Czechoslovak Mathematical Journal

Imrich Fabrici

A note on principal ideals and \mathcal{J}-classes in the direct product of two semigroups

Czechoslovak Mathematical Journal, Vol. 50 (2000), No. 1, 91-98

Persistent URL: http: //dml.cz/dmlcz/127552

Terms of use:

(C) Institute of Mathematics AS CR, 2000

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http: //dml. cz

A NOTE ON PRINCIPAL IDEALS AND \mathcal{J}-CLASSES IN THE DIRECT PRODUCT OF TWO SEMIGROUPS

Imrich Fabrici, Bratislava

(Received April 11, 1997)

Let S_{1}, S_{2} be two semigroups, $a \in S_{1}, b \in S_{2}, S_{1} \times S_{2}$ the direct product of these semigroups. $J(a)$ is a principal two-sided ideal in $S_{1}, J(b)$ is a principal two-sided ideal in $S_{2}, J(a, b)$ is a principal two-sided ideal in $S_{1} \times S_{2} . J_{a}$ is a \mathcal{J}-class containing the element a in S_{1}, J_{b} is a \mathcal{J}-class containing the element b in $S_{2}, J_{(a, b)}$ is a \mathcal{J}-class containing the element (a, b) in $S_{1} \times S_{2}$.

In the papers [2], [3] among other problems, conditions under which the equalities

$$
\begin{align*}
J(a, b) & =J(a) \times J(b) ; \tag{1}\\
J_{(a, b)} & =J_{a} \times J_{b} \tag{2}
\end{align*}
$$

hold in $S_{1} \times S_{2}$ have been studied. The following question arises: Does the validity of (1) imply the validity of (2) and vice versa?

The aim of this note is to show that if (1) holds, then also (2) holds. However, if (2) holds, then (1) need not hold.

The investigation of conditions under which the equality (1) holds is divided into two cases:
I. $a \in\left(S_{1} a \cup a S_{1} \cup S_{1} a S_{1}\right) \wedge b \in\left(S_{2} b \cup b S_{2} \cup S_{2} b S_{2}\right)$, but $(a, b) \notin\left[\left(S_{1} a \times S_{2} b\right) \cup\right.$ $\left.\left(a S_{1} \times b S_{2}\right) \cup\left(S_{1} a S_{1} \times S_{2} b S_{2}\right)\right] ;$
II. $(a, b) \in\left[\left(S_{1} a \times S_{2} b\right) \cup\left(a S_{1} \times b S_{2}\right) \cup\left(S_{1} a S_{1} \times S_{2} b S_{2}\right)\right]$.

Case I may occur in the following ten cases, which are given in Lemma 3 [2]:

1. $\left[a \in S_{1} a \wedge a \notin\left(a S_{1} \cup S_{1} a S_{1}\right)\right] \wedge\left[b \in b S_{2} \wedge b \notin\left(S_{2} b \cup S_{2} b S_{2}\right)\right]$;
2. $\left[a \in a S_{1} \wedge a \notin\left(S_{1} a \cup S_{1} a S_{2}\right)\right] \wedge\left[b \in S_{2} b \wedge b \notin\left(b S_{2} \cup S_{2} b S_{2}\right)\right]$;
3. $\left[a \in a S_{1} \wedge a \notin\left(S_{1} a \cup S_{1} a S_{1}\right)\right] \wedge\left[b \in S_{2} b S_{2} \wedge b \notin\left(S_{2} b \cup b S_{2}\right)\right]$;
4. $\left[a \in S_{1} a \wedge a \notin\left(a S_{1} \cup S_{1} a S_{1}\right)\right] \wedge\left[b \in S_{2} b S_{2} \wedge b \notin\left(S_{2} b \cup b S_{2}\right)\right]$;
5. $\left[a \in S_{1} a S_{1} \wedge a \notin\left(S_{1} a \cup a S_{1}\right)\right] \wedge\left[b \in S_{2} b \wedge b \notin\left(b S_{2} \cup S_{2} b S_{2}\right)\right]$;
6. $\left[a \in S_{1} a S_{1} \wedge a \notin\left(S_{1} a \cup a S_{1}\right)\right] \wedge\left[b \in b S_{2} \wedge b \notin\left(S_{2} b \cup S_{2} b S_{2}\right)\right]$;
7. $\left[a \in\left(S_{1} a \cap S_{1} a S_{1}\right) \wedge a \notin a S_{1}\right] \wedge\left[b \in b S_{2} \wedge b \notin\left(S_{2} b \cup S_{2} b S_{2}\right)\right]$;
8. $\left[a \in\left(a S_{1} \cap S_{1} a S_{1}\right) \wedge a \notin S_{1} a\right] \wedge\left[b \in S_{2} b \wedge b \notin\left(b S_{2} \cup S_{2} b S_{2}\right)\right]$;
9. $\left[a \in a S_{1} \wedge a \notin\left(S_{1} a \cup S_{1} a S_{1}\right)\right] \wedge\left[b \in\left(S_{2} b \cap S_{2} b S_{2}\right) \wedge b \notin b S_{2}\right]$;
10. $\left[a \in S_{1} a \wedge a \notin\left(a S_{1} \cup S_{1} a S_{1}\right)\right] \wedge\left[b \in\left(b S_{2} \cup S_{2} b S_{2}\right) \wedge b \notin S_{2} b\right]$.

In [2] it has been proved that the equality (1) may occur only in cases 1 and 2 under certain additional conditions. In all the remaining cases $J(a, b) \subset J(a) \times J(b)$ holds. As we want to show that the equality (1) implies the equality (2), we consider from I only cases 1 and 2 and the corresponding additional conditions for the equality (1).

Lemma 1. (See Theorem 1 and Theorem 2 in [2].) (a) Let

$$
\left[a \in S_{1} a \wedge a \notin\left(a S_{1} \cup S_{1} a S_{1}\right)\right] \wedge\left[b \in b S_{2} \wedge b \notin\left(S_{2} b \cup S_{2} b S_{2}\right)\right]
$$

Then $J(a, b)=J(a) \times J(b) \quad$ iff

$$
\left[a S_{1}=S_{1} a S_{1} \wedge S_{1} a=P_{1} \cup\{a\}\right] \wedge\left[S_{2} b=S_{2} b S_{2} \wedge b S_{2}=P_{2} \cup\{b\}\right] .
$$

(b) Let

$$
\left[a \in a S_{1} \wedge a \notin\left(S_{1} a \cup S_{1} a S_{1}\right)\right] \wedge\left[b \in S_{2} b \wedge b \notin\left(b S_{2} \cup S_{2} b S_{2}\right)\right]
$$

Then $J(a, b)=J(a) \times J(b) \quad$ iff

$$
\left[S_{1} a=S_{1} a S_{1} \wedge a S_{1}=P_{1} \cup\{a\}\right] \wedge\left[b S_{2}=S_{2} b S_{2} \wedge S_{2} b=P_{2} \cup\{b\}\right]
$$

where $P_{1}=S_{1} a \cap a S_{1}, P_{2}=S_{2} b \cap b S_{2}$.
Lemma 2. (Theorem 2 of [3]) Let

$$
(a, b) \notin\left[\left(S_{1} a \times S_{2} b\right) \cup\left(a S_{1} \times b S_{2}\right) \cup\left(S_{1} a S_{1} \times S_{2} b S_{2}\right)\right]
$$

Then

$$
J_{(a, b)}=\{(a, b)\}
$$

Lemma 3. Let any one of cases (a) and (b) of Lemma 1 hold. Then $J_{a}=\{a\}$ in S_{1} and $J_{b}=\{b\}$ in S_{2}.

Proof. (a) Suppose that $J(a, b)=J(a) \times J(b)$. Then

$$
\left[a S_{1}=S_{1} a S_{1} \wedge S_{1} a=P_{1} \cup\{a\}\right] \wedge\left[S_{2} b=S_{2} b S_{2} \wedge b S_{2}=P_{2} \cup\{b\}\right] .
$$

As $a \in S_{1} a$, we have $a S_{1} \subseteq S_{1} a S_{1}$ and $J(a)=S_{1} a \cup a S_{1}, a \in J_{a} . S_{1} a=P_{1} \cup\{a\}$. If J_{a} contained more than one element, e.g. if $c \in J_{a}, c \neq a$, then we would have $c \in a S_{1}$. The relation $a \in S_{1}$ a implies $c \in S_{1} a S_{1}$. Hence we get $J(c) \subseteq S_{1} a S_{1}$ and since $c \in J_{a}$, we have $J(c)=J(a) \subseteq S_{1} a S_{1}=a S_{1}$. And because $J_{a} \subseteq J(a) \subseteq a S_{1}$, it implies $a \in a S_{1}$, which contradicts the fact $a \notin\left(a S_{1} \cup S_{1} a S_{1}\right)$. Consequently, $J_{a}=\{a\}$. In a similar way we could show that $J_{b}=\{b\}$.
(b) The proof of this part is similar to that of part (a).

In Case II, if $(a, b) \in\left[\left(S_{1} a \times S_{2} b\right) \cup\left(a S_{1} \times b S_{2}\right) \cup\left(S_{1} a S_{1} \times S_{2} b S_{2}\right)\right]$, it is necessary to consider several cases:
(i) (a, b) belongs to each component;
(ii) (a, b) belongs to two components only;
(iii) (a, b) belongs to just one component.

In (i) and (ii) and in (iii) provided $(a, b) \in\left(S_{1} a S_{1} \times S_{2} b S_{2}\right)$ we get $(a, b) \in\left(S_{1} a S_{2} \times\right.$ $S_{2} b S_{2}$) and by Theorem 5 in [2] we have $J(a, b)=J(a) \times J(b)$ while by Theorem 3 in [3], $J_{(a, b)}=J_{a} \times J_{b}$. Hence, from (iii) the following two possibilities remain:

1. $(a, b) \in\left(S_{1} a \times S_{2} b\right) \wedge(a, b) \notin\left[\left(a S_{1} \times b S_{2}\right) \cup\left(S_{1} a S_{1} \times S_{2} b S_{2}\right)\right]$;
2. $(a, b) \in\left(a S_{1} \times b S_{2}\right) \wedge(a, b) \notin\left[\left(S_{1} a \times S_{2} b\right) \cup\left(S_{1} a S_{1} \times S_{2} b S_{2}\right)\right]$.

The relation $(a, b) \notin\left[\left(a S_{1} \times b S_{2}\right) \cup\left(S_{1} a S_{1} \times S_{2} b S_{2}\right)\right]$ includes the following possibilities:

1. $\left[a \notin\left(a S_{1} \cup S_{1} a S_{1}\right)\right] \wedge\left[b \in\left(b S_{2} \cap S_{2} b S_{2}\right)\right]$;
2. $\left[a \in\left(a S_{1} \cap S_{1} a S_{1}\right)\right] \wedge\left[b \notin\left(b S_{2} \cup S_{2} b S_{2}\right)\right]$;
3. $\left[a \notin\left(a S_{1} \cup S_{1} a S_{1}\right)\right] \wedge\left[d \notin\left(b S_{2} \cup S_{2} b S_{2}\right)\right]$;
4. $\left[a \in a S_{1} \wedge a \notin S_{1} a S_{1}\right] \wedge\left[b \notin b S_{2} \wedge b \in S_{2} b S_{2}\right]$;
5. $\left[a \notin a S_{1} \wedge a \in S_{1} a S_{1}\right] \wedge\left[b \in b S_{2} \wedge b \notin S_{2} b S_{2}\right]$.

However, 4 and 5 cannot occur, as $(a, b) \in\left(S_{1} a \times S_{2} b\right)$ and $4, a \in a S_{1}$ imply $S_{1} a \subseteq S_{1} a S_{1}$. Since $a \in S_{1} a \subseteq S_{1} a S_{1}$ implies $a \in S_{1} a S_{1}$, we arrive at a contradiction with $a \notin S_{1} a S_{1}$. Case 5 can be verified similarly. Combining $(a, b) \in\left(S_{1} a \times S_{2} b\right)$ with each of $1,2,3$, we get the following three possibilities:
($\alpha)\left[a \in S_{1} a \wedge a \notin\left(a S_{1} \cup S_{1} a S_{1}\right] \wedge\left[b \in\left(S_{2} b \cap b S_{2} \cap S_{2} b S_{2}\right)\right]\right.$;
(β) $\left[a \in\left(S_{1} a \cap a S_{1} \cap S_{1} a S_{1}\right)\right] \wedge\left[b \in S_{2} b \wedge b \notin\left(b S_{2} \cup S_{2} b S_{2}\right)\right]$;
$(\gamma)\left[a \in S_{1} a \wedge a \notin\left(a S_{1} \cup S_{1} a S_{1}\right)\right] \wedge\left[b \in S_{2} b \wedge b \notin\left(b S_{2} \cup S_{2} b S_{2}\right)\right]$.

Lemma 4. (See Theorems 6, 7, 8 in [2].) (a) Let $\left[a \in S_{1} a \wedge a \notin\left(a S_{1} \cup S_{1} a S_{1}\right)\right] \wedge[b \in$ $\left.\left(S_{2} b \cap b S_{2} \cap S_{2} b S_{2}\right)\right]$. Then $J(a, b)=J(a) \times J(b)$ iff $S_{2} b=S_{2} b S_{2}$.
(b) Let $\left[a \in\left(S_{1} a \cap a S_{1} \cap S_{1} a S_{1}\right)\right] \wedge\left[b \in S_{2} b \wedge b \notin\left(b S_{2} \cup S_{2} b S_{2}\right)\right]$. Then $J(a, b)=$ $J(a) \times J(b)$ iff $S_{1} a=S_{1} a S_{1}$.
(c) Let $\left[a \in S_{1} a \wedge a \notin\left(a S_{1} \cup S_{1} a S_{1}\right)\right] \wedge\left[b \in S_{2} b \wedge b \notin\left(b S_{2} \cup S_{2} b S_{2}\right)\right]$. Then $J(a, b)=J(a) \times J(b)$ iff $\left(a S_{1} \subseteq S_{1} a S_{1} \subset S_{1} a\right) \wedge\left(b S_{2} \subseteq S_{2} b S_{2} \subset S_{2} b\right)$.

Lemma 5. Let any one of (a), (b), (c) from Lemma 4 hold. Then

$$
J_{(a, b)}=J_{a} \times J_{b}
$$

Proof. (a) Let $\left[a \in S_{1} a \wedge a \notin\left(a S_{1} \cup S_{1} a S_{1}\right)\right] \wedge\left[b \in\left(S_{2} b \cap b S_{2} \cap S_{2} b S_{2}\right)\right]$ and $S_{2} b=S_{2} b S_{2}$. From the relations $a \in S_{1} a, b \in S_{2} b S_{2}$ we get $J(a)=S_{1} a \cup S_{1} a S_{1}$ in S_{1}, $J(b)=S_{2} b S_{2}$ in S_{2}. Further, $J_{a} \subseteq J(a)=S_{1} a \cup S_{1} a S_{1}, J_{b} \subseteq J(b)=S_{2} b S_{2}$. Let $c \in$ J_{a}. If $c=a$, then $S_{1} a=S_{1} c$. If $c \# a$, then $J(a)=S_{1} a \cup S_{1} a S_{1}=S_{1} c \cup S_{1} c S_{1}=J(c)$. This implies $c \in\left(S_{1} a \cup S_{1} a S_{1}\right) \wedge a \in\left(S_{1} c \cup S_{1} c S_{1}\right)$. $c \notin S_{1} a S_{1}$, since if $c \in S_{1} a S_{1}$, then $S_{1} c \subseteq S_{1} a S_{1}$ and $S_{1} c S_{1} \subseteq S_{1} a S_{1}$. So $J(c)=S_{1} c \cup S_{1} c S_{1} \subseteq S_{1} a S_{1}$. However, $J(a)=J(c)$, so $a \in S_{1} a S_{1}$, which is a contradiction. Similarly, $a \notin S_{1} c S_{1}$. It remains a single possibility: $a \in S_{1} c \wedge c \in S_{1} a$. From it we have $S_{1} a \subseteq S_{1} c \wedge S_{1} c \subseteq S_{1} a$. This implies $S_{1} c=S_{1} a$. Then $J_{a} \subseteq S_{1} a$ and $J_{b} \subseteq S_{2} b S_{2}$. Let $(c, d) \in J_{a} \times J_{b}$. If we want to show that $J_{(a, b)}=J_{a} \times J_{b}$, it is sufficient to show that $J_{(a, b)}=J_{(c, d)}$. Since $(c, d) \in J_{a} \times J_{b}=J_{c} \times J_{d}$, then $(a, b) \in J_{c} \times J_{d} .(c, d) \in J_{a} \times J_{b} \subseteq\left(S_{1} a \times S_{2} b S_{2}\right)$. This implies $\left(S_{1} c \times S_{2} d\right) \subseteq\left(S_{1} a \times S_{2} b S_{2}\right),\left(c S_{1} \times d S_{2}\right) \subseteq\left(S_{1} a S_{1} \times S_{2} b S_{2}\right),\left(S_{1} c S_{1} \times S_{2} d S_{2}\right) \subseteq$ $\left(S_{1} a S_{1} \times S_{2} b S_{2}\right)$. Then
$J(c, d) \subseteq\left(S_{1} a \times S_{2} b S_{2}\right) \cup\left(S_{1} a S_{1} \times S_{2} b S_{2}\right)=\left(S_{1} a \times S_{2} b\right) \cup\left(S_{1} a S_{1} \times S_{2} b S_{2}\right)=J(a, b)$.

From the relation $(a, b) \in J_{c} \times J_{d} \subseteq\left(S_{1} c \times S_{2} d S_{2}\right)$ we get in a similar way that $J(a, b) \subseteq J(c, d)$. The last relation together with the relation $J(c, d) \subseteq J(a, b)$ gives $J(c, d)=J(a, b)$ and $J_{(a, b)}=J_{(c, d)}$, hence $J_{a} \times J_{b} \subseteq J_{(a, b)}$. And because we generally have $J_{(a, b)} \subseteq J_{a} \times J_{b}$ (Theorem 1 in [3]), we conclude that

$$
J_{(a, b)}=J_{a} \times J_{b}
$$

(b) The proof is analogous to that of case (a).
(c) Let $\left[a \in S_{1} a \wedge a \notin\left(a S_{1} \cup S_{1} a S_{1}\right)\right] \wedge\left[b \in S_{2} b \wedge b \notin\left(b S_{2} \cup S_{2} b S_{2}\right)\right]$ and moreover $\left(a S_{1} \subseteq S_{1} a S_{1} \subset S_{1} a\right) \wedge\left(b S_{2} \subseteq S_{2} b S_{2} \subset S_{2} b\right)$. Then $J(a)=S_{1} a$ in $S_{1}, J(b)=S_{2} b$ in $S_{2}, J_{a} \subseteq J(a)=S_{1} a, J_{b} \subseteq J(b)=S_{2} b$. Let $(c, d) \in J_{a} \times J_{b}$, then $(a, b) \in J_{c} \times J_{d} \subseteq J(c) \times J(d)$ and $J(a)=J(c)$ in $S_{1}, J(b)=J(d)$ in S_{2}. If $(c, d) \in J_{a} \times J_{b} \subseteq J(a) \times J(b)=\left(S_{1} a \times S_{2} b\right)$, then $\left(S_{1} c \times S_{2} d\right) \subseteq\left(S_{1} a \times S_{2} b\right)$, $\left(c S_{1} \times d S_{2}\right) \subseteq\left(S_{1} a S_{1} \times S_{2} b S_{2}\right),\left(S_{1} c S_{1} \times S_{2} b S_{2}\right) \subseteq\left(S_{1} a S_{1} \times S_{2} b S_{2}\right) \subseteq\left(S_{1} a \times S_{2} b\right)$,
so $J(c, d) \subseteq\left(S_{1} a \times S_{2} b\right)=J(a, b)$, and hence $J(c, d) \subseteq J(a, b)$. From the relation $(a, b) \in J_{c} \times J_{d} \subseteq\left(S_{1} c \times S_{2} d\right)$ we can obtain in a similar way that $J(a, b) \subseteq J(c, d)$. Both these relations imply $J(a, b)=J(c, d)$, so $J_{a} \times J_{b} \subseteq J_{(a, b)}$. And because the inclusion $J_{(a, b)} \subseteq J_{a} \times J_{b}$ holds in general, we have

$$
J_{(a, b)}=J_{a} \times J_{b}
$$

From the possibility 2,

$$
\left[(a, b) \in\left(a S_{1} \times b S_{2}\right) \wedge(a, b) \notin\left(S_{1} a \times S_{2} b\right) \cup\left(S_{1} a S_{1} \times S_{2} b S_{2}\right)\right]
$$

and from the relation $(a, b) \notin\left[\left(S_{1} a \times S_{2} b\right) \cup\left(S_{1} a S_{1} \times S_{2} b S_{2}\right)\right]$ we can obtain in a similar way the following three similar cases:

```
\(\left(\alpha^{\prime}\right)\left[a \in a S_{1} \wedge a \notin\left(S_{1} a \cup S_{1} a S_{1}\right)\right] \wedge\left[b \in\left(S_{2} b \cap b S_{2} \cap S_{2} b S_{2}\right)\right] ;\)
( \(\left.\beta^{\prime}\right)\left[a \in\left(S_{1} a \cap a S_{1} \cap S_{1} a S_{1}\right)\right] \wedge\left[b \in b S_{2} \wedge b \notin\left(S_{2} b \cup S_{2} b S_{2}\right)\right] ;\)
\(\left(\gamma^{\prime}\right)\left[a \in a S_{1} \wedge a \notin\left(S_{1} a \cup S_{1} a S_{1}\right)\right] \wedge\left[b \in b S_{2} \wedge b \notin\left(S_{2} b \cup S_{2} b S_{2}\right)\right]\).
```

Lemma 6. (See Theorems 9, 10, 11 in [2].) Let
(a) $\left[a \in a S_{1} \wedge a \notin\left(S_{1} a \cup S_{1} a S_{1}\right)\right] \wedge\left[b \in\left(S_{2} b \cap b S_{2} \cap S_{2} b S_{2}\right)\right]$.

Then $J(a, b)=J(a) \times J(b)$ iff $b S_{2}=S_{2} b S_{2}$.
(b) $\left[a \in\left(S_{1} a \cap a S_{1} \cap S_{1} a S_{1}\right)\right] \wedge\left[b \in b S_{2} \wedge b \notin\left(S_{2} b \cup S_{2} b S_{2}\right)\right]$.

Then $J(a, b)=J(a) \times J(b)$ iff $a S_{1}=S_{1} a S_{1}$.
(c) $\left[a \in a S_{1} \wedge a \notin\left(S_{1} a \cup S_{1} a S_{1}\right)\right] \wedge\left[b \in b S_{2} \wedge b \notin\left(S_{2} b \cup S_{2} b S_{2}\right)\right]$.

Then $J(a, b)=J(a) \times J(b)$ iff $\left(S_{1} a \subseteq S_{1} a S_{1} \subset a S_{1}\right) \wedge\left(S_{2} b \subseteq S_{2} b S_{2} \subset b S_{2}\right)$.

Lemma 7. Let any one of (a), (b), (c) from Lemma 6 hold. Then

$$
J_{(a, b)}=J_{a} \times J_{b}
$$

The proof is analogous to that of Lemma 5.
From Lemmas 3, 5 and 7 we obtain

Theorem 1. Let $(a, b) \in S_{1} \times S_{2}$. If $J(a, b)=J(a) \times J(b)$, then

$$
J_{(a, b)}=J_{a} \times J_{b}
$$

Now we are going to show that the equality (2) does not imply the validity of the equality (1).

Example 1. Let $S_{1}=\left\{a_{1}, a_{2}, a_{3}, a_{4}\right\}, S_{2}=\left\{b_{1}, b_{2}, b_{3}, b_{4}\right\}$ be two semigroups and let binary associative operations be given by the following tables:

	a_{1}	a_{2}	a_{3}	a_{4}
a_{1}	a_{1}	a_{2}	a_{1}	a_{2}
a_{2}	a_{2}	a_{1}	a_{2}	a_{1}
a_{3}	a_{1}	a_{2}	a_{1}	a_{2}
a_{4}	a_{2}	a_{1}	a_{2}	a_{3}

	b_{1}	b_{2}	b_{3}	b_{4}
b_{1}	b_{1}	b_{1}	b_{1}	b_{1}
b_{2}	b_{1}	b_{1}	b_{1}	b_{1}
b_{3}	b_{1}	b_{1}	b_{1}	b_{1}
b_{4}	b_{1}	b_{1}	b_{1}	b_{2}

$J\left(a_{4}\right)=\left\{a_{1}, a_{2}, a_{3}, a_{4}\right\}$ in $S_{1}, J_{a_{4}}=\left\{a_{4}\right\}, J\left(b_{4}\right)=\left\{b_{1}, b_{2}, b_{4}\right\}$ in $S_{2}, J_{b_{4}}=\left\{b_{4}\right\}$. For the element $\left(a_{4}, b_{4}\right)$ we have $\left(a_{4}, b_{4}\right) \notin\left[\left(S_{1} a_{4} \times S_{2} b_{4}\right) \cup\left(a_{4} S_{1} \times b_{4} S_{2}\right) \cup\left(S_{1} a_{4} S_{1} \times\right.\right.$ $\left.\left.S_{2} b_{4} S_{2}\right)\right]$, hence $J_{\left(a_{4}, b_{4}\right)}=\left\{\left(a_{4}, b_{4}\right)\right\}$ and $J_{a_{4}} \times J_{b_{4}}=\left\{\left(a_{4}, b_{4}\right)\right\}$, therefore $J_{\left(a_{4}, b_{4}\right)}=$ $J_{a_{4}} \times J_{b_{4}}$. But $J\left(a_{4}, b_{4}\right)=\left(a_{4}, b_{4}\right) \cup\left(S_{1} a_{4} \times S_{2} b_{4}\right) \cup\left(a_{4} S_{1} \times b_{4} S_{2}\right) \cup\left(S_{1} a_{4} S_{1} \times\right.$ $\left.S_{2} b_{4} S_{2}\right)=\left\{\left(a_{1}, b_{1}\right),\left(a_{1}, b_{2}\right),\left(a_{2}, b_{1}\right),\left(a_{2}, b_{2}\right),\left(a_{3}, b_{1}\right),\left(a_{3}, b_{2}\right),\left(a_{4}, b_{4}\right)\right\}$ and $J\left(a_{4}\right) \times$ $J\left(b_{4}\right)=\left\{a_{1}, a_{2}, a_{3}, a_{4}\right\} \times\left\{b_{1}, b_{2}, b_{4}\right\}$, so $J\left(a_{4}, b_{4}\right) \subset J\left(a_{4}\right) \times J\left(b_{4}\right)$. In this example $J_{a_{4}} \times J_{b_{4}}=\left\{\left(a_{4}, b_{4}\right)\right\}$.

Let us suppose that $\left|J_{a} \times J_{b}\right|>1$. The question if at least in this case the validity of the equality (2) does not imply the validity of the equality (1). We will show that even in this case it need not be so.

Example 2. Let $S_{1}=\left\{a_{1}, a_{2}, a_{3}, a_{4}\right\}, S_{2}=\left\{b_{1}, b_{2}, b_{3}, b_{4}\right\}$ be two semigroups and let binary associative operations be given by the following tables:

	a_{1}	a_{2}	a_{3}	a_{4}
a_{1}	a_{1}	a_{1}	a_{1}	a_{1}
a_{2}	a_{1}	a_{1}	a_{1}	a_{2}
a_{3}	a_{1}	a_{1}	a_{1}	a_{1}
a_{4}	a_{1}	a_{1}	a_{3}	a_{4}

	b_{1}	b_{2}	b_{3}	b_{4}
b_{1}	b_{1}	b_{2}	b_{2}	b_{2}
b_{2}	b_{1}	b_{2}	b_{2}	b_{2}
b_{3}	b_{1}	b_{2}	b_{3}	b_{4}
b_{4}	b_{1}	b_{2}	b_{4}	b_{3}

$a_{3} \in S_{1} a_{3}, J\left(a_{3}\right)=\left\{a_{1}, a_{3}\right\}, J_{a_{3}}=\left\{a_{3}\right\}, b_{4} \in S_{2} b_{4}, J\left(b_{4}\right)=\left\{b_{1}, b_{2}, b_{3}, b_{4}\right\}, J_{b_{4}}=$ $\left\{b_{3}, b_{4}\right\}$, so $\left|J_{a_{3}} \times J_{b_{4}}\right|>1$ and $J_{\left(a_{3}, b_{4}\right)}=J_{a_{3}} \times J_{b_{4}}$. However,

$$
\begin{aligned}
& J\left(a_{3}, b_{4}\right)=\left\{a_{1}, a_{3}\right\} \times\left\{b_{2}, b_{3}, b_{4}\right\} \cup\left\{a_{1}\right\} \times\left\{b_{1}, b_{2}, b_{3}, b_{4}\right\}= \\
&=\left\{a_{1}, a_{3}\right\} \times\left\{b_{2}, b_{3}, b_{4}\right\} \cup\left\{\left(a_{1}, b_{1}\right)\right\}, \\
& J\left(a_{3}\right) \times J\left(b_{4}\right)=\left\{a_{1}, a_{3}\right\} \times\left\{b_{1}, b_{2}, b_{3}, b_{4}\right\} . \\
&\left(a_{3}, b_{1}\right) \in J\left(a_{3}\right) \times J\left(b_{4}\right), \text { but }\left(a_{3}, b_{1}\right) \notin J\left(a_{3}, b_{4}\right), \text { hence } \\
& J\left(a_{3}, b_{4}\right) \subset J\left(a_{3}\right) \times J\left(b_{4}\right) .
\end{aligned}
$$

Finally, we would like to show what are the answers to the above questions in the case of one-sided principal ideals and the corresponding classes. We will consider left principal ideals and \mathscr{L}-classes.

Lemma 8. (Theorem 1 of [4]) Let $(a, b) \in S_{1} \times S_{2}$. Then $L(a, b)=L(a) \times L(b)$ iff at least one of the following conditions is satisfied:

1. $S_{1} a=\{a\}$;
2. $S_{2} b=\{b\}$;
3. $a \in S_{1} a \wedge b \in S_{2} b$.

Lemma 9. (Theorem 3 of [4]) Let $(a, b) \in S_{1} \times S_{2}$. Then $L_{(a, b)}=L_{a} \times L_{b}$ iff at least one of the following conditions is satisfied:

1. $L_{a}=\{a\}$ in $S_{1}, L_{b}\{b\}$ in S_{2};
2. $a \in S_{1} a \wedge b \in S_{2} b$.

Theorem 2. Let $(a, b) \in S_{1} \times S_{2}$. If $L(a, b)=L(a) \times L(b)$, then $L_{(a, b)}=L_{a} \times L_{b}$.
Proof. It is sufficient to show that if any one of the conditions of Lemma 8 holds, then at least one condition of Lemma 9 is satisfied. Let 1 of Lemma 8 hold, so $S_{1} a=\{a\}$. For $b \in S_{2}$ there are only two possibilities: (i) $b \in S_{2} b$, (ii) $b \notin S_{2} b$. If $b \in S_{2} b$ and $S_{1} a=\{a\}$, then $a \in S_{1} a \wedge b \in S_{2} b$, so 2 of Lemma 9 holds. If $b \notin S_{2} b$, then by Lemma 2 [4] $L_{b}=\{b\} . S_{1} a=\{a\}$ implies that $L_{a}=\{a\}$. So $L_{a} \times L_{b}=\{(a, b)\}$ and since $L_{(a, b)} \subseteq L_{a} \times L_{b}$, we get

$$
L_{(a, b)}=L_{a} \times L_{b} .
$$

If 2 of Lemma 8 holds, we can proceed analogously. If 3 of Lemma 8 holds, then 2 of Lemma 9 holds, as well.

However, if $L_{(a, b)}=L_{a} \times L_{b}$ in $S_{1} \times S_{2}$, then in general the equality $L(a, b)=$ $L(a) \times L(b)$ need not hold.

Example 3. Let $S_{1}=\left\{a_{1}, a_{2}, a_{3}, a_{4}\right\}, S_{2}=\left\{b_{1}, b_{2}, b_{3}, b_{4}\right\}$ be two semigroups and let binary associative operations be given by the following tables:

	a_{1}	a_{2}	a_{3}	a_{4}
a_{1}	a_{1}	a_{1}	a_{1}	a_{1}
a_{2}	a_{1}	a_{1}	a_{1}	a_{2}
a_{3}	a_{1}	a_{1}	a_{1}	a_{1}
a_{4}	a_{2}	a_{1}	a_{3}	a_{4}

	b_{1}	b_{2}	b_{3}	b_{4}
b_{1}	b_{1}	b_{1}	b_{1}	b_{1}
b_{2}	b_{1}	b_{1}	b_{1}	b_{2}
b_{3}	b_{1}	b_{1}	b_{1}	b_{3}
b_{4}	b_{1}	b_{1}	b_{1}	b_{4}

$L\left(a_{2}\right)=\left\{a_{1}, a_{2}\right\}, L_{a_{2}}=\left\{a_{2}\right\} . \quad L\left(b_{2}\right)=\left\{b_{1}, b_{2}\right\}, L_{b_{2}}=\left\{b_{2}\right\} . \quad L_{\left(a_{2}, b_{2}\right)}=$ $\left\{\left(a_{2}, b_{2}\right)\right\}=L_{a_{2}} \times L_{b_{2}}$. However, $L\left(a_{2}, b_{2}\right)=\left(a_{2}, b_{2}\right) \cup\left(S_{1} a_{2} \times S_{2} b_{2}\right)=\left\{\left(a_{1}, b_{1}\right)\right.$, $\left.\left(a_{2}, b_{2}\right)\right\}$ and

$$
\begin{gathered}
L\left(a_{2}\right) \times L\left(b_{2}\right)=\left\{a_{1}, a_{2}\right\} \times\left\{b_{1}, b_{2}\right\}, \text { so } \\
L\left(a_{2}, b_{2}\right) \subset L\left(a_{2}\right) \times L\left(b_{2}\right) .
\end{gathered}
$$

However, unlike in the case of \mathcal{J}-classes, for \mathscr{L}-classes the following holds:

Theorem 3. Let $L_{(a, b)}=L_{a} \times L_{b}$ in $S_{1} \times S_{2}$ and let $\left|L_{a} \times L_{b}\right|>1$. Then

$$
L(a, b)=L(a) \times L(b)
$$

Proof. Let $L_{(a, b)}=L_{a} \times L_{b}$ and $\left|L_{a} \times L_{b}\right|>1$. We shall consider three cases:

1. $\left|L_{a}\right|>1, \wedge\left|L_{b}\right|>1$;
2. $\left|L_{a}\right|>1, \wedge\left|L_{b}\right|=\{b\}$;
3. $\left|L_{a}\right|=\{a\} \wedge\left|L_{b}\right|>1$.

If 1 holds then Theorem 4 [4] implies $a \in S_{1} a \wedge b \in S_{2} b$ and by Lemma 8 we have $L(a, b)=L(a) \times L(b)$.

If 2 holds, then $b \notin S_{2} b$ cannot occur, since in this case $L_{a} \times L_{b}$ is the union of at least two mutually different \mathscr{L}-classes (Theorem 5 [4]), which contradicts our hypothesis. So $b \in S_{2} b$ must hold and together with $a \in S_{1} a$ this that 3 of Lemma 8 is satisfied, so

$$
L(a, b)=L(a) \times L(b)
$$

If 3 holds, we proceed analogously.

References

[1] Clifford A.H., Preston G.B.: The Algebraic Theory of Semigroups. Amer. Math. Soc., Providence I (1961).
[2] Fabrici I.: Principal two-sided ideals in the direct product of two semigroups. Czechoslovak Math. J. 41 (1991), 411-421.
[3] Fabrici I.: \mathcal{J}-classes in the direct product of two semigroups. Czechoslovak Math. J. 44 (1994), 325-335.
[4] Fabrici I.: One-sided principal ideals in the direct product of two semigroups. Math. Bohem. 4 (1993), 337-342.
[5] Tamura T.: Note on finite semigroups and determination of semigroups of order 4. J. Gakugei, Tokushima Univ. 5 (1954), 17-28.

Author's address: Department of Mathematics, Slovak Technical University, Radlinského 9, 81237 Bratislava, Slovakia.

