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Abstract. In this paper a new class of self-mappings on metric spaces, which satisfy the
nonexpensive type condition (3) below is introduced and investigated. The main result is
that such mappings have a unique fixed point. Also, a remetrization theorem, which is
converse to Banach contraction principle is given.
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1. Introduction

Let (X, d) be a metric space, T a self-mapping on X and k a nonnegative real num-
ber such that the inequality d(Tx, T y) � kd(x, y) hold for any x, y ∈ X . If k < 1

then T is said to be a contractive mapping; if k = 1, then T is said to be a nonex-
pansive mapping. The well known Banach contraction mapping principle—already is

obtained in particular situations by Liouville, Picard and Guorsat—states that if X
is complete, then every contractive mapping has a unique fixed point and that point

can be obtained as a limit of repeated iteration of the mapping at any point of X .
However, a nonexpansive mapping need not have fixed points. Yet these mappings

have a fixed point when X has a convex structure. There exists very abundant litera-
ture about contractive and nonexpansive type mappings, where the contractive and

nonexpansive conditions are replaced with more general conditions. These mappings
also have many applications, similarly as contractive or nonexpansive mappings ([2],
[11], [20], [22–24]).

Bogin [1] proved the following result:
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Theorem 1.1. Let (X, d) be a nonempty complete metric space and T : X → X

a mapping satisfying

(1) d(Tx, T y) � ad(x, y) + b
[
d(x, Tx) + d(y, T y)

]
+ c

[
d(d(x, T y) + d(y, Tx))

]

where a � 0, b > 0, c > 0 and

(2) a+ 2b+ 2c = 1.

Then T has a unique fixed point.

This result was generalized by Rhoades [21], Ćirić [7–8] and Li [17]. K. Iseki [15]

studied a family of commuting mappings T1, T2, . . . , Tn which satisfy (1) with a � 0,
b � 0, c � 0 and a+ 2b+ 2c < 1.

Greguš [14] considered a class of self-mappings T on X which satisfy (1) with
c = 0. Indeed, he proved the following result:

Theorem 1.2. Let C be a nonempty closed convex subset of a Banach space B

and T : C → C a mapping that satisfies

‖Tx− Ty‖ � a‖x− y‖+ b
[
‖x− Tx‖+ ‖y − Ty‖

]

for all x, y ∈ C, where a > 0, b > 0 and a+2b = 1. Then T has a unique fixed point.

Greguš’s result has inspired many authors in further investigations: Ćirić [3–6],

Delbosco, Ferrero and Rossati [9], Diviccaro, Fisher and Sessa [10], Fisher [12], Fisher
and Sessa [13], Jungck [16], Li [17] and Mukherjee and Verma [19].

The purpose of this paper is to introduce and investigate a new class of self-
mappings T on X which satisfy an inequality of type (1) with b � 0 and still have a
fixed point. An example is constructed to show that if the mapping T satisfies (1)
with b = 0 and if a and c are such that (2) holds, then T need not have a fixed point.

Therefore, a contractive condition for T , which shall guarantee a fixed point of T in
the case b = 0 and a+ 2c = 1, must be stricter then (1).

Let (X, d) be a metric space and T : X → X a self-mapping of X . For x, y ∈ X

denote

M(x, y) = max{d(x, T y), d(y, Tx)},
m(x, y) = min{d(x, T y), d(y, Tx)}.

In this paper we shall investigate a new class of self-mappings T on X which satisfy
the following contraction condition:

d(Tx, T y) � a(x, y)max
{
d(x, y), d(x, Tx), d(y, T y), (1/2)

[
M(x, y) +m(x, y)

]}
(3)

+ c(x, y)
[
M(x, y) + hm(x, y)

]
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for all x, y ∈ X , where 0 < h < 1,

(4) a(x, y) � 0, inf{c(x, y) : x, y ∈ X} > 0,

and

(5) a(x, y) + 2c(x, y) = 1.

2. Main results

We shall begin with three propositions in which some properties of T satisfying
(3) are established.

Proposition 2.1. Let T : X → X be a mapping satisfying (3) with a and c

satisfying (4) and (5). Then T has at most one fixed point.

�����. Let u and v be two fixed points of T . Then by (3) we have

d(u, v) = d(Tu, T v) � a(u, v)d(u, v) + c(u, v)(1 + h)d(u, v).

Hence by (5),
d(u, v) �

[
1− c(u, v)(1− h)

]
d(u, v),

implying u = v by (4). �

Recall that a self-mapping T on a metric space X is said to be asymptotically

regular at x0 ∈ X if
lim

n→∞
d(T nx0, T

n+1x0) = 0

Proposition 2.2. Let T : X → X be a self-mapping satisfying (3), where 0 <

h < 1 and (4) and (5) hold. Then T is asymptotically regular at each point in X .

�����. Let x0 ∈ X and define the Picard iterates xn = Txn−1 = T nx0 for
n = 1, 2, . . .. Note that (3) implies the corresponding inequality with h = 1. So by

(3) we have (for n = 1, 2, . . .):

d(xn, xn+1) = d(Txn−1, Txn)(6)

� amax
{
d(xn−1, xn), d(xn−1, Txn−1), d(xn, Txn),

1
2

[
(M(xn−1, xn) +m(xn−1, xn)

]}

+ c
[
M(xn−1, xn) +m(xn−1, xn)

]
,
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where a = a(xn−1, xn), c = c(xn−1, xn). Then m(xn−1, xn) = 0,

M(xn−1, xn) = d(xn−1, xn) � d(xn−1, xn) + d(xn, xn+1).

If we suppose that d(xn, xn+1) > d(xn−1, xn) for some n, then by (6) and (4), (5)
we have

d(xn, xn+1) � ad(xn, xn+1) + c
[
d(xn−1, xn) + d(xn, xn+1)

]

< ad(xn, xn+1) + 2cd(xn, xn+1) = d(xn, xn+1),

which is a contradiction. Thus d(xn, xn+1) � d(xn−1, xn). Hence

(7) d(xn−1, Txn−1) � d(x0, Tx0) (n = 1, 2, . . .).

Using (3) again we have

d(x1, Tx2) = d(Tx0, Tx2)(8)

� amax
{
d(x0, x2), d(x0, Tx0), d(x2, Tx2),

1
2

[
d(x0, Tx2) + d(x2, Tx0)

]}

+ c
[
M(x0, x2) + hm(x0, x2)

]
,

where a = a(x0, x2), c = c(x0, x2). From (7), (8) and the triangle inequality we get

d(x1, Tx2) � 2ad(x0, Tx0)(9)

+ c
[
d(x0, Tx0) + d(Tx0, Tx1) + d(Tx1, Tx2) + hd(Tx0, Tx1)

]

� 2ad(x0, Tx0) + c(3 + h)d(x0, Tx0)

= (2a+ 4c)d(x0, Tx0)− c(1− h)d(x0, Tx0)

= [2− c(1− h)]d(x0, Tx0).

From (3), (7) and (9) we have

d(Tx1, Tx2) � a′max
{
d(x0, Tx0), 12d(x1, Tx2)

}
+ c′d(x1, Tx2)(10)

� a′d(x0, Tx0) + c′[2− c(1− h)]d(x0, Tx0)

= [(a′ + 2c′)− c′c(1− h)]d(x0, Tx0)

= [1− c′c(1− h)]d(x0, Tx0),

where a′ = a(x1, x2), c′ = c(x1, x2). Set

(11) s = inf{c(x, y) : x, y ∈ X}.
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Then (10) yields

d(T 2x0, T
3x0) � [1− s2(1− h)]d(x0, Tx0).

Analogously,

d(T 3x0, T 4x0) � [1− s2(a− h)]d(Tx0, T
2x0) � [1− s2(1− h)]d(x0, Tx0).

Proceeding in this manner we obtain

(12) d(T nx0, T
n+1x0) � [1− s2(1− h)][n/2]d(x0, Tx0)

for all n = 1, 2, . . ., where [n/2] denotes the greatest integer not exceeding n/2. Since
0 < s � 1

2 and h < 1, we get that from (12)

lim
n→∞

d(T nx0, T
n+1x0) = 0

which implies that T is regular at x0. �

Note that, if T satisfies (3), where a and b are such that (4) and (5) hold, then T

may be discontinuous at some points. Nevertheless we have the following result.

Proposition 2.3. If T satisfies (3), where (4) and (5) hold, and if T has a fixed
point, say p, then T is continuous at p.

�����. Let xn → p = Tp. Then (3) implies (with h = 1)

d(Txn, T p) � amax
{

d(xn, p), d(xn, Txn), 12
[
d(xn, p) + d(p, Txn)

]}

+ c[d(xn, p) + d(p, Txn)]

� a[d(xn, p) + d(p, Txn)] + c[d(xn, p) + d(p, Txn)]

= (a+ 2c− c)d(xn, p) + (a+ 2c− c)d(p, Txn)

� (1− s)d(xn, p) + (1− s)d(p, Txn),

where s > 0 is defined by (11). Hence we get

(13) d(Txn, T p) �
(1

s
− 1

)
d(xn, p).

Hence Txn → Tp when n →∞. Therefore, T is continuous at p. �
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Now we will prove the main result.

Theorem 2.1. Let (X, d) be a nonempty complete metric space and T : X → X

a self-mapping satisfying (3), where a and b are such that (4) and (5) hold. Then

T has a unique fixed point, say p, and at this point p the mapping T is continuous.

Moreover, for each x ∈ X a sequence {T nx converges to p and

(14) d(T nx, p) � 2
s2(1− h)

[
1− s2(1 − h)

][n/2]
d(x, Tx),

where s is given by (11) and [n/2] means the greatest integer not exceeding n/2.

�����. Let x = x0 ∈ X be arbitrary and define the Picard iterates xn =
Txn−1 = T nx0 for n = 1, 2, . . .. Then, from (12), we conclude that {T nx} is a
Cauchy sequence. Since X is complete, there is some p in X such that

(15) lim
n→∞

T nx = p.

From (3) (with h = 1) it follows

d(T nx, Tp) � amax
{

d(T n−1x, p), d(T n−1x, T nx), d(p, T p),

1
2

[
d(T n−1x, Tp) + d(p, T nx)

]}
+ c

[
d(T n−1x, p) + d(p, T nx)

]

If Tp �= p, then because of (15) we may assume that n is chosen so large that we

have

d(T nx, Tp) � ad(p, T p) + c
[
d(p, T p) + d(T n−1x, p) + d(p, T nx)

]

= (1 − c)d(p, T p) + c
[
d(T n−1x, p) + d(p, T nx)

]

� (1 − s)d(p, T p) + c[d(T n−1x, p) + d(p, T nx)
]
,

where s is defined by (11). Taking the limit when n →∞ yields

d(p, T p) � (1− s)d(p, T p).

Hence, d(p, T p) = 0, a contradiction. Thus Tp = p. By Proposition 2.1 and 2.3, p
is a unique fixed point of T and at p the mapping T is continuous. Form (12) it is

easy to obtain (14). �

Next we state a simple example which shows that the condition (1) with b = 0
and a+2c = 1 (or (3) with h = 1) does not guarantee the existence of a fixed point.
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Example. Let (X, d) = (−∞,+∞) and T : X → X be defined by Tx = x + 1.

Then T satisfies the condition

d(Tx, T y) = d(x, y) � ad(x, y) + c
[
d(x, T y) + d(y, Tx)

]
= (a+ 2c)d(x, y)

� ad(x, y) + c
[
d(x, y) + 1 + |d(x, y)− 1|

]

for all a � 0, c > 0 with a+ 2c = 1, but T has no fixed points.

Finally we will prove a theorem which is closely related to Theorem 2.1 and belongs

to remetrization theory.

Theorem 2.2. Let T be a continuous mapping of a (nonempty) complete metric

space (X, d) into itself satisfying (3) with a and c satisfying (4) and (5) for all

x, y ∈ X . Then for any λ ∈ (0, 1), there exists a complete metric dλ, topologically

equivalent to d and such that

dλ(Tx, T y) � λdλ(x, y) for all x, y ∈ X.

�����. We shall use the following theorem:

Theorem (Meyers [18]). Let T be a continuous mapping of a (nonempty) metric

space (X, d) into itself such that

(i) T has a unique fixed point p;

(ii) the sequence {T nx} of iterates converges to p for all x ∈ X ;

(iii) there exist an open neighborhood U of p with the property

that for any given open set V containing p there exists a positive integer N such that

T n(U) ⊂ V for all n � N.

Then for any λ ∈ (0, 1), there exist a metric dλ, topologically equivalent to d such

that dλ(Tx, T y) � λdλ(x, y) for all x, y ∈ X . Further, if d is complete, then dλ can

be chosen complete.

Since in the proof of Theorem 2.1 the element x was arbitrary, the assumptions
(i) and (ii) of the Meyers theorem follow by our Theorem 2.1. So we have to find an

open neighborhood U of p such that {T n(U)} converges to p.

In Proposition 2.3 it is shown that

d(p, Tx) � [(1 − s)/s]d(x, p).
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So we have

d(x, Tx) � d(x, p) + d(p, Tx) � d(x, p)/s.

Therefore, from (14) we get

(16) d(T nx, p) � 2
s2(1− h)

[1− s2(1− h)]n/2 1
s
d(x, p).

Let

U = {x ∈ X : d(x, p) < 1}.

Then from (16) we conclude that T n(U)→ p. �
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