∈ L2w(a, b), j = 1, 2, . . . , n for some λ0 ∈ � and hi(t) ∈ L∞(a, b) by

hypothesis, then ϕ+j (t, λ0)|hi(t)|1/2 ∈ L2w(a, b), j = 1, 2, . . . , n, i = 0, 1, . . . , n − 1.
Let

Dji =

(∫ t

a

|ϕ+j (s, λ0)|2|hi(s)|w(s) ds
) 1
2

, z(t) =
n∑

j=1

(
cj + |αj(λ)|

)
|ϕ[r]j (t, λ0)|

and G(t) = |λ− λ0|
n∑

j,k=1

n−1∑
i=0

Dji|ξjk||ϕ[r]j (t, λ0)|.
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From Lemma 3.3 we have

|ϕ[r](t, λ)| � Z(t) +G(t)

(∫ t

a

2Z2(s)|hi(s)| exp
[∫ s

a

2G2(x)|hi(x)|w dx
]
w ds

) 1
2

.

Since
∫ b

a Z2(s)|hi(s)|w(s) ds and
∫ b

a G2(x)|hi(x)|w(x) dx are both finite, we conclude
that |ϕ[r](t, λ)| is bounded by a linear combination of L2w(a, b) functions Z(t) and

G(t). Therefore, by using Lemma 3.5, ϕ[r](t, λ) ∈ L2w(a, b) for all λ ∈ � . �
Remark. If we use the Cauchy-Schwartz inequality for the integral in (4.5) as
∫ t

a

|ϕ+j ||hi||ϕ|w ds �
(∫ t

a

|ϕ+j |2|hi|2w ds
) 1
2
(∫ t

a

|ϕ[i]|2w ds
) 1
2

, i = 0, . . . , n− 1,

we also get the result. We refer to [14] and [15] for more details.

Corollary 4.3. Suppose that f(t, y[0], . . . , y[n−1]) =
n−1∑
i=1

hi(t)y[i], Sr(M) ∪
S(M+) ⊂ L2w(a, b) for some λ0 ∈ � and some r = 0, 1, . . . , n − 1 and that hi(t) ∈
Lp

w(a, b) for some p � 2, t ∈ [a, b); i = 0, 1, . . . , n− 1. Then ϕ[r](t, λ) ∈ L1w(a, b) for
any solution ϕ(t, λ) of the equation (1.1) for all λ ∈ � and all r = 0, 1, . . . , n− 1.
�����. The proof is similar to Theorem 4.2 and therefore omitted.
The special case hi(t) ≡ 0, i = 0, . . . , n− 1 and k ∈ L2w(a, b) yields �

Corollary 4.4. If all solutions of M [ϕ] = λ0wϕ and M+[ϕ] = λ0wϕ are in

∈ L2w(a, b) for some λ0 ∈ � and k ∈ L2w(a, b), then all solutions of M [ϕ]−λwϕ = wk

are in L2w(a, b) for all λ ∈ � .

Next, we consider (4.1) with 0 � σ < 1, and arrive at the following:

Theorem 4.5. Suppose f satisfies (4.1) with 0 � σ < 1, Sr(M) ∪ S(M+) ⊂
L2w(a, b) for some λ0 ∈ � and some r = 0, 1, . . . , n− 1 and
(i) k(t) ∈ L2w(a, b) for all t ∈ [a, b),
(ii) hi(t) ∈ L

2/(1−σ)
w (a, b) 0 � σ < 1, i = 0, 1, . . . , n− 1.

Then ϕ[r](t, λ) ∈ L2w(a, b) for any solution ϕ(t, λ) of the equation (1.1) for all
λ ∈ � .

�����. For 0 � σ < 1, the proof is the same up to (4.5). In this case (4.5)

becomes

|ϕ[r](t, λ)| �
n∑

j=1

(
cj + |αj(λ)|

)
|ϕ[r]j (t, λ0)|+ |λ− λ0|

n∑

j,k=1

n−1∑

i=0

|ξjk|(4.8)

× |ϕ[r]j (t, λ0)|
∫ t

a

|ϕ+j (s, λ0)|hi(s)|ϕ[i](s, λ)|σw(s) ds,

r = 0, 1, . . . , n− 1.
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Applying Cauchy-Schwartz inequality to the integral in (4.8), we find

∫ t

a

|ϕ+j (s, λ0)|hi(s)|ϕ(s, λ)|σw(s) ds(4.9)

�
(∫ t

a

|ϕ+j (s, λ0)hi(s)|µw(s) ds

) 1
µ
(∫ t

a

|ϕ[i](s, λ)|2w(s) ds
)σ
2

,

where µ = 2/(2 − σ). Since ϕ+j (s, λ0) ∈ L2w(a, b) for some λ0 ∈ � , j = 1, 2, . . . , n

and hi(s) ∈ L
2/(1−σ)
w (a, b) by hypothesis, then we have ϕ+j (s, λ0)hi(s) ∈ Lµ

w(a, b) for
some λ0 ∈ � , j = 1, 2, . . . , n; i = 0, 1, . . . , n − 1. Using this fact and (4.9) in (4.8),
we obtain

|ϕ[r](t, λ)| �
n∑

j=1

(
cj + |αj(λ)|

)
|ϕ[r]j (t, λ0)|(4.10)

+K0|λ− λ0|
n∑

j,k=1

n−1∑

i=0

|ξjk||ϕ[r]j (t, λ0)|
(∫ t

a

|ϕ[i](s, λ)|2w(s) ds
)σ
2

,

r = 0, 1, . . . , n− 1,

where K0 = ‖ϕ+j (t, λ0)hi(s)‖µ, ‖ · ‖µ denotes the norm in Lµ
w(a, b). The inequality,

(4.11) (u+ v)2 � 2(u2 + v2),

implies that

|ϕ[r](t, λ)|2 � 4
n∑

j=1

(
c2j + |αj(λ)|2

)
|ϕ[r]j (t, λ0)|2(4.12)

+ 4K20 |λ− λ0|2
n∑

j,k=1

n−1∑

i=0

|ξjk|2|ϕ[r]j (t, λ0)|2
(∫ t

a

|ϕ[i](s, λ)|2w(s) ds
)σ

,

r = 0, 1, . . . , n− 1.

Setting K1 =
∫ b

a
|ϕ[r]j (t, λ0)|2w(s) ds for some λ0 ∈ � and some r = 0, . . . , n − 1;

j = 1, 2, . . . , n and integrating (4.12) we obtain

∫ t

a

|ϕ[r](s, λ)|2w(s) ds � K2 + 4K20 |λ− λ0|2
n∑

j,k=1

n−1∑

i=0

|ξjk|2
∫ t

a

|ϕ[r]j (s, λ0)|2(4.13)

×
[(∫ s

a

|ϕ[i](x, λ)|2w(x) dx
)σ]

w(s) ds,
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where

K2 = 4
n∑

j=1

(
c2j + αj(λ)|2

)
K1.

An application of Lemma 3.2 to (4.13) for 0 � σ < 1 and of Gronwall’s inequality
to (4.13) for σ = 1 yields the result. �

Theorem 4.6. Suppose f satisfies (4.1) with 0 � σ < 1, Sr(M) ∪ S(M+) ⊂
L2w(a, b) ∩ L∞(a, b) for some λ0 ∈ � and some r = 0, 1, . . . , n− 1 and that
(i) k(t) ∈ L2w(a, b) for all t ∈ [a, b),
(ii) hi(t) ∈ Lp

w(a, b) for any p, 1 � p � 2/(1− σ), i = 0, 1, . . . , n− 1.
Then ϕ[r](t, λ) ∈ L2w(a, b) ∩ L∞(a, b) for any solution ϕ(t, λ) of the equation (1.1)

for all λ ∈ � .

�����. Since Sr(M) ∪ S(M+) ⊂ L2w(a, b) for some λ0 ∈ � and some r =
0, 1, . . . , n − 1, then ϕ

[r]
j (t, λ0), ϕ

+
j (t, λ0) ∈ Lq

w(a, b), j = 1, 2, . . . , n for every q � 2
and for some λ0 ∈ � , r = 0, 1, . . . , n− 1.
First, suppose that hi(t) ∈ Lp

w(a, b) for some p, 1 � p � 2. Setting

K0 = ‖ϕ[r](t, λ0)‖∞ and K1 = ‖ϕ+j (t, λ0)‖∞, j = 1, 2, . . . , n,

for some λ0 ∈ � and some r = 0, 1, . . . , n− 1, we have from (4.8)

|ϕ[r](t, λ)| � K0

n∑

j=1

(cj + |αj(λ)|)(4.14)

+K0K1|λ− λ0|
( n∑

j,k=1

n−1∑

i=0

|ξjk|
∫ t

a

hi(s)|ϕ[i](s, λ)|σw(s) ds

)
.

Since hi(t) ∈ Lp
w(a, b), 1 � p � 2, then Lemma 3.2 together with Gronwall’s in-

equality implies that ϕ[r](t, λ) ∈ L∞(a, b) for all λ ∈ � , i.e., there exists a positive
constant K2 such that

(4.15) |ϕ[r](t, λ)| � K2 for all λ ∈ � , t ∈ [a, b), r = 0, 1, . . . , n− 1.

From (4.8) and (4.15) we obtain

|ϕ[r](t, λ)| �
n∑

j=1

(
cj + |αj(λ)|+K3

)
|ϕ[r]j (t, λ0)|

for an appropriate constant K3. Since ϕ
[r]
j (t, λ0) ∈ L2w(a, b) for some λ0 ∈ � and

some r = 0, 1, . . . , n− 1, this proves ϕ[r](t, λ) ∈ Lp
w(a, b) for all λ ∈ � , 1 � p � 2.
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Next, suppose that hi(t) ∈ Lp
w(a, b), 2 < p � 2/(1− σ); i = 0, 1, . . . , n− 1. Define

q � 2 by
1
q
=
2− σ

2
− 1

p

(which is possible because of the restriction on p). Thus ϕ
[r]
j (t, λ0)ϕ

+
j (t, λ0) ∈

Lq
w(a, b) and ϕ+j (t, λ0)hi(t) = Lµ

w(a, b), µ = 2/(2− σ).
Repeating the same argument in the proof of Theorem 4.5, from (4.8) to (4.13),

we obtain that ϕ[r](t, λ) ∈ L2w(a, b). Returning to (4.9), we find that the integral on
the left-hand side is bounded, which implies, by (4.8), that

|ϕ[r](t, λ)| �
n∑

j=1

(
cj + |αj(λ)| +K3

)
|ϕ[r]j (t, λ0)|,

for an appropriate constant K3. Since ϕ
[r]
j (t, λ0) ∈ L∞(a, b), this completes the

proof. We refer to [10], [14] and [16] for more details. �
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