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SOME REMARKS ON THE PRODUCT OF TWO
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and S. Watson, North York

(Received January 21, 1997)

Abstract. For a cardinal α, we say that a subset B of a space X is Cα-compact in X
if for every continuous function f : X → �

α , f [B] is a compact subset of �α . If B is a
C-compact subset of a space X, then �(B, X) denotes the degree of Cα-compactness of
B in X. A space X is called α-pseudocompact if X is Cα-compact into itself. For each
cardinal α, we give an example of an α-pseudocompact space X such that X × X is not
pseudocompact: this answers a question posed by T. Retta in “Some cardinal generalizations
of pseudocompactness” Czechoslovak Math. J. 43 (1993), 385–390. The boundedness of
the product of two bounded subsets is studied in some particular cases. A version of the
classical Glicksberg’s Theorem on the pseudocompactness of the product of two spaces is
given in the context of boundedness. This theorem is applied to several particular cases.

Keywords: bounded subset, Cα-compact, α-pseudocompact, degree of Cα-pseudo-
compactness, αr-space

MSC 2000 : 54C50, 54D35

0. Introduction

All topological spaces considered in this paper will be Tychonoff. The Greek letters
α, γ and κ will stand for infinite cardinal numbers. For an ordinal number θ, [0, θ)
will denote the space that consists of the underlying set {µ : µ < θ} endowed with
the order topology. The space [0, θ + 1) will be denoted by [0, θ]. For a cardinal α,
we say that a subset B of a space X is Cα-compact in X if for every continuous
function f : X → �

α , f [B] is a compact subset of �α . If α = ω, then we simply say

The second listed author’s research has been supported in part by the Generalitat Va-
lenciana, under grant GV-2223/94. This author is pleased also to thank the Instituto
de Matemáticas de la UNAM in Morelia for generous hospitality and support (Summer,
1995).
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C-compact instead of Cω-compact. The C-compact subsets were studied, under a
different name, by Isiwata [Is] and for arbitrary cardinals in [GST]. Cα-compactness is
a natural generalization of the notion of α-pseudocompactness which was introduced
by J. F. Kennison [Ke]: we say that a spaceX is α-pseudocompact ifX is Cα-compact
into itself. Notice that ω-pseudocompactness agrees with pseudocompactness and if
γ < α, then every Cα-compact subset is Cγ-compact. We remark that C-compact
subsets are bounded; that is, every real-valued continuous function on the main space
is bounded on every C-compact subset. There are examples of bounded subsets that
are notC-compact, even for closed subsets (see [Is, p. 460]). A useful characterization
of Cα-compactness is that B is Cα-compact in X iff B is Gα-dense in clβ(X)B (see
[GST, Th. 1.2]). The degree of Cα-compactness of a C-compact subset B of a space
X was introduced in [GST] and is defined as follows: if B is a C-compact subset of
X , then we define

�(B, X) =∞

if B is compact, and

�(B, X) = sup{α : B is Cα-compact in X}

if B is not compact. The authors of [GST, Th. 4.2] established the inequality

�

(∏

i∈I

Ai,
∏

i∈I

Xi

)
� min{�(Ai, Xi) : i ∈ I},

whenever
∏
i∈I

Ai is C-compact in
∏
i∈I

Xi. Unfortunately, we do not know whether the

equality must hold.

In this article, we shall answer a question posed by T. Retta [Re] and study sev-
eral interesting products of two C-compact subsets in which the above equality holds.
The example of an α-pseudocompact space, for each cardinal α, whose square is not
pseudocompact is presented in the first Section. In the second Section, we shall
study the boundedness of the product of two bounded subsets with some additional
assumptions. We start the second Section with a version of the classical Gilcks-
berg’s Theorem on pseudocompactness of the product of two spaces in the real of
boundedness.
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1. α-pseudocompactness

It is wellknown that there is a pseudocompact space X such that X × X is not
pseudocompact (see [GJ, 3.18]). This example lead T. Retta ([Re]) to ask whether, for
every α, there are α-pseudocompact spaces whose product is not pseudocompact. For
every cardinal number α, we will give an example of an α-pseudocompact space whose
square is not α-pseudocompact. In this example, Noble’s ([No1, 2.3]) construction
plays a very important rule. His construction is the following:
Let X be a space and let α be a cardinal number such that α > |β(X)| and

cf(α) > ω. Then we have that Y = (β(X)× [0, α))∪ (X ×{α}) is a pseudocompact
space that contains X as a closed subspace and β(Y ) = β(X)× [0, α]. It is not hard
to see that Y is γ-pseudocompact for every γ < cf(α). In particular, we have that,
for every cardinal number α, every space X can be embedded as a closed subspace
in an α-pseudocompact space.
Next, we shall slightly modify Noble’s construction:

Lemma 1.1. Let X be a pseudocompact subspace of β(ω) with ω ⊆ X . Then X

can be embedded as a closed subspace in an α-pseudocompact space Y such that ω

is open in Y for every α.

�����. First, we observe that a subspace X of β(ω) that contains ω is pseudo-
compact iff X ∩ ω∗ is dense in ω∗. Fix a pseudocompact subspace X of β(ω) with
ω ⊆ X and a cardinal α. Choose a cardinal κ with cf(κ) > max{α, 2c}. Put
Y = (X × {κ}) ∪ ((β(ω) − ω) × [0, κ)). Notice that (β(ω) × {κ}) ∪ (ω∗ × [0, κ]) is
compact since it is the complement of ω× [0, κ) in β(ω)× [0, κ]. By using the density
of X ∩ ω∗ in ω∗ and by standard argument, we may show that Y is C∗-embedded
in (β(ω) × {κ}) ∪ (ω∗ × [0, κ]); hence β(Y ) = (β(ω) × {κ}) ∪ (ω∗ × [0, κ]). Thus
Y is κ-pseudocompact, because cf(κ) > α. Therefore, Y is α-pseudocompact and
contains X as a closed subspace. It is clear that ω is open in Y . �

If X is a pseudocompact subspace of β(ω) with ω ⊆ X and α and κ are cardinal
numbers such that cf(κ) > max{α, 2c}, then the space constructed as in Lemma 1.1
will be denoted by N(X, α, κ).

Example 1.2. For every cardinal α there is an α-pseudocompact, countably
compact space X such that X ×X is not α-pseudocompact.

�����. Fix a cardinal α and choose a cardinal κ with cf(κ) > max{α, 2c}.
Consider the countably compact subspace X of β(ω) constructed in [GJ, 9.15] which
is defined by a permutation σ of ω (this permutation satisfies that σ2 is the identity
and it does not have fixed points) and has cardinality equal to c. By the construction
of this space, we have that D = {(n, σ(n)) : n < ω} is a clopen discrete subspace of
X × X ; this fact witnesses that X × X is not pseudocompact. By Lemma 1.1,
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N(X, α, κ) is an α-pseudocompact space that contains X as a closed subspace.
Hence, we have that D is a closed discrete subspace of N(X, α, κ) × N(X, α, κ).
It follows from Lemma 1.1 that D is open in N(X, α, κ) × N(X, α, κ). Therefore,
N(X, α, κ)×N(X, α, κ) cannot be pseudocompact and hence N(X, α, κ)×N(X, α, κ)
is not α-pseudocompact. �

It should be remarked that the condition X is pseudocompact in Lemma 1.1 is
essential. In fact, we have the following two corollaries.

Corollary 1.3. Let X be a subspace of β(ω) with ω ⊆ X and let α be a car-
dinal with cf(α) > 2c. Then X is pseudocompact if and only if N(X, c, α) is α-
pseudocompact.

�����. The necessity is Lemma 1.1. To prove the sufficiency suppose that
N(X, c, α) is α-pseudocompact. In particular, N(X, c, α) is pseudocompact. Since
X is identified with X×{α}, X is a regular-closed subset of N(X, c, α). This implies
that X is pseudocompact. �

Corollary 1.4. If α is a cardinal with cf(α) > 2c, then α-pseudocompactness is
not regular-closed hereditary.

�����. Let α be a cardinal with cf(α) > 2c. Now, let X be a pseudocom-
pact subspace of β(ω) with ω ⊆ X and |X | = c. It is clear that X cannot be
c-pseudocompact and so X is not α-pseudocompact. Then N(X, c, α) is an α-
pseudocompact space that contains a regular-closed subset, say X , that is not α-
pseudocompact. �

The previous corollary suggests the question: If α is an uncountable cardinal with
cf(α) � 2c, must α-pseudocompactness be regular-closed hereditary?
The following example due to H. Ohta answers this question in the negative (see

also [GO]).

Example 1.5. Given a space K, we shall denote by A (K) the Alexandroff
duplicate of K. Let T = [0, ω2] × [0, ω1] \ {p}, where p is the corner point (ω2, ω1)
and let X = A(T ). We shall show that X is an ω1-pseudocompact space including a
regular-closed subset Y which is not ω1-pseudocompact.
First, we consider the subspace X ∪ {(p, 0)} of A ([0, ω2]× [0, ω1]). The space X

has the following properties:
Claim 1 : β(X) = X ∪ {(p, 0)}.
Since the Alexandroff duplicate of a compact space is compact, A ([0, ω2]× [0, ω1])

is compact. Moreover, since (p, 1) is an isolated point and

X ∪ {(p, 0)} = A ([0, ω2]× [0, ω1]) \ {(p, 1)} ,
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X ∪ {(p, 0)} is compact. So, we only need to prove that X is C∗-embedded in
X ∪ {(p, 0)} [GJ, Th. 6.5]. To see this, let f ∈ C∗(X). Then there are α < ω2 and
β < ω1 such that f takes constant value r on T0×{0}, where T0 = [α, ω2]×[β, ω1]\{p}.
Now, suppose that there is an uncountable set {mλ}λ<ω1

⊆ T0 such that

f (mλ, 1) �= r for each λ < ω1.

Then there exist a countably infinite subset I ⊆ ω1 and δ > 0 such that

(1) |f (mλ, 1)− r| > δ for each λ ∈ I.

Since T0 is countably compact, {mλ}λ∈I has an accumulation point m ∈ T0. Then,

(2) (g, 0) ∈ clX {(mλ, 0) : λ ∈ I} ∩ clX {(mλ, 1) : λ ∈ I} .

Since f (mλ, 0) = r for each λ ∈ I, (1) and (2) contradict the continuity of f . Thus,

|{t ∈ T0 : f (t, 1) �= r}| � ω.

Hence there exist α1 with α < α1 < ω2 and β1 with β < β1 < ω1 such that
f (t, 1) = r for each t ∈ T1, where T1 means for [α1, ω2] × [β1, ω1] \ {p}. Since
f [A (T1)] = {r}, f extends continuously over X ∪ {(p, 0)}. Hence, β(X) = X ∪
{(p, 0)}. This completes the proof of the Claim 1.
Notice that X is pseudocompact, because the cardinality of the remainder of β(X)

is one.
Claim 2 : X is ω1-pseudocompact.
Let f be a continuous function fromX into �ω1 . For each α < ω1, let πα : �ω1 −→

� be the α-th projection. For each α < ω1, since X is pseudocompact, πα◦f : X −→
� extends to a continuous function fα from β(X) into �. Then the diagonal mapping
f = ∆α<ω1fα is a continuous extension of f to β(X). By Claim 1, the remainder
of β(X) is the point (p, 0). We shall prove that x ∈ f(X) where x = f(p, 0). Since
the weight of �ω1 is ω1, the point x has a neighbourhood base {Uγ}γ<ω1

. For each
α < ω2, let Fα = A ([0, α]× [0, ω1]). Since (p, 0) ∈ clβ(X)

⋃
α<ω2

Fα,

(3) x ∈ f

(
clβ(X)

⋃

α<ω2

Fα

)
⊆ cl�ω1

( ⋃

α<ω2

f (Fα)

)
.

Now, suppose that x /∈ f (X). For each α < ω2, since x /∈ f (Fα), there is ϕ(α) < ω1
such that Uϕ(α) ∩ f (Fα) = ∅. Hence there exist a cofinal subset J ⊆ ω2 and γ < ω1
such that ϕ(α) = γ for each α ∈ J . This means that Uγ ∩ f (Fα) = ∅ for each α ∈ J .
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Since {f (Fα) : α < ω2} is increasing, Uγ ∩
( ⋃

α<ω2

f (Fα)
)
= ∅ which contradicts (3).

Hence, x ∈ f (X) and consequently, f(X) is compact. Thus, X is ω1-pseudocompact.
This proves Claim 2.
Let S = {(ω2, β) : β < ω1} ⊆ T , and let Y = A(S). Then Y is regular closed in

X , but we have:
Claim 3 : Y is not ω1-pseudocompact.
Since S is homeomorphic to [0, ω1), it suffices to show that A ([0, ω1)) is not

ω1-pseudocompact. For each α < ω1, let Uα = A ([0, α]). Then {Uα}α<ω1
is a cozero-

set cover of A ([0, ω1]) which has no finite subcover. This means that A ([0, ω1)) is
not ω1-pseudocompact.

2. Products of bounded subsets

We start this section with some basic notation and some preliminary results.
If f ∈ C(X×Y ), then f(x, ) : Y → � is the function defined on Y by f(x, )(y) =

f(x, y) for each y ∈ Y , the definition of f( , y) : X → � should be clear, for each
y ∈ Y . For each f ∈ C(X × Y ) and for each (x, y) ∈ X × Y , the domain of f(x, )
and f( , y) will be sometimes identified with {x} × Y and X × {y}, respectively.
We know that A ⊆ X is bounded in X iff clβ(X)A ⊆ υ(X) (see [GG, Lemma 2.2]).

Let B be bounded in Y and let f ∈ C(X × Y ). Then, for each a ∈ A, we have that
f(a, ) : {a} × Y → � can be extended continuously to {a} × υ(Y ). Henceforth, the
restriction of this extension to {a} × clβ(Y )B will be denoted by f̂a. In a similar
way, if A is a bounded subset of X , then we let f̂ b : (clβ(X)A) × {b} → � be the
restriction of the continuous extension of f( , b) to υ(X), for each b ∈ B. Now, if A
and B are bounded subsets of X and Y , respectively, and f ∈ C(X × Y ), then we
define f̂A : A × clβ(Y )B → � and f̂B : (clβ(X)A) × B → � by f̂A(a, b) = f̂a(b) for
every (a, b) ∈ A × clβ(Y )B and f̂B(a, b) = f̂ b(a) for every (a, b) ∈ (clβ(X)A) × B.
Notice that f̂A|A×B = f̂B|A×B = f |A×B. If f ∈ C(X × Y ) and B is bounded in Y

(A is bounded in X), then the set {f̂A( , b) : b ∈ clβ(Y )B} ({f̂B(a, ) : a ∈ clβ(X)A})
is called the natural extension of {f( , b) : b ∈ B} ({f(a, ) : a ∈ A}). We shall show
that f̂A and f̂B are sometimes continuous. This result was implicitly used in [Bu,
Cor. 5.2] and it is surely known to various people. We begin with a lemma which
easily follows from Proposition 6 of [Bo, Chapter X].

Lemma 2.1. Let A and B be subsets ofX and Y , respectively. For f ∈ C(X×Y ),
the following conditions are equivalent.

(1) {f( , b) : b ∈ B} ({f(a, ) : a ∈ A}) is equicontinuous on A (B);
(2) the natural extension {f̂A( , b) : b ∈ clβ(Y )B} ({f̂B(a, ) : a ∈ clβ(X)A}) of

{f( , b) : b ∈ B} ({f(a, ) : a ∈ A}) is equicontinuous on A (B).
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Now, we state a theorem due to W. W. Comfort and T. Hager [CH] (a proof is
available in [Wa, Th. 8.6]). We recall that a z-closed mapping is the one in which
the image of every zero set is closed. We consider the ring C∗(X) endowed with the
topology induced by the norm ‖f‖ = sup{f(x) : x ∈ X}.

Lemma 2.2. The following conditions in the product space X×Y are equivalent:

(1) the projection map πX : X × Y → X is z-closed;
(2) for each f ∈ C∗(X ×Y ) the function Φ: X → C∗(Y ) defined by Φ(x) = f(x, )
is continuous;

(3) for each f ∈ C∗(X × Y ), {f( , y) : y ∈ Y } is equicontinuous on X ;
(4) every bounded real-valued continuous function on X × Y admits a continuous
extension to X × β(Y ).

Lemma 2.3. Let A and B be subsets of X and Y , respectively, such that B is
bounded in Y . For f ∈ C(X × Y ), the following conditions are equivalent:

(1) {f( , b) : b ∈ B} is equicontinuous on A;
(2) the natural extension {f̂A( , b) : b ∈ clβ(Y )B} of {f( , b) : b ∈ B} is equicontin-
uous on A;

(3) f̂A is continuous.

�����. (1)⇔ (2). This is Lemma 2.1.
(2)⇒ (3). This follows from Proposition 6 of [Bo, Chapter X, 2.3].
(3)⇒ (2). By Kuratowski’s Theorem the projection π : A×clβ(Y )B → A is closed.

According to Lemma 2.2, we have that {f( , b) : b ∈ clβ(Y )B} is equicontinuous on A.
�

The following lemma is a particular case of a result proved by R. Pupier [Pu] and
it is a generalization of Lemma 1.3 of [Fro].

Lemma 2.4. Let A andB be bounded subsets ofX and Y , respectively. If A×B is
bounded in X×Y , then {f( , b) : b ∈ B} is equicontinuous on A and {f(a, ) : a ∈ A}
is equicontinuous on B for every f ∈ C(X×Y ). In particular, f̂A : A×clβ(Y )B → �

and f̂B : (clβ(X)A)×B → � are continuous for every f ∈ C(X × Y ).

Let X be a space. A compact space K is called a compactification of X if X is
a dense subspace of K. We recall that two compactifications K1 and K2 of X are
called equivalent if there exists a homeomorphism Φ from K1 onto K2 such that Φ|X
is the identity map. In this case we will write K1 ∼= K2.

Lemma 2.5. Let A and B be bounded subsets of X and Y , respectively. If
(clβ(X)A× clβ(Y )B) ∼= clβ(X×Y )(A×B), then A×B is bounded in X × Y .
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�����. Suppose that there is a continuous function f : X × Y → � such that
f(x, y) > 0 for every (x, y) ∈ X × Y and f |A×B is unbounded. Set g = 1

f . Then
g : X × Y → � is a continuous bounded function. By hypothesis, g can be extended
to a continuous function g∗ : clβ(X)A × clβ(Y )B → �. For each n < ω, choose
(an, bn) ∈ A × B such that g∗((an, bn)) → 0 and let (a, b) ∈ clβ(X)A × clβ(Y )B
be an accumulation point of {(an, bn) : n < ω}. For each k < ω, let Vk × Uk be
a basic neighbourhood of (a, b) such that 0 � g∗((x, y)) < 1

k+1 for each (x, y) ∈
Vk × Uk. For each k < ω, pick (ank

, bnk
) ∈ Vk × Uk. We have that either a /∈ A or

b /∈ B, since g∗((a, b)) = 0. Without loss of generality, we may assume that a /∈ A.
Consider g∗|A×{b}. It then follows that f |A×{b} is unbounded, which contradicts the
boundedness of A in X . �
Glicksberg’s Theorem on pseudocompactness says that if X and Y are pseudocom-

pact spaces, then X×Y is pseudocompact if and only if β(X×Y ) = β(X)×β(Y ) if
and only if every real-valued continuous function on X × Y has a continuous exten-
sion to β(X)×β(Y ). The following theorem is a slight generalization of Glicksberg’s
Theorem.

Theorem 2.6. Let A and B be bounded subsets of X and Y , respectively. Then,
the following assertions are equivalent:

(1) if f ∈ C(X × Y ), then {f̂A(a, ) : a ∈ A} is equicontinuous on clβ(Y )B;
(2) if f ∈ C(X × Y ), then {f̂A(a, ) : a ∈ A} and {f̂B( , b) : b ∈ B} are equicontin-
uous on clβ(Y )B and clβ(X)A, respectively;

(3) if f ∈ C(X ×Y ), then f |A×B has a continuous extension to clβ(X)A× clβ(Y )B;
(4) clβ(X)A× clβ(Y )B ∼= clβ(X×Y )(A×B).

�����. (1) =⇒ (2). Let y0 ∈ clβ(Y )B −B. First, we shall prove that f̂A( , y0) :
A× {y} → � has a continuous extension to clβ(X)A× {y} for every y ∈ clβ(Y )B. If
y ∈ B, then f̂B( , y) is such an extension. Suppose that y ∈ clβ(Y )B −B and take a
net {yδ}δ∈D in B that converges to y. From the hypothesis it follows that f̂A( , y)
is the uniform limit in C(A) of the net {f̂A( , yδ)}δ∈D and hence f̂A( , y) admits
a continuous extension to clβ(X)A since each f̂A( , yδ) has a continuous extension
to clβ(X)A for each δ ∈ D. This extension of f̂A( , y) to clβ(X)A will be denoted
by f̂B( , y) for every y ∈ clβ(Y )B. Next we shall show that {f̂B( , b) : b ∈ B} is
equicontinuous on clβ(X)A. Fix ε > 0 and x ∈ clβ(X)A. Since {f̂A(a, ) : a ∈ A} is
equicontinuous on clβ(Y )B, for each y ∈ clβ(Y )B we may find an open neighbourhood
Vy of y such that

(1) |f̂A(a, y′)− f̂A(a, y)| < ε

for every a ∈ A and for every y′ ∈ Vy. Since clβ(Y )B is compact, there is a finite set

{y0, y1, . . . , yn} such that
n⋃

i=0
Vyi = clβ(Y )B. Now choose and consider a net {xδ}δ∈D
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in A which converges to x. Since f̂B( , yi) is continuous for each i = 0, 1, . . . , n, there
exists δ0 ∈ D such that

(2) |f̂B(x, yi)− f̂B(xδ, yi)| < ε

for every i = 0, 1, . . . , n and for every δ � δ0. Fix y ∈ B. Then there exists i such
that y ∈ Vyi . By (1), we have that

(3) |f̂B(x, y)− f̂B(x, yi)| � ε and |f̂B(xδ , yi)− f̂B(xδ , y)| < ε

for every δ � δ0. Applying (2) and (3) we obtain that

|f̂B(x, y)− f̂B(xδ, y)| � |f̂B(x, y)− f̂B(x, yi)|+ |f̂B(x, yi)− f̂B(xδ , yi)|
+ |f̂B(xδ, yi)− f̂B(xδ, y)| � 3ε

for every δ � δ0. Notice that δ0 does not depend on the choice of y. Therefore,
{f̂B( , b) : b ∈ B} is equicontinuous on clβ(X)A.
(2) =⇒ (3). We shall first show that f̂B has a separately continuous extension

f∗ to clβ(X)A× clβ(Y )B (i. e., f∗|{x}×clβ(Y ) B is continuous for every x ∈ clβ(X)A).
We shall verify that f̂B|{x}×B has a continuous extension to {x} × clβ(Y )B for every
x ∈ clβ(X)A. Fix x0 ∈ clβ(X)A. According to Problem 6H of [GJ], it suffices to prove
that f̂B admits a continuous extension to {x0}×(B∪{y}) for every y ∈ clβ(Y )B. Fix
y0 ∈ clβ(Y )B −B. Let ε > 0 and let {yδ}δ∈D be a net in B converging to y0. Since
{f̂A( , b) : b ∈ B} is equicontinuous on clβ(X)A, there exists an open neighbourhood
V of x0 such that

|f̂A(x0, y)− f̂A(x, y)| < ε

for every x ∈ V and for every y ∈ B. Since {f̂B(a, ) : a ∈ A} is equicontinuous on
the compact set clβ(Y )B, it is uniformly equicontinuous on clβ(Y )B ([Bo, Chap. X,
Sec. 2, Cor. 2]). Since the net {yδ}δ∈D converges to y0, we can find δ0 ∈ D such
that

|f(x, yδ)− f(x, yδ′)| < ε

for every δ, δ′ � δ0 and for every x ∈ A. Fix x ∈ V . Applying the previous two
inequalities, we have

|f̂B(x0, yδ)− f̂B(x0, yδ′)| � |f̂B(x0, yδ)− f̂B(x, yδ)|+ |f̂B(x, yδ)− f̂B(x, yδ′)|
+ |f̂B(x, y′δ)− f̂B(x0, yδ′)| � 3ε

for every δ, δ′ � δ0. Thus, {f̂B(x0, yδ)}δ∈D is a Cauchy sequence in �. Let us denote
the limit of {f̂B(x0, yδ)}δ∈D by f̂(x0, y0). It is not hard to show that f̂(x0, y0) does
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not depend on the choice of the net {yδ}δ∈D. Thus, f̂B|{xo}×B ∪ ((x0, y0), f̂(x0, y0))
is a continuous extension of f̂B|{xo}×B as required. So, f̂B admits a separately
continuous extension, say f∗, to clβ(X)A × clβ(Y )B. From Lemma 2.3 it follows
that {f̂A( , b) : b ∈ clβ(Y )B} is equicontinuous on clβ(X)A. Using this result and
reasoning as in the proof of (2) =⇒ (3) in Lemma 2.3, we may show that f∗ is a
continuous extension of f̂B to clβ(X)A× clβ(Y )B.
(3) =⇒ (4). We know that if F ⊆ C∗(X) separates points from closed sub-

sets, then αF (X) is a compactification of X , where αF : X → [0, 1]F is the clo-
sure of the image of the evaluation map induced by F . Now, let A = {f |A×B :
f ∈ C(clβ(X×Y )(A × B))} and B = {f |A×B : f ∈ C((clβ(X)A) × (clβ(Y )B))}.
By Theorem 2.5 of [Ch], we obtain that αA (A × B) ∼= clβ(X×Y )(A × B) and
αB(A×B) ∼= (clβ(X)A)× (clβ(Y )B)). By assumption, we have that A = B and so
αA (A×B) ∼= αB(A×B). That is, (clβ(X)A)× (clβ(Y )B) ∼= clβ(X×Y )(A×B).
(4) =⇒ (1). By Lemma 2.5, we have that A × B is bounded in X × Y . Let

f ∈ C(X × Y ). Since A×B is bounded in X × Y we may find a bounded function
g ∈ C(X × Y ) such that g|A×B = f |A×B. Let g∗ be the Stone-C̆ech continuous
extension of g to β(X × Y ) and set h = g∗|clβ(X×Y )(A×B). By hypothesis, we may
assume that the domain of h is clβ(X)A × clβ(Y )B. Since clβ(X)A is compact, by
Kuratowski’s Theorem, the projection map from clβ(X)A × clβ(Y )B onto clβ(Y )B
is closed. According to Lemma 2.2, the family {h(x, ) : x ∈ clβ(X)A} is equicon-
tinuous on clβ(Y )B. Since h|A×B = f |A×B, we obtain that {f̂A(a, ) : a ∈ A} is
equicontinuous on clβ(Y )B. �

Question 2.7. Are the conditions of Theorem 2.6 equivalent to the condition
A×B is bounded in X × Y ?

We do not know whether the converse of Lemma 2.5 holds as well. An interesting
case where the previous question has the affirmative answer is when the set A is
pseudocompact.

Theorem 2.8. Let A and B be subsets of X and Y , respectively. If A is pseudo-
compact and B is bounded in Y , then the following assertions are equivalent:

(1) A×B is bounded in X × Y ;
(2) if f ∈ C(X × Y ), then f̂A is continuous;
(3) if f ∈ C(X × Y ), then f |A×B has a continuous extension to (clβ(X)A) ×
(clβ(Y )B);

(4) (clβ(X)A)× (clβ(Y )B) ∼= clβ(X×Y )(A×B).

�����. (1) =⇒ (2) and (3) =⇒ (4) follow from Lemma 2.4 and from The-
orem 2.6, respectively. The implication (4) =⇒ (1) is a direct consequence of
Lemma 2.5. It remains to prove (2) =⇒ (3). Let f ∈ C(X × Y ) and suppose
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that f̂A is continuous. Since clβ(Y )B is compact, A×clβ(Y )B is pseudocompact (see
[Fro, Th. 3.4]). So, by Tamano’s theorem [Ta] the projection map π from A×clβ(Y )B
onto clβ(Y )B is z-closed, that is, π(Z) is closed in clβ(Y )B for each zero-set Z in
A× clβ(Y )B. According to Lemma 2.2, the family {f̂A(a, ) : a ∈ A} is equicontinu-
ous on clβ(Y )B. The conclusion follows from Theorem 2.6. �

The following examples point out that we can not replace f̂A by f̂B in condition
(2) of the previous theorem and that f̂A and f̂B continuous does not imply that
A×B is bounded.

Example 2.9. Let P be a pseudocompact subspace of β(ω) such that ω ⊆ P

and P × P is not pseudocompact (for a construction of this kind of spaces see [GJ,
9.15]). Let Y = P ×K where K is an infinite compact space. Since K is compact,
P×K is pseudocompact [Fro, Th. 3.4]. So, ω×K is bounded in Y . Since P×(ω×K)
is dense in P ×Y and P ×P is not pseudocompact, we have that P × (ω×K) is not
bounded in P × Y . However, for every f ∈ C(P × Y ), f |P×(ω×K) has a continuous
extension to β(ω)×(ω×K). To see this, notice that it suffices to extend f |P×({n}×K)

to β(ω) × ({n} ×K) for all n < ω. But this immediately follows from the fact that
P × ({n} × K) is pseudocompact and from the classical Glicksberg’s Theorem on
pseudocompactness [Gl].

Remark 2.10. We have just proved that every real-valued continuous function
on P × (ω×K) admits a continuous extension to β(ω)× (ω×K). By Lemma 2.2 the
projection map from P × (ω ×K) onto ω ×K is z-closed. So, Example 2.9 points
out that sufficient in Theorem 2.5 of [No2] is not correct.

Example 2.11. Let P be a pseudocompact space as in Example 2.9. Consider
X = P ×K and Y = K × P where K is an infinite compact space. Let A = ω ×K

and let B = K × ω. A similar argument to the one used in Example 2.9 shows that
A and B are bounded subsets of X and Y , respectively, and that the restriction of
every continuous function on X × Y to A×B has continuous extensions f̂A and f̂B

to A × clβ(Y )B and clβ(X)A× B, respectively. Since A× B is dense in X × Y and
P × P is not pseudocompact, A×B is not bounded in X × Y .

We can apply Theorem 2.8 in order to obtain the following result.

Theorem 2.12. Let A and B be subsets of X and Y , respectively, such that
A is pseudocompact and B is C-compact in Y . Then the following assertions are
equivalent:

(1) A×B is C-compact in X × Y ;
(2) A×B is bounded in X × Y ;
(3) if f ∈ C(X × Y ), then f̂A and f̂B are continuous;
(4) f̂A is continuous for every f ∈ C(X × Y );

259



(5) if f ∈ C(X × Y ), then f |A×B has a continuous extension to (clβ(X)A) ×
(clβ(Y )B);

(6) (clβ(X)A)× (clβ(Y )B) ∼= clβ(X×Y )(A×B);
(7) A×B is C-compact in X × Y and

�(A×B, X × Y ) = min{�(A, X), �(B, Y )}.

�����. (1) =⇒ (2), (3) =⇒ (4), (7) =⇒ (1) are evident. (2) =⇒ (3) is a direct
application of Lemma 2.4. (4) =⇒ (5) and (5) =⇒ (6) follow from Theorem 2.8.
(6) =⇒ (7). We have that A and B are Gδ-dense in clβ(X)A and clβ(Y )B, respec-

tively. Hence, A×B is Gδ-dense in (clβ(X)A)× (clβ(Y )B) and so A×B is Gδ-dense
in clβ(X×Y )(A × B). Thus, A × B is C-compact in X × Y . By assumption and by
the α-density characterization of Cα-compactness (see [GST]), we have

�(A×B, X × Y ) = �(A×B, (clβ(X)A)× (clβ(Y )B)) =

�(A×B, clβ(X×Y )(A×B)).

According to Theorem 4.3 of [GST], we obtain

�(A×B, (clβ(X)A)× (clβ(Y )B)) = min{�(A, clβ(X)A), �(B, clβ(Y )B)} =

min{�(A, X), �(B, Y )}.

�

Question 2.13. Is Theorem 2.12 true when A is C-compact in X?

We will denote by P the Frolík class consisting of all spaces X such that X × Y

is pseudocompact for each pseudocompact space Y (for details see [Fro]). Applying
Theorem 3.6 of [Fro] and Corollary 6 of [BS], we obtain the following characterization
of P.

Corollary 2.14. A pseudocompact space X belongs to P if and only if for each
space Y and each C-compact subset B of Y , X ×B satisfies (in X × Y ) any one of
the conditions of Theorem 2.12.

Next we shall study the product of two C-compact subsets A ⊆ X and B ⊆ Y for
a wide class of spaces X . Let us first recall some definitions.
Let α be a cover of X directed by inclusion. A space X is said to be an αr-space if

a real-valued function f on X is continuous whenever its restriction to every subset
B ∈ α is continuous. We will say that X is a br-space (a cr-space) if it is an αr-space
for the cover α of all bounded (C-compact) subsets of X . The kr-spaces, where k
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is the set of all compact subsets of a space, are examples of cr-spaces. Then, first
countable and locally pseudocompact spaces are cr-spaces as well. The br-spaces
arose in the study of z-closed projections in [No3], and also in the problem of the
distribution of the functor of the topological completion (see [Bu], [Pu], [Sa1]). This
class of spaces also appears in the study of compactness of function spaces (see [Ar],
[Sa2]).

Lemma 2.15. Let X and Y be two topological spaces. If X is an αr-space and
B a bounded subset of Y such that f̂A is continuous for each A ∈ α, then f |X×B

has a continuous extension f̂ : X × clβ(Y )B → � for every f ∈ C(X × Y ) .

�����. Fix f ∈ C(X×Y ) and let f̂ be the real-valued function on X×clβ(Y )B
defined by f̂(x, y) = f̂A(x, y) for x ∈ A and for A ∈ α. It is easy to verify that f̂ is
well-defined. We claim that f̂ is continuous. In fact, let Cu(clβ(Y )B) be the space
C(clβ(Y )B) endowed with the topology of uniform convergence and let A ∈ α. Since
clβ(Y )B is compact, by Kuratowski’s Theorem, the projection map from A×clβ(Y )B
onto A is closed. According to Lemma 2.2, we have that the function ϕA : A →
Cu(clβ(Y )B) defined by ϕA(x) = f̂A(x, y) for every x ∈ A and for every y ∈ clβ(Y )B
is continuous. Consider the function ϕ : X → Cu(clβ(Y )B) defined by ϕ(x) = ϕA(x)
for every x ∈ A and for every A ∈ α. Then ϕ is well-defined and, since X is an
αr-space, ϕ is continuous. It is now a routine to prove that f̂ is continuous. �

Theorem 2.16. Let X and Y be two topological spaces. If X is a cr-space and
B is C-compact in Y , then the following assertions are equivalent:

(1) A×B is C-compact in X × Y for each C-compact subset A of X ;
(2) A×B is bounded in X × Y for each C-compact subset A of X ;
(3) if f ∈ C(X × Y ), then f̂A is continuous for each C-compact subset A of X ;
(4) if f ∈ C(X×Y ), then f |A×B has a continuous extension to (clβ(X)A)×(clβ(Y )B)
for each C-compact subset A of X ;

(5) (clβ(X)A)× (clβ(Y )B) ∼= clβ(X×Y )(A×B) for each C-compact subset A of X ;
(6) A×B is C-compact in X × Y and

�(A×B, X × Y ) = min{�(A, X), �(B, Y )}

for each C-compact subset A of X .

�����. The implications (1) =⇒ (2) and (6) =⇒ (1) are obvious. On the other
hand, (2) =⇒ (3) and (4) =⇒ (5) follow from Lemma 2.4 and Theorem 2.6, respec-
tively, and the proof of (5) =⇒ (6) is similar to that of (6) =⇒ (7) in Theorem 2.12.
We only need to prove (3) =⇒ (4). Let f ∈ C(X × Y ) and let A be a C-compact
subset of X . Applying Lemma 2.15, we conclude that f |A×B has a continuous ex-
tension f̂ : X × clβ(Y )B → �. Since clβ(Y )B is compact, A× clβ(Y )B is bounded in
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X× clβ(Y )B (by Proposition 1.4 of [Bla]). By Lemma 2.6, we have that f̂ |A×clβ(Y ) B

admits a continuous extension to (clβ(X)A)× (clβ(Y )B). �
To state the proof of the next theorem we need the following notions:
A subset A of a space X is strongly bounded in X if for every space Y and for each

bounded subset B of Y , A× B is bounded in X × Y (this concept was introduced,
in an equivalent form, by Tkachenko in [Tk]). Following [BS], we say that a space
X has property (b) if for each space Y , the product A × B of each pair of bounded
subsets A ⊆ X and B ⊆ Y is bounded in X × Y . By Corollary 2 of [BS], X has
property (b) if and only if every bounded subset of X is strongly bounded. According
to Corollaries 4 and 6 of [BS], the kr-spaces and spaces locally in the Frolík class P

are examples of cr-spaces which have property (b). Locally pseudocompact groups
are also cr-spaces enjoying property (b) [Sa3].

Theorem 2.17. For a cr-space X , the following assertions are equivalent:

(1) for each pseudocompact space P , A × P is C-compact in X × P for each C-
compact subset A of X ;

(2) for each pseudocompact space P , A×P is bounded in X×P for each C-compact
subset A of X ;

(3) every C-compact subset of X is strongly bounded in X ;
(4) for each space Y , A ×B is C-compact in X × Y for each C-compact subset A

of X and each C-compact subset B of Y ;
(5) for each space Y , A×B is bounded in X × Y for each C-compact subset A of

X and each C-compact subset B of Y ;
(6) for each pseudocompact space P , A× P is C-compact in X × P and

�(A× P, X × P ) = min{�(A, X), �(P, P )}

for each C-compact subset A of X ;
(7) for each space Y , A× B is C-compact in X × Y and

�(A×B, X × Y ) = min{�(A, X), �(B, Y )}

for each C-compact subset A of X and each C-compact subset B of Y .

�����. The implications (1) =⇒ (2), (4) =⇒ (5) and (7) =⇒ (1) are clear.
The implication (5) =⇒ (6) follows from Theorem 2.16 and (2) ⇐⇒ (3) is a direct
consequence of Proposition 1 from [BS].
(3) =⇒ (4). Since every C-compact subset ofX is strongly bounded, for each space

Y , A×B is bounded in X×Y for each C-compact subset A ofX and each C-compact
subset B of Y . So, the conclusion follows from (2) =⇒ (1) of Theorem 2.16.
(6) =⇒ (7). By Proposition 1 of [BS], every C-compact subset of X is strongly

bounded. So, the result is a consequence of the equivalence (2) ⇐⇒ (6) in Theo-
rem 2.16. �
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Corollary 2.18. Let X be a cr-space which has property (b). Then, for each
space Y and each C-compact subset B of Y , A×B is C-compact in X × Y for each
C-compact subset A of X .

The following questions seem to be worth of study.

Question 2.19. Is there a space X which has property (b) and does not satisfy
the conclusions of Theorem 2.17?

Question 2.20. Is there an example of a C-compact subset A ⊆ X such that
A × P is C-compact in X × P for each pseudocompact space P but there exist a
space Y and a C-compact subset B of Y such that A×B is not C-compact in X×Y ?

Acknowledgments. The authors thank H.Ohta for his permission to include
Example 1.5 in this paper.
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