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LATERAL COMPLETION OF A PROJECTABLE LATTICE

ORDERED GROUP

Ján Jakubík, Košice

(Received December 31, 1997)

A lattice ordered group is said to be laterally complete if each its disjoint subset
has the least upper bound.

The notion of the lateral completion of a lattice ordered group was introduced by
Conrad in [5] (the term “orthogonal hull” was applied for this notion in [7]). Earlier,
lateral completions of complete lattice ordered groups were investigated in [6], [9],
[10]. Further, in connection with the lateral completion the following types of lattice
ordered groups have been dealt with: (i) representable lattice ordered groups; (ii)
lattice ordered groups satisfying the condition (F) (which says that each bounded dis-
joint set is finite); (iii) lattice ordered groups with a basis; (iv) lattice ordered groups
with zero radical (cf. [5]); (v) lattice ordered groups with zero distributive radical
(cf. [4]); (vi) archimedean lattice ordered groups (cf. [2]); (vii) strongly pojectable
lattice ordered groups (cf. [7], [8]).

Conrad [5] proposed the question whether each lattice ordered group has a uniquely
determined lateral completion. This question was affirmatively solved by Bernau [1].

For a lattice ordered group G let GL be its lateral completion. The symbol �(G)
will denote the underlying lattice of G.

Bernau’s method consists in applying a transfinite process to construct GL. In
each step of this construction, new elements are added to those already given by the
preceding steps. The resulting structure (i.e., GL) is then obtained as a direct limit.

The aim of the present paper is to generalize the main result of [7] concerning
lateral completions of strongly projectable lattice ordered groups for the case when
the assumption of strong projectability is replaced by the weaker assumption of
projectability.

We prove the following results:
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(A) Let G1 and G2 be lattice ordered groups. Suppose that (i) G1 is projectable,
and (ii) the lattices �(G1) and �(G2) are isomorphic. Then the lattices �(GL

1 )
and �(GL

2 ) are isomorphic as well.
(B) Let G be a projectable lattice ordered group. Then each element of the

positive cone of GL is a join of a disjoint subset of G.

In connection with (A) we remark that ifG1 and G2 are lattice ordered groups such
that the lattices �(G1) and �(G2) are isomorphic, then G1 need not be isomorphic
to G2.
Further, concerning (B), we remark that without the assumption of projectability

the assertion of (B) need not be valid in general. Next, (B) implies that when
constructing GL for a projectable lattice ordered group G it suffices to apply only one
step in the process of adding new elements to G. An analogous situation occurs in the
case when G satisfies the condition (F) (cf. [5], Theorem 6.1, and [1], Theorem 6.1).

1. Preliminaries

For lattice ordered groups we employ the standard notation; cf. e.g., [3]. Let G be
a lattice ordered group.
For X ⊆ G, the polar Xδ is defined by

Xδ = {y ∈ G : |y| ∧ |x| = 0 for each x ∈ X}.

If X = {x} is a one-element set, then Xδδ is said to be a principal polar; we denote

{x}δδ = [x].

G is called pojectable (strongly projectable) if for each x ∈ G (or each X ⊆ G,
respectively) [x] (or Xδδ) is a direct factor of G.
This means that if G is projectable, then for each x ∈ G we have a direct product

decomposition
G = [x]× {x}δ.

Simple examples show that projectablility does not imply strong projectability.
G is said to be σ-complete if each nonempty upper bounded denumerable subset

of G possesses the least upper bound in G. This is equivalent to the corresponding
dual condition.
The following result is wellknown:

Proposition 1.1. Each σ-complete lattice ordered group is projectable.

An indexed system {xi}i∈I of elements of G is called disjoint (or orthogonal) if

(i) xi � 0 for each i ∈ I, and
(ii) xi(1) ∧ xi(2) = 0 whenever i(1) and i(2) are distinct elements of I.
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Definition 1.2 (Cf. [5]). Let G be a lattice ordered group. Next, let H be a
lattice ordered group such that

(i) G is an �-subgroup of H ;
(ii) for each 0 < h ∈ H there is g ∈ G with 0 < g � h;
(iii) H is laterally complete;
(iv) ifH1 is a laterally complete lattice ordered group such thatG is an �-subgroup

of H1 and H1 is an �-subgroup of H , then H1 = H .

Under these assumptions H is called a lateral completion of G.
Each lattice ordered group G has a lateral completion and this is uniquely de-

termined up to isomorphisms (cf. [1]). The lateral completion of G will be denoted
by GL.

2. Auxiliary results

As usual, the positive cone {x ∈ G : x � 0} of G will be denoted by G+. Let
X ⊆ G+. We put

X⊥ = {y ∈ G+ : x ∧ y = 0 for each x ∈ X}.

Then X will be called a polar of G+; if X is a one-element set, then X⊥⊥ is called
a principal polar of G+.

G+ is a lattice ordered semigroup; the corresponding lattice will be denoted
by �(G+).

Lemma 2.1. Let G1 and G2 be lattice ordered groups and let ϕ be an isomor-
phism of �(G+1 ) onto �(G+2 ). Let Y ⊆ G+1 . Then Y is a polar of G+1 if and only if
ϕ(Y ) is a polar of G+2 ; moreover, Y is principal if and only if ϕ(Y ) is principal.

�����. This is an immediate consequence of the definition of the polar in the
positive cone. �

Let A, B be nonempty subsets of G+. Consider the following conditions for the
pair A, B:

(a1) A, B are sublattices of �(G+) and for each g ∈ G+ there are uniquely deter-
mined elements gA ∈ A, gB ∈ B such that g = gA ∨ gB.

(a2) A, B are convex sublattices of �(G+) and for each g ∈ G+ there are elements
g′A ∈ A and g′B ∈ B such that g = g′A ∨ g′B.

Lemma 2.2. The conditions (a1) and (a2) are equivalent.
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�����. Let (a1) be valid and let a ∈ A, g ∈ G+, g � a. Next, let gA and gB

be as in (a1). It is clear that we must have 0A = 0 = 0B and aA = a, aB = 0. Since
gB � a we obtain a = a ∨ gB and hence, in view of (a1), gB = 0. Therefore g = gA

and hence g ∈ A. Thus (a2) holds.
Conversely, suppose that (a2) is satisfied. Let g ∈ G+B and let a1, a2 ∈ A, b1, b2 ∈

B, g = a1∨b1 = a2∨b2. Since a1∧b2 ∈ A∩B, we obtain that a1∧b2 = 0. Similarly,
a2 ∧ b1 = 0. Hence

a1 = a1 ∧ g = a1 ∧ (a2 ∨ b2) = a1 ∧ a2,

implying that a1 � a2. Analogously we obtain a2 � a1 and thus a1 = a2. Similarly,
b1 = b2. Thus (a1) holds. �

Lemma 2.3. Let (a1) be valid. Let g1, g2 ∈ G+. Then g1 � g2 if and only if
g1A � g2A and g1B � g2B.

�����. If g1A � g2A and g1B � g2B, then clearly g1 � g2. Conversely, let g1 � g2.
By analogous consideration as in the proof of 2.2 we obtain g1A ∧ g2B=0, whence

g1A = g1A ∧ g2 = g1A ∧ (g2A ∨ g2B) = g1A ∧ g2A,

yielding that g1A � g2A. Similarly, g
1
B � g2B. �

Let us suppose that (a1) is valid. Then �(G+) will be said to be an internal direct
product of A and B and we express this fact by writing

�(G+) = (int)A×B.

In view of 2.3, this notation is appropriate.
By the obvious induction we define the meaning of the notation

�(G+) = (int)A1 ×A2 × . . .×An;

the sublattices Ai are called internal direct factors of �(G+).
The following lemma is obvious.

Lemma 2.4. Assume that we have a direct product decomposition

G = G1 ×G2 × . . .×Gn.

Put Ai = G+ ∩Gi(i = 1, 2, . . . , n). Then

�(G+) = (int)A1 ×A2 × . . .×An.
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Lemma 2.5. Assume that

�(G+) = (int)A1 ×A2 × . . .×An.

If i ∈ I, then let Gi be the set of all g ∈ G such that g = x1i −x2i for some x1i , x
2
i ∈ Ai.

Then Gi is a convex �-subgroup of G and

G = G1 ×G2 × . . .×Gn.

�����. This is a consequence of a result of [11]; cf. also [7], Theorem 2.1. �

Proposition 2.6. Let G1 and G2 be lattice ordered groups such that G1 is
projectable and �(G1), �(G2) are isomorphic. Then G2 is projectable as well.

�����. Let X2 be a principal polar of G2 that is generated by an element x.
Then without loss of generality we can suppose that x � 0 (in fact, we have {x}δ =
{|x|}δ). In view of the assumption there exists an isomorphisms ϕ of �(G2) onto
�(G1). Put ϕ1(b) = ϕ(t) − ϕ(0) for each t ∈ G2. Hence ϕ1 is an isomorphism of
�(G2) onto �(G1) such that ϕ1(0) = 0. Put ϕ0 = ϕ1|G+2 . Thus ϕ0 is an isomorphism
of �(G+2 ) onto �(G+1 ).
PutX02 = G+2 ∩X2. ThenX02 is a principal polar in G+2 generated by the element x.

Denote X01 = ϕ0(X02 ). According to 2.1, X
0
1 is a principal polar of G

+
1 generated by

the element ϕ1(x). Let X1 be the principal polar in G1 generated by ϕ1(x). Clearly
X01 = X1 ∩G+1 .
Since G1 is projectable, the relation

G1 = X1 ×Xδ
1

is valid. Put A1 = X1 ∩G+1 , A2 = Xδ
1 ∩G+1 . In view of 2.4 we have

�(G+1 ) = (int)A1 ×A2,

and A1 = X01 . Hence ϕ−10 (A1) = X02 and ϕ−10 (A2) = X0⊥2 . Moreover,

�(G+2 ) = (int)X
0
2 ×X0⊥2 .

Therefore according to 2.5,
G2 = X2 ×Xδ

2 .

Hence G2 is projectable. �
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3. A construction for the positive cone

In the present section we assume that G is a projectable lattice ordered group.
Let H be the set of all indexed disjoint systems (xi)i∈I with card I � cardG. For

h1 = (xi)i∈I and h2 = (yj)j∈J in H we put h1 � h2 if

xi =
∨

j∈J

(xi ∧ yj)

is valid for each i ∈ I.
It is obvious that if for each i ∈ I there exists j ∈ J with xi � yj, then h1 � h2.

Lemma 3.1. The relation � is a quasiorder on the set H .

�����. It suffices to apply the same steps as in the proof of Lemma 3.1, [7]. �

If h1 and h2 are elements of H such that h1 � h2 and h2 � h1, then we put
h1 ∼ h2. The relation ∼ is an equivalence on H and the corresponding set H/ ∼ is
a partially ordered set. We denote

H = H/ ∼,

h1 = {h2 ∈ H : h1 ∼ h2}.

Let H0 be the set of all h ∈ H such that, whenever 0 < g ∈ G, then g ∧ xi > 0 for
some i ∈ I.
By applying the Axiom of Choice we obtain

Lemma 3.2. Let h = (xi)i∈I ∈ H . Then there exists h′ = (xj)j∈J in H0 such
that I ⊆ J .

If A is a direct factor of G and g ∈ G, then we denote with gA the component of
g in A. It is easy to verify that if g � 0, then gA is the greatest element of the set
{a ∈ A : a � g}.

Lemma 3.3. Let h = (xi)i∈I ∈ H0 and 0 � g ∈ G. Then g =
∨
i∈I

g[xi].

�����. For each i ∈ I we have g[xi] � g. By way of contradiction, assume that
the relation g =

∨
i∈I

g[xi] fails to hold. Then there is g′ ∈ G such that g[xi] � g′ for

each i ∈ I and g � g′. Put g′′ = g ∧ g′. Thus g′′ < g and

g[xi] � g′′ for each i ∈ I.
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This yields that

(g[xi])[xi] � g′′[xi] ;

since g[xi] ∈ [xi] we get (g[xi])[xi] = g[xi], thus

g[xi] � g′′[xi] for each i ∈ I.

Since h ∈ H0 there exists i ∈ I such that g∗ ∧ xi > 0, where g∗ = g − g′′. We have
g∗ ∧ xi ∈ [xi] and 0 � g∗ ∧ xi � g∗, thus

g∗ ∧ xi � g∗[xi].

Hence

g[xi] = g∗[xi] + g′′[xi] > g′′[xi] � g[xi],

which is a contradiction. �

Let us consider two elements of H having the form

x = (xi)i∈I , y = (yj)j∈J .

In view of 3.2 there are x′, y′ ∈ H0 such that

x′ = (xi)i∈I′ , y′ = (yj)j∈J′

with I ⊆ I ′ and J ⊆ J ′. Put z = (xi ∧ yj)(i,j)∈I′×J′ .

Lemma 3.4. The element z belongs to H0.

�����. It is obvious that z belongs to H . Let 0 < g ∈ G. Since x′ ∈ H0, there
is i(0) ∈ I ′ with g ∧ xi(0) > 0. Next, since y′ ∈ H0, there is j(0) ∈ J ′ such that
(g ∧ xi(0)) ∧ yj(0) > g. Hence z ∈ H0. �

Put zij = xi ∧ yj (i ∈ I ′, j ∈ J ′).

Lemma 3.5. Let i ∈ I and j ∈ J . Then

xi =
∨

j∈J′
xi[zij ], yj =

∨

i∈I′
yj[zij ].

�����. This is a consequence of 3.4 and 3.3. �
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Denote
x0 = (xi[zij ])(i,j)∈I×J′ ,

y0 = (yj [zij ])(i,j)∈I′×J .

Then clearly x0, y0 ∈ H .

Lemma 3.6. x ∼ x0 and y ∼ y0.

�����. Let (i, j) ∈ I × J ′. Then xi[zij ] � xi, whence x0 � x. Next, 3.5
implies that the relation x � x0 is valid. Thus x ∼ x0. Analogously we obtain that
y ∼ y0. �

It is clear that the system H has the least element. Next, if we apply the notation
as above, then from the relations x0, y0 ∈ H we infer that the indexed system
t = (tij)(i,j)∈I′×J′ with tij = (xi[zij ]) ∨ (yj [zij ]) also belongs to H . We obviously
have x0 � t, y0 � t. Thus we obtain

Lemma 3.7. The partially ordered set H is directed.

Let us modify the systems x0 and y0 as follows. For (i, j) ∈ I ′ × J ′ we put
x∗ij = xi[zij ] if (i, j) ∈ I × J ′, and x∗ij = 0 otherwise. Similarly we set y∗ij = yj [zij ]
if (i, j) ∈ I ′ × J and y∗ij = 0 otherwise. Then x∗ = (x∗ij)(i,j)∈I′×J′ and y∗ =
(y∗ij)(i,j)∈I′×J′ belong to H and

x0 ∼ x∗, y0 ∼ y∗.

Thus 3.6 yields

Lemma 3.8. Let x, y ∈ H . There exist x∗, y∗ ∈ H such that x∗ = (x∗t )t∈T ,
y∗ = (y∗t )t∈T , x ∼ x∗, y ∼ y∗ and x∗t(1) ∧ y∗t(2) = 0 whenever t1 and t2 are distinct
elements of T .

By the obvious induction we can generalize the previous lemma to the case when
the elements x, y are replaced by a finite sequence x1, x2, . . . , xn of elements of G+.

Lemma 3.9. The partially ordered set H is a lattice.

�����. Let x, y, u, v ∈ H , u � x � v, u � y � v. By 3.8 (generalized to the
case of four elements) we can suppose that

x = (xt)t∈T , y = (yt)t∈T , u = (ut)t∈T , v = (vt)t∈T

and that, whenever t(1) and t(2) are distinct elements of t, then each of the elements
xt(1), yt(1), ut(1), vt(1) is disjoint with each of the elements xt(2), yt(2), ut(2), vt(2).
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From the definition of the relation � in H we obtain that

ut � xt � vt, ut � yt � vt

is valid for each t ∈ T .
Put u0t = xt ∧ yt, v0t = xt ∨ yt for each t ∈ T , and

u0 = (u0t )t∈T , v0 = (v0t )t∈T .

We have u0, v0 ∈ H and

u � u0 � x � v0 � v, u0 � y � v0.

Therefore u0 = x ∧ y and v0 = x ∨ y. �
If G1 and G2 are projectable lattice ordered groups, then instead of H and H we

have Hi and Hi (i = 1, 2). From the above construction of H and H we obviously
obtain

Lemma 3.9.1. Let G1 and G2 be projectable lattice ordered groups such that
the lattices �(G1) and �(G2) are isomorphic. Then the lattices H1 and H2 are
isomorphic as well.

Lemma 3.10. Let (xi)i∈I , (yi)i∈I ∈ H , a ∈ G, b ∈ G. Suppose that

(i) a =
∨
i∈I

xi, b =
∨
i∈I

yi;

(ii) if i(1) and i(2) are distinct elements of I, then xi(1) ∧ yi(2) = 0.

Then a+ b =
∨
i∈I

(xi + yi).

�����. Let i(1) ∈ I. Then xi(1) + yi = xi(1) ∨ yi for each i ∈ I with i �= i(1).
Hence

xi(1) +

(∨

i∈I

yi

)
=

∨

i∈I

(xi(1) + yi) = (xi(1) + yi(1)) ∨
( ∨

i∈I\{i(1)}
(xi(1) ∨ yi)

)

= (xi(1) + yi(1)) ∨
( ∨

i∈I\{i(1)}
yi

)
.

Also, (xi(1) + yi(1)) ∧ yi = 0 whenever i ∈ I \ {(i(1))}, whence

a+ b =

( ∨

i(1)∈I

xi(1)

)
+

(∨

i∈I

yi

)
=

∨

i(1)∈I

(
xi(1) +

∨

i∈I

yi

)

=
∨

i(1)∈I

(
(xi(1) + yi(1)) ∨

( ∨

i∈I\i(1)
yi

))
=

∨

i(1)∈I

(xi(1) + yi(1)).

�
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Lemma 3.11. Let x, y, x′, y′ ∈ H , x = (xi)i∈I , y = (yi)i∈I , x′ = (x′j)j∈J ,
y′ = (y′j)j∈J . Assume that

(i) xi(1) ∧ yi(2) = 0 whenever i(1) and i(2) are distinct elements of I;
(ii) x′j(1) ∧ y′j(2) = 0 whenever j(1) and j(2) are distinct elements of J ;
(iii) x � x′ and y � y′.

Put u = (xi + yi)i∈I , u′ = (x′j + y′j)j∈J . Then u, u′ ∈ H and u � u′.

�����. The relations u ∈ H and u′ ∈ H are obvious. We have to verify that

(1) xi + yi =
∨

j∈J

((xi + yi) ∧ (x′j + y′j))

is valid for each i ∈ I.
We have

xi =
∨

j∈J

(xi ∧ x′j), yi =
∨

j∈J

(yi ∧ y′j).

By applying 3.10 we obtain

xi + yi =
∨

j∈J

((xi ∧ x′j) + (yi ∧ y′j)).

Since

(xi ∧ x′j) + (yi ∧ y′j) = (xi + yi) ∧ (xi + y′j) ∧ (x′j + yi) ∧ (x′j + y′j),

we get
xi + yi �

∨

j∈J

(xi + yi) ∧ (x′j + y′j) � xi + yi,

thus (1) is valid. �

Corollary 3.12. Let x, y, x′ and y′ be as in 3.11 with the distinction that the
condition (iii) is replaced by

(iii1) x ∼ x′ and y ∼ y′.

Then u ∼ u′.

Let a, b ∈ H . There exist x and y in H (expressed as in 3.11) such that x ∼ a,
y ∼ b and the condition (i) from 3.11 is valid. We put a + b = u, where u is as in
3.11. Then in view of 3.12, the operation + in H is correctly defined.

Lemma 3.13. Let a, b, a′, b′ ∈ H, a � a′, b � b′. Then a+ b � a′ + b′.

�����. This is a consequence of 3.11. �
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Lemma 3.14. The operation + in H is associative.

�����. It suffices to apply 3.8 (generalized to the case of three elements). �

Lemma 3.15. Let x, y ∈ H , x � y. There exists z ∈ H such that x+ z = y.

�����. In view of 3.8 we can suppose that x = (xt)t∈T , y = (yt)t∈T and that
xt(1) ∧ yt(2) = 0 whenever t(1) and t(2) are distinct elements of T . This and the
relation x � y yield that xt � yt for each t ∈ T . Hence for each t ∈ T there is
0 � zt ∈ G with xt + zt = yt. Then z = (zt)t∈T ∈ H and clearly x+ z = y. �

Lemma 3.16. The relation x+H = H + x holds for each x ∈ H .

�����. Let x ∈ H . For each z ∈ H we have x+z � x. Next, from 3.15 we infer
that, whenever y ∈ H and y � x, then y ∈ x+H. Hence x+H = {y ∈ H : y � x}.
Analogously, H + x = y ∈ H : y � x}. Thus x+H = H + x. �

Lemma 3.17. Let x, y, z ∈ H , x+ z = y + z. Then x = y.

�����. Without loss of generality we can suppose that x, y and z are as in 3.8
(for n = 3). Thus

x = (xt)t∈T , y = (yt)t∈T , z = (zt)t∈T

and, whenever t(1), t(2) are distinct elements of T , then

xt(1) ∧ yt(2) = xt(1) ∧ zt(2) = yt(1) ∧ zt(2) = 0.

Hence there are u ∈ x+ z, v ∈ y + z such that

u = (ut)t∈T , v = (vt)t∈T ,

ut = xt + zt, vt = yt + zt for each t ∈ T .

But then we have u = v, whence u � v and v � u. By the obvious calculation we
get ut(1) ∧ vt(1) = 0 whenever t(1), t(2) are distinct elements of T and thus ut = vt

for each t ∈ T . Hence xt = yt for each t ∈ T . Therefore x = y. �

Analogously, z + x = z + y implies that x = y.
If x = (xi)i∈I ∈ H is such that xi = 0 for each i ∈ I, then we denote x = x0. It is

clear that x0 is the least element of H.

Lemma 3.18. Let x, y ∈ H , x+ y = x0. Then x = y = x0.

�����. This is an immediate consequence of the operation + in H . �
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4. Construction of GL

Let G, H and H be as above. In view of the previous section, H is a lattice
ordered semigroup.

Lemma 4.1. There exists a lattice ordered group G1 such that H is the positive
cone of G1.

�����. This is a consequence of Theorem 3 and Corollary 1 in [3], Chap. 14
(in view of 3.9, 3.14, 3.16, 3.17 and 3.18). �

Lemma 4.2. G1 is laterally complete.

�����. Let {ak}k∈K be a disjoint indexed system in G1. Hence ak ∈ H ,
ak ∈ H for each k ∈ K. If k(1), k(2) are distinct elements of K and x1, x2 are
elements belonging to ak(1) or ak(2), respectively, then from ak(1) ∧ ak(2) = x0 we
obtain that x1 ∧ x2 = 0. Let

ak = (aki)i∈I(k) (k ∈ K);

without loss of generality we can suppose that I(k(1)) ∩ I(k(2)) = ∅ whenever k(1)
and k(2) are distinct elements of K. Put I =

⋃
k∈K

I(k) and

b = (aki)k∈K,i∈I(k).

Then b ∈ H , whence b ∈ H . Clearly ak � b and hence ak � b for each k ∈ K.
Let c ∈ H be such that c � ak for each k ∈ K, where c = (cj)j∈J . Hence c � ak

for each k ∈ K. Then
aki =

∨

j∈J

(aki ∧ cj)

for each k ∈ K and each i ∈ I(k). Therefore b � c and so b � c. Hence b =
∨

k∈K

ak.

�

Let 0 � g ∈ G. Consider the element x = (xi)i∈I of H such that I = {1} and
x1 = g. Then we denote x = g.

Lemma 4.3. Let 0 � gi ∈ G (i = 1, 2). Then

g1 + g2 = g1 + g2, g1 ∨ g2 = g1 ∨ g2, g1 ∧ g2 = g1 ∧ g2,(1)

g1 �= g2 ⇔ g1 �= g2.(2)

�����. The relations (1) follow from the definitions of the operations +,∨ and
∧ in H (as given in Section 3). The equivalence (2) is obvious. �
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For 0 � g ∈ G we will identify g and g. Hence in view of 4.3, G+ is a subsemigroup
and a sublattice of H . Therefore in virtue of 4.1 we obtain

Lemma 4.4. G is an �-subgroup of G1.

Lemma 4.5. Let 0 < v ∈ G1. There exists 0 < x ∈ G with x � v.

�����. We have v ∈ H , hence there is y ∈ H with y ∈ v. Let y = (yi)i∈I .
Since v �= 0, the elements y and x0 are distinct. Thus there is i ∈ I with yi > 0.
Clearly yi � v. �

Lemma 4.6. Let y ∈ H , y = (yi)i∈I . Then y =
∨
i∈I

yi.

The idea of proof is similar to (but simpler than) that applied in the proof of 4.2;
the proof will be omitted.

Lemma 4.7. Let G2 be an �-subgroup of G1 such that G ⊆ G2. Let x =
(xi)i∈I ∈ H . Suppose that y ∈ G2 is the least upper bound of the system {xi}i∈I in
G2. Then y = x.

�����. By 4.6, we have x =
∨
i∈I

xi in G1. Thus, since xi � y for each i ∈ I, the

relation x � y is valid. By way of contradiction, suppose that x < y. Then according
to 4.5 there is 0 < g ∈ G such that y − x > g. Hence y > y − g > x, y − g ∈ G2 and
y − g � xi for each i ∈ I, which is a contradiction. �

Lemma 4.8. Let G2 be an �-subgroup of G1 such that G2 is laterally complete
and G ⊆ G2. Then G2 = G1.

�����. It suffices to verify that G+2 = G+1 . Let g1 ∈ G+1 . Thus g1 = x for some
x = (xi)i∈I in H . Then xi ∈ G2 for each i ∈ I; since G2 is laterally complete there
exists y ∈ G+2 with

y =
2∨

i∈I

xi,

where
2∨
denotes the least upper bound in G2. In view of 4.7 we have y = x, whence

G+2 = G+1 . �

Lemma 4.9. Under the notation as above, G2 = GL.

�����. We apply the conditions from Definition 1.2; the assertion follows from
4.2, 4.5 and 4.8. �

443



����� of (A).
It is easy to verify that if G1 and G2 are lattice ordered groups such that the

lattices �(G+1 ) and �(G+2 ) are isomorphic, then the lattices �(G1) and �(G2) are
isomorphic as well. Now let the assumptions of (A) be satisfied. According to 2.6,
G2 is projectable. Thus, in view of 3.9.1, �(H1) and �(H2) are isomorphic. By
applying 4.1 we get that �((GL

1 )
+) and �((GL

2 )
+) are isomorphic. Therefore �(G1)

and �(G2) are isomorphic. �

����� of (B).
It suffices to apply 4.9, 4.1 and 4.6. �

From 4.1 we infer that in (A) and (B) the assumption of projectability can be
replaced by the assumption of σ-completeness.
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