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Abstract. In the logico-algebraic foundation of quantum mechanics one often deals with
the orthomodular lattices (OML) which enjoy state-separating properties of noncompatible
pairs (see e.g. [18], [9] and [15]). These properties usually guarantee reasonable “richness”
of the state space—an assumption needed in developing the theory of quantum logics. In
this note we consider these classes of OMLs from the universal algebra standpoint, showing,
as the main result, that these classes form quasivarieties. We also illustrate by examples
that these classes may (and need not) be varieties. The results supplement the research
carried on in [1], [3], [4], [5], [6], [11], [12], [13] and [16].
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1. Basic notions

Let us formally introduce the class of OMLs we shall deal with in the sequel.

We allow ourselves to assume that the reader is acquainted with the basics of the
orthomodular lattice theory as presented in the introductory chapters of the books

[10] or [2].
Let us first recall some standard notions of OMLs. Let L = (L, 0, 1,∧,∨,′ ) be an

OML (i.e., let L be a lattice with 0, 1 and with the complementation operation so
that the orthomodular law a ∨ b = a ∨ (a′ ∧ (a ∨ b)) holds). Two elements a, b ∈ L

are said to be compatible in L if a = (a ∧ b) ∨ (a ∧ b′) or b = (a ∧ b) ∨ (b ∧ a′), which
is equivalent, and they are said to be noncompatible if they are not compatible. We

1 This research was partially supported by the grant GAČR 201/96/0117 of the Czech
Grant Agency and the grant VS 96049 of the Czech Ministry of Education.
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denote a noncompatible pair a, b ∈ L by a �↔ b. Obviously, L is a Boolean algebra

exactly when all its elements are compatible.
We need to recall the notion of the state on L. By a state on L we mean a

probability measure on L. Thus, a mapping s : L → 〈0, 1〉, where 〈0, 1〉 is the unit
interval of reals, is said to be a state on L if (i) s(1) = 1, and (ii) s(a∨b) = s(a)+s(b)
provided a � b′. Let us denote the set of all states on L by S (L). (It should be

noted that S (L) may be empty, may be a singleton [17] or may be an infinite convex
set.)

We are in the position to introduce the classes of OMLs, denoted by L C
D , which

we will be interested in.

Definition 1.1. Let C and D be nonempty closed subsets of the interval 〈0, 1〉.
Let the symbol L C

D stand for the class of OMLs which are determined as follows:

L C
D = {L ∈ OML | if a, b ∈ L and a �↔ b, then there is a state

s ∈ S (L) such that s(a) ∈ C and s(b) ∈ D}.

In what follows we will show that each L C
D is a quasivariety in the class of all

OMLs. (Observe that each L C
D contains the class of all Boolean algebras.)

2. Results

Theorem 2.1. Each L C
D is a quasivariety of OML.

�����. Let C and D be nonempty closed subsets of 〈0, 1〉. It is sufficient to
show that the class L C

D is closed under the formation of sub-OMLs, products and

ultraproducts [7]. Let us check these properties in the given order.

1. L C
D is closed under sub-OMLs. Indeed, let L ∈ L C

D and let K be a sub-OML

of L. Let a �↔ b in K. Then a �↔ b in L since the relation of noncompatibility is
obviously hereditary. Thus, if s ∈ L C

D is such that s(a) ∈ C and s(b) ∈ D, then

the restriction of s to K, s̃, is a state in S (K) so that s̃(a) ∈ C and s̃(b) ∈ D.
2. L C

D is closed under products. Indeed, let Lα (α ∈ I) be a collection of OMLs and

let Lα ∈ L C
D for any α ∈ I. Take the (direct) product

∏
α∈I

Lα of the collection

Lα (α ∈ I). Suppose that a, b ∈ ∏
α∈I

Lα and that a �↔ b in
∏

α∈I

Lα. Write

a = (aα), b = (bα), where aα, bα ∈ Lα (α ∈ I) are the respective coordinates.
Then there is an index α0 such that aα0 �↔ bα0 in Lα0 (obviously, a �↔ b in

∏
α∈I

Lα

if and only if aα �↔ bα in Lα for some α ∈ I). Take a state sα0 ∈ S (Lα0) such

that sα0(aα0) ∈ C and sα0(bα0) ∈ D. Let us define a state s ∈ S
( ∏

α∈I

Lα

)

360



by putting s(k) = sα0(kα0 ) for any k ∈ ∏
α∈I

Lα. Then s(a) ∈ C and s(b) ∈ D,

which we wanted to show.

3. Let
∏

α∈I

Lα be the direct product of Lα (α ∈ I) and let F be a free ultrafilter

on I. If we let, for any two elements a, b ∈ ∏
α∈I

Lα, a ∼
F

b if and only if the set

W = {α ∈ I | aα = bα} belongs toF , then ∼
F
is a congruence relation on

∏
α∈I

Lα.

The corresponding factor OML with respect to ∼
F
is called the ultraproduct of

Lα (α ∈ I) with respect to F . Let us denote it by L.

We must show that if any Lα (α ∈ I) belongs to L C
D , then so does L. Before

doing so, let us observe that L can be viewed as an epimorphic image of
∏

α∈I

Lα

under the natural epimorphism eF :
∏

α∈I

Lα → L. Moreover, if a �↔ b in L and if

ã, b̃ are arbitrary preimages in
∏

α∈I

Lα of a, b under the mapping eF , then the set

I = {α ∈ I | ãα �↔ b̃α} belongs to F . In what follows, we will frequently refer to

this fact and to the set I .
Let a �↔ b in L and let ã, b̃ be the preimages. For any pair ãα, b̃α such that α ∈ I ,

let us take states sα ∈ S (Lα) such that sα(ãα) ∈ C and sα(b̃α) ∈ D, otherwise
take an arbitrary state sα ∈ S (Lα) (α ∈ I −I ). We claim that the corresponding

ultraproduct state of states sα (α ∈ I), denoted by s, s ∈ S (L), enjoys the property
of s(a) ∈ C and s(b) ∈ D. Let us only sketch the argument since it follows the

standard pattern. Let us summarize the properties which are needed in the next
proposition. �

Proposition 2.2. Let I be an infinite set and let Lα (α ∈ I) be a collection of
OML. Let sα ∈ S (Lα) for any α ∈ I. Let F be a free ultrafilter on I and let L be

the corresponding ultraproduct. Then the following statement holds true:

If a ∈ ∏
α∈I

Lα, then there exists exactly one real number ta ∈ 〈0, 1〉 such that, for
any ε > 0, the set Fε = {α ∈ I | |sα(aα) − ta| < ε} belongs to F . If we define

a mapping sF :
∏

α∈I

Lα → 〈0, 1〉 by setting sF (a) = ta for any a ∈ L, we obtain a

state on
∏

α∈I

Lα. Moreover, if a ∼
F

b, then sF (a) = sF (b), and if sα(aα) ∈ C and

sα(bα) ∈ D (α ∈ I), then sF (a) ∈ C and sF (b) ∈ D. Thus, if eF denotes the

natural factor epimorphism, eF :
∏

α∈I

Lα → L, then there exists exactly one state

s ∈ S (L)—the ultraproduct state of sα (α ∈ I)—such that s ◦ eF = sF .

�����. We will only indicate the proof of the first part of the proposition, the

rest being routine. Consider first the sets G〈0, 12 〉 = {α ∈ I | sα(aα) ∈ 〈0, 12 〉} and
G〈 12 ,1〉 = {α ∈ I | sα(aα) ∈ 〈12 , 1〉}. If the set G 1

2
= {α ∈ I | sα(aα) = 1

2} belongs
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to F , we set ta = 1
2 . If not, then there is exactly one set of the two sets G〈0, 12 〉

and G〈 12 ,1〉 which belongs to F . Suppose it is the set G〈0, 12 〉. Consider the sets
G〈0, 14 〉 and G〈 14 , 12 〉. If the set G 1

4
= {α ∈ I | sα(aα) = 1

4} belongs to F , we set
ta = 1

4 . If not, then there is exactly one set of the two sets G〈0, 14 〉 and G〈 14 , 12 〉
which belongs to F , etc. The process either stops, in which case we set the value
ta to be the corresponding middle point, or it goes on, in which case we obtain a

decreasing sequence of closed intervals 〈un, vn〉 in 〈0, 1〉, and then it suffices to set
ta =

⋂
n∈�

〈un, vn〉. It can be easily shown that this mapping sF (a) = ta defines a

state on
∏

α∈I

Lα and that s satisfies all the other required properties as well.

The verification of the last part of Proposition 2.2 is now easy. Since we have
chosen states sα ∈ S (Lα) such that sα(aα) ∈ C and sα(bα) ∈ D for any α ∈ I we

see that the corresponding ultraproduct state s ∈ S (L) fulfils s(ã) ∈ C and s(b̃) ∈ D

(the sets C and D are closed). The proof of Theorem 2.1 is complete. �

Remark. We could in principle define the classes L C
D for arbitrary nonempty

sets C, D of 〈0, 1〉. However, it can be shown that then L C
D will rarely be closed

under the formation of ultraproducts, see also [5].

It would be desirable to characterize which of the quasivarieties L C
D are varieties

(recall that a quasivariety is called a variety if it is closed under the formation of
all epimorphisms). We have not been able to find this characterization. The fact is
however that L C

D is a variety for some C, D and is not a variety for some C, D. We

will now demonstrate it. (Recall that L is called unital if for any b, b �= 0, there is
a state s ∈ S (L) such that s(b) = 1, see [9], [15]. Let us denote the class of unital

logics by L (1).)

Theorem 2.3. For every nonempty closed set D the class L
{1}
D is a variety. In

particular, L 1
〈0,1〉 is the variety L (1) of unital OMLs.

�����. The proof can be extracted from the general result of Th. 1, §5 in [12].
Let us indicate a direct proof. Let us first observe that

(i) for any L ∈ OML, the set S (L) is a compact convex set when equipped with

the pointwise topology,

(ii) the following simple proposition holds true [4]: If f : L → M is an OML epimor-

phism and if s ∈ S (L) is a state such that s(h) = 1 for any element t ∈ f−1(1),
then there exists a state t ∈ S (M) such that s = t ◦ f .

We only have to show that our class L
{1}
D is closed under the formation of

epimorphic images. Suppose that f : L → M is an OML epimorphism onto M

and suppose that L ∈ L
{1}
D . We have to show that M ∈ L

{1}
D . Suppose that
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m1 �↔ m2 in M . Suppose that k2 ∈ L is such that f(k2) = m2. Consider the set

P = {k ∈ L | f(k) � m1}. Let us observe that if p ∈ P and k1 ∈ L is such an element
that f(k1) = m1, then f(p ∧ k1) = m1. Since OML morphisms must send pairs of
compatible elements into pairs of compatible elements, we see that (p ∧ k1) �↔ k2.

It follows that there is a state s ∈ S (L) such that s(p ∧ k1) = 1 and s(k2) ∈ D.
Obviously, s(k1) = 1 and s(k2) ∈ D.

For any k ∈ P put Sk = {s ∈ S (L) | s(k) = 1 and s(m2) ∈ D}. Then any Sk

is nonempty. Since every Sk is obviously closed in S (L) and since P is a filter in

L, we infer that the collection S = {Sk | k ∈ P} is a centred collection of closed
sets in a compact space. It follows that

⋂
k∈P

Sk �= ∅. Take a state s ∈ S (L) such

that s ∈ ⋂
k∈P

Sk. Then we easily see that s(k) = 1 for any k ∈ f−1(1) and therefore,

by the above observation (ii), there exists a state t ∈ S (M) such that s = t ◦ f .

Obviously, t(m1) = 1 and t(m2) ∈ D. This completes the proof of the statement
that L

{1}
D is a variety.

We will now show thatL {1}
〈0,1〉 consists of unital OMLs. Denote byL (1) the variety

of all unital OMLs. Let L ∈ L (1) and a �↔ b. Then b �= 0 and therefore there is
a state s ∈ S (L) such that s(b) = 1. Thus, L ∈ L

{1}
〈0,1〉. Conversely, suppose that

L ∈ L
{1}
〈0,1〉 and take an arbitrary b ∈ L, b �= 0. If there is a ∈ L such that a �↔ c for

some c � b we have a state s ∈ S (L) such that s(c) = 1. Since c � b, we see that
s(b) = 1. If there is no element a ∈ L such that a �↔ c for some c, c � b, it follows

that the set Lb = {x ∈ L | x � b} is a subset of the centre of L. It follows that Lb

(considered with operations inherited from L) is a Boolean algebra. Take the natural

epimorphism e : L → Lb, e(y) = y ∧ b, and a state s̃ ∈ S (Lb). Then s = e ◦ s̃ is a
state on L such that s(b) = 1. Thus, L {1}

〈0,1〉 ⊂ L (1). It follows that L
{1}
〈0,1〉 = L (1).

It may be observed in connection with the last proposition and with the foun-
dations of quantum mechanics that the variety L

{1}
〈0,1〉 contains the lattice L(H) of

projectors in the Hilbert space H . This is known, of course. What does not seem to
be explicitly known is that the equality L 1

〈0,1〉 = L (1) verified above remains true,

and the proof remains fully analogous, when we replace 1 by an arbitrary interval
〈a, 1〉 (a � 0). Thus, L

〈a,1〉
〈0,1〉 = L (〈a, 1〉) and therefore L (〈a, 1〉) is a quasivariety

(by analogy, L (〈a, 1〉) stands for the class of the OMLs where each nonzero element
can be sent into 〈a, 1〉 by a state). The equality L

〈a,1〉
〈0,1〉 = L (〈a, 1〉) may be of its

own interest for quantum logics. �

Proposition 2.4. The class L
〈0,1〉
〈0,1〉 is not a variety.

�����. The class L
〈0,1〉
〈0,1〉 coincides with the class of all OMLs which possess a

state. We want to show that the latter class is not a variety. In other words, we
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must show that it is not closed under the formation of OML epimorphisms. Let

K be a stateless OML (see [8]) and let {0, 1} be a two-point Boolean algebra. Let
L = K×{0, 1} in the category of OMLs, and let p : L → K be the natural projection.
It remains to be shown that L possesses a state. Define ŝ(k, 1) = 1 for any k ∈ K

and ŝ(k, 0) = 0 for any k ∈ K. It can be easily seen that ŝ admits a unique extension
to a state on K (see also [14]). This completes the proof. �

An important quasivariety among the classes L C
D seems to be the quasivariety

L
{ 12 }
{ 12}
. This quasivariety contains the variety of unital OMLs as a proper subclass

(see Prop. 2.5). The clarification of whether L
{ 12}
{ 12}
is a variety would be helpful in

deciding the same question for general quasivarieties L C
D . So, the following concrete

open question seems to be the first step in solving the general question on when L C
D

is a variety.

Open question. Suppose that f : L → K is an OML morphism ontoK. Suppose
that for each noncompatible pair a �↔ b in L there is a state in L such that s(a) =
1
2 = s(b). Does this property remain valid for K as well?

Proposition 2.5. Suppose that L is unital (i.e., suppose that L is an OML such

that for any a ∈ L there is a state s ∈ S (L) such that s(a) = 1). Then L ∈ L
{ 12}
{ 12}
.

On the other hand, there exists an L ∈ L
{ 12 }
{ 12 }
which is not unital.

�����. Suppose that a �↔ b. Let us first show that there is a state t ∈ S (L)
such that t(a) = t(b) � 1

2 : If t(a) = t(b) = 1 for some state, then we are done.

Otherwise there are states s1, s2 ∈ S (L) such that s1(a) = 1, s2(b) = 1, s1(b) < 1
and s2(a) < 1. Let

t =
(1− s2(a))s1 + (1− s1(b))s2

2− s1(b)− s2(a)
.

Then t(a) � 1
2 , t(b) �

1
2 and t(a) = t(b).

Let us now take such a state, t1, for a and b, and such a state, t2, for a′ and b′. If
t1(a) = 1

2 , we are done. If t1(a) >
1
2 , then we put

s =
(12 − t2(a))t1 + (t1(a)− 1

2 )t2
t1(a)− t2(a)

,

and we see that s is a state and s(a) = s(b) = 1
2 .

For the remaining part of the proposition, we assume the reader to be acquainted

with the Greechie diagram technique for OMLs (e.g. [15]). We claim, leaving the
details to be checked by the reader, that the diagram below presents an orthomodular

lattice L such that L ∈ L
{ 12 }
{ 12 }
and L is not unital (see also [12], §VIII). �
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�
Let us remark in the conclusion of this note that in analogy with [13] there is a

general way of describing all quasivarieties L C
D in terms of implicative equalities.

The methods to be used are essentially model theoretic and cover also cases of many
other (more general and less quantum physic motivated) quasivarieties. We intend

to investigate this description elsewhere.
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