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ON A GENERALIZATION OF A GREGUŠ FIXED POINT THEOREM
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(Received October 21, 1996)

Abstract. Let C be a closed convex subset of a complete convex metric space X. In
this paper a class of selfmappings on C, which satisfy the nonexpansive type condition (2)
below, is introduced and investigated. The main result is that such mappings have a unique
fixed point.
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1. Introduction

Let X be a Banach space and C a closed convex subset of X . Recently, Greguš
proved the following result.

Theorem 1. (Greguš [7]). Let T : C → C be a mapping satisfying

(1) ‖Tx− Ty‖ � a‖x− y‖+ p‖Tx− x‖+ p‖Ty − y‖

for all x, y ∈ C, where 0 < a < 1, p � 1 and a+ 2p = 1. Then T has a unique fixed

point.

In recent years, many theorems which are closely related to Greguš’s Theorem
have appeared ([1]–[9]).

The purpose of this paper is to define and to investigate a class of mappings (not
necessarily continuous) which are defined on metric spaces and satisfy the following

contractive condition:

d(Tx, T y) � amax{d(x, y), c[d(x, T y) + d(y, Tx)]}
+ bmax{d(x, Tx), d(y, T y)}(2)
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where

0 < a < 1, a+ b = 1, c � 4− a

8− a
.

We shall prove a fixed point theorem which is a double generalization of the above

theorem of Greguš. Firstly, the nonexpansive nature of the mapping is generalized,
and secondly, the underlying space is more general than Banach spaces. An example

is constructed to show that our theorem is a genuine generalization of the theorems
of Greguš [7] and Li [8].

We recall the following definition of the convex metric space.

Definition 2. (Takahashi [10]) LetX be a metric space and I = [0, 1] the closed

unit interval. A continuous mapping W : X × X × I → X is said to be a convex
structure onX if for all x, y ∈ X and λ ∈ I, d[u, W (x, y, λ)] � λd(u, x)+(1−λ)d(u, y)

for all u ∈ X . X together with a convex structure is called a convex metric space.
A subset K ⊆ X is convex, if W (x, y, λ) ∈ K whenever x, y ∈ K and λ ∈ I.

Clearly a Banach space, or any convex subset of it, is a convex metric space with
W (x, y, λ) = λx+ (1− λ)y.

2. Main result

Now we are in position to state our main result.

Theorem 3. Let C be a closed convex subset of a complete convex metric space

X and T : C → C a mapping satisfying (2) for all x, y ∈ C. Then T has a unique

fixed point.

�����. Let x ∈ C be arbitrary and let {xn} be the sequence defined by

x0 = x, xn+1 = Txn (n = 0, 1, 2, . . .).

From (2) we have

d(xn+1, xn+2) = d(Txn, Txn+1)

� amax{d(xn, xn+1), c[d(xn, xn+2) + 0]}+ bmax{d(xn, xn+1), d(xn+1, xn+2)}
� amax{d(xn, xn+1), c[d(xn, xn+1) + d(xn+1, xn+2)]}
+ bmax{d(xn, xn+1), d(xn+1, xn+2)}.

If we suppose that d(xn+1, xn+2) > d(xn, xn+1) then we obtain

d(xn+1, xn+2) < ad(xn+1, xn+2) + bd(xn+1, xn+2) = (a+ b)d(xn+1, xn+2),
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which is a contradiction since a+ b = 1. Therefore

(3) d(xn+1, xn+2) � d(xn, xn+1) � . . . � d(x, Tx).

Using (2), (3) and the triangle inequality we get

(4) d(Txn, T 3xn) � amax{d(Txn−1, T
3xn−1), c[d(Txn, T 3xn) + 2d(x, Tx)]}

+ b d(x, Tx).

We shall show that for some k ∈ �

(5) d(Txk, T 3xk) �
(
1 +

2a(2− a)
8− 5a+ a2

)
d(x, Tx).

Assume first that for some n = k we have from (4)

(6) d(Txk, T 3xk) � ac[d(Txk, T 3xk) + 2d(x, Tx)] + bd(x, Tx).

Then we get

d(Txk, T 3xk) �
1− a+ 2ac

1− ac
d(x, Tx).

Since 0 < a < 1 and 0 � c � 4−a
8−a , it follows that

1− a+ 2ac

1− ac
� 8− a− a2

8− 5a+ a2
= 1+

2a(2− a)
8− 5a+ a2

.

So (5) holds.
If we suppose that (6) does not follow from (4) for any n, then we have

d(Txn, T 3xn) � ad(Txn−1, T
3xn−1) + bd(x, Tx).

By induction we obtain

d(Txn, T 3xn) � a[ad(Txn−2, T
3xn−2) + bd(x, Tx)] + bd(x, Tx)

� . . . � and(Tx0, T
3x0) + b(1 + a+ a2 + . . .)d(x, Tx)(7)

� 2and(x, Tx) + b
1
1− a

d(x, Tx) = (2an + 1)d(x, Tx),

where we have used that b = 1− a. Since 0 < a < 1 we can choose n such that

2an � 2a(2− a)
8− 5a+ a2

.
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Then we see from (7) that for such k = n the inequality (5) holds. So we have

shown (5).
Let k be such that (5) holds and put y = xk. Then

(8) d(Ty, T 3y) � (1 + q)d(x, Tx); q =
2a(2− a)
8− 5a− a2

.

Since C is convex, by Definition 2 the element W (T 2y, T 3y, 12 ) = z is in C. Then,

using Definition 2, (3) and (8) we have

d(z, T 2y) � 1
2
d(T 2y, T 3y) � 1

2
d(x, Tx),

d(z, T 3y) � 1
2
d(T 2y, T 3y) � 1

2
d(x, Tx),

d(z, T y) � 1
2
[d(Ty, T 2y) + d(Ty, T 3y)] �

(
1 +

q

2

)
d(x, Tx),(9)

d(z, T z) � 1
2
[d(Tz, T 2y) + d(Tz, T 3y)].(10)

Now we show that

(11) d(z, T z) �
(
1− a3(1− a)

64

)
d(x, Tx).

Set

(12) M =M(x, z) = max{d(x, Tx), d(z, T z)}

and suppose M > 0. Then (2), (3) and (9) imply

d(Tz, T 3y) � amax

{
1
2
M, c

[
1
2
M + d(Tz, T 2y)

]}
+ bM,(13)

d(Tz, T 2y) � amax

{(
1 +

q

2

)
M, c

[
1
2
M + d(Tz, T y)

]}
+ bM.(14)

Consider now four possible cases.

Case I. Assume that we have from (13)

(15) d(Tz, T 3y) � 1
2
aM + bM =

(
1− a

2

)
M

and from (14)

(16) d(Tz, T 2y) � a
(
1 +

q

2

)
M + bM =

(
1 +

aq

2

)
M.
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Then by (8), (10), (15) and (16) we get

(17) d(z, T z) � 1
2

[
2− a

2
(1− q)

]
M �

(
1− a

4
· 8− 9a+ 3a

2

8− 5a+ a2

)
M �

(
1− a

8

)
M.

Since (1 − a
8 ) < 1 − a3(1−a)

64 < 1 and M is defined by (12), we conclude that (17)

implies (11).

Case II. Assume now that (13) implies (15) and (14) implies the inequality

d(Tz, T 2y) � ac

[
1
2
M + d(Tz, T y)

]
+ bM.

Using the triangle inequality and (8) we get

d(Tz, T y) � d(Tz, T 3y) + d(T 3y, T y) � d(Tz, T 3y) + (1 + q)M.

So we have

(18) d(Tz, T 2y) � ac

[(
3
2
+ q

)
M + d(Tz, T 3y)

]
+ bM.

Since c < 1
2 and q < 1

2 (see (8)), we have ac(32 + q) < a and so by (15) and (18)

(19) d(Tz, T 2y) <
[
a+

a

2

(
1− a

2

)
+ b

]
M =

[
1 +

a

2

(
1− a

2

)]
M.

Now from (10), (15) and (19) we get

d(z, T z) � 1
2

(
1− a

2
+ 1 +

a

2
− a2

4

)
M = (1− a2

8
)M <

[
1− a3(1 − a)

64

]
M.

Hence we conclude that (11) holds.

Case III. Assume now that (13) implies

(20) d(Tz, T 3y) � ac

[
1
2
M + d(Tz, T 2y)

]
+ bM

and that (16) holds. Then (10), (16) and (20) imply

(21) d(z, T z) � 1
2

[
1 +

aq

2
+ ac

(
1
2
+ 1 +

aq

2

)
+ 1− a

]
M.

Since

aq < q =
2a(2− a)
8− 5a+ a2

<
4 + a2

2(6− a)
; c � 4− a

8− a
,
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from (21) we get

d(z, T z) <
1
4

[
4− 2a+ aq + a(3 + q)

4− a

8− a

]
M =

1
4

[
4 + a

−4− a

8− a
+

aq(12− 2a)
8− a

]
M

<
1
4

[
4 + a

−4− a

8− a
+ a

4 + a2

2(6− a)
· 12− 2a
8− a

]
M

=

[
1− a2(1 − a)

4(8− a)

]
M <

[
1− a3(1− a)

64

]
M.

Hence, and using (12), we conclude that (11) holds.

Case IV. Assume now that (13) implies (18) and (14) implies (20). Adding (18)
and (20) we obtain

d(Tz, T 2y) + d(Tz, T 3y) � ac[(2 + q)M + d(Tz, T 2y) + d(Tz, T 3y)] + 2bM

and hence

d(Tz, T 2y) + d(Tz, T 3y) � ac(2 + q) + 2(1− a)
1− ac

M.

Now from (10)

(22) d(z, T z) �
ac(1 + q

2 ) + 1− a

1− ac
M.

Since

q =
2a(2− a)
8− 5a+ a2

<
2a(1− a

8 )

4− a
; c � 4− a

8− a
,

from (22) we have

d(z, T z) <
1

1− ac

[
ac

(
1 +

a(1− a
8 )

4− a

)
+ 1− a

]
M

� 8− a

8− 5a+ a2
· a(4− a2

8 ) + 8− 9a+ a2

8− a
M

=
8− 5a+ a2 − a3

8

8− 5a+ a2
M =

[
1− a3

8(8− 5a+ a2)

]
M.

Hence, as

− a3

8(8− 5a+ a2)
< − a3

8 · 8 < −a3(1− a)
64

,

we obtain (11). Therefore, (11) holds in each case.
Since for any x ∈ C there exists z = z(x) such that (11) holds, we have

(23) inf{d(x, Tx) : x ∈ C} = 0.

454



Now we show that

(24) max{d(Tx, T y), d(x, y)} � 3− a

1− a
max{d(x, Tx), d(y, T y)}.

Let R = R(x, y) = max{d(x, Tx), d(y, T y)}. Then (2) and the triangle inequality
yield

d(Tx, T y) � amax{[d(x, Tx) + d(Tx, T y) + d(y, T y)],

c[d(x, Tx) + 2d(Tx, T y) + d(y, T y)]}+ bR

� (2a+ b)R+ ad(Tx, T y) = (1 + a)R + ad(Tx, T y).

Hence

(25) d(Tx, T y) � 1 + a

1− a
R.

Then we have

(26) d(x, y) � d(x, Tx) + d(Tx, T y) + d(y, T y) � 2R+ 1 + a

1− a
R.

From (25) and (26) we get (24).

Now by (23) we can choose a sequence {xn} in C such that

d(xn, Txn) �
1
n
(n = 1, 2, . . .).

From (24) we have

max{d(Txn, Txm), d(xn, xm)} � 3− a

1− a
· 1
n
for 1 � n � m.

Therefore, both {xn} and {Txn} are Cauchy sequences, and moreover they have a
common limit, say u ∈ C. From (2) we obtain

d(Txn, Tu) � amax{d(xn, u), c[d(xn, Tu) + d(u, Txn)}
+ bmax{d(xn, Txn), d(u, Tu)}.

Taking the limit when n tends to infinity we get

d(u, Tu) � (ac+ b)d(u, Tu) = [1− a(1− c)]d(u, Tu)

Hence d(u, Tu) = 0, since 1− a(1− c) < 1. So we have proved that u is a fixed point
of T . The uniqueness of the fixed point follows from (2). �
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Remark. If c = 0 then Theorem 3 reduces to the theorem of Fisher [5]. Such

result also appears as a corollary of the corresponding fixed point theorems in [1],
[4], [6] and [9].

Theorem 4. Let C be as in Theorem 3 and let T : C → C be a mapping satisfying

(27) d(Tx, T y) � ad(x, y) + bmax{d(x, Tx), d(y, T y)}+ c[d(x, T y) + d(y, Tx)]

for all x, y ∈ C, where

(28) 0 � a < 1, b � 0, c � 0, a+ c > 0

and

(29) a+ b+
7
3
c = 1.

Then T has a unique fixed point.

�����. Set a+ 73c = a1. Then a1 + b = 1 and we have

ad(x, y) + bmax{d(x, Tx), d(y, T y)}+ c
7
3
· 3
7
·
[
d(x, T y) + d(y, Tx)

]

�
(
a+
7
3
c
)
max

{
d(x, y),

3
7

[
d(x, T y) + d(y, Tx)

]}
+ bmax

{
d(x, Tx), d(y, T y)

}

= a1max
{
d(x, y),

3
7

[
d(x, T y) + d(y, Tx)

]}
+ bmax

{
d(x, Tx), d(y, T y)

}
.

Since 37 < 4−a
8−a we see that (27), (28), (29) imply (2) with a1 + b = 1. Therefore, we

can apply Theorem 3 in the case a > 0.

If a = 0, then a+ c > 0 implies c > 0 and then (29) implies

0 < b+ 2c = 1− 1
3
c < 1.

So Theorem 4 in the case a = 0 reduces to a special case of the Theorem 1 of [2]. �

Corollary 5. (Li [8]) Let C be a closed convex subset of a convex metric space

X and let T : C → C be a mapping satisfying

(30) d(Tx, T y) � ad(x, y) + b[d(x, Tx) + d(y, T y)] + c[d(x, T y) + d(y, Tx)]

for all x, y ∈ C, where 0 � a < 1, b � 0, c � 0, a+ c > 0 and

(31) a+ 2b+ 3c � 1.

If X has the property that every sequence of non-empty closed convex subsets of

X with diameters tending to zero has non-empty intersection, then T has a unique

fixed point in C.
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�����. It is clear that the inequalities (27) and (28) are more general than

the corresponding inequalities (30) and (31). Since the property of X stated in
Corollary 5 is equivalent to the completeness of X , we see that all assumptions of
Theorem 4 are satisfied. �

The following simple example shows that our Theorems 3 and 4 are genuine gen-

eralizations of the theorems of Greguš [7] and Li [8].

Example. Let C = [−3, 5] be the subset of real numbers, and let T : C → C be
a mapping defined by

Tx =
x

7
if − 2 � x � 5; Tx = 5 if − 3 � x < −2.

It is clear that if x, y ∈ [−3,−2) or x, y ∈ [−2, 5], then d(Tx, T y) � 1
7d(x, y). Let

now x ∈ [−2, 5] and y ∈ [−3,−2). Then we have

d(Tx, T y) � 5 + 2
7

<
6
7
· 7 � 6

7
d(y, T y) =

6
7
max{d(x, Tx), d(y, T y)}.

Therefore T satisfies the condition (27) with a = 1
7 , b =

6
7 and c = 0, and condition

(2) with a = 1
7 , b = 6

7 and any 0 � c � 27
55 . Since C is compact, all hypotheses of

Theorems 3 and 4 are satisfied and u = 0 is the unique fixed point of T . On the

other hand, T does not satisfy (30) with a+ 2b+ 3c � 1, and hence the contractive
condition of Greguš, since for all x ∈ [−1, 0] and y ∈ [−3,−2) we have

ad(x, y) + b
[
d(x, Tx) + d(y, T y)

]
+ c

[
d(x, T y) + d(y, Tx)

]

� (a+ 2b+ 3c)max
{
d(x, y),

1
2

[
d(x, Tx) + d(y, T y)

]
,
1
3

[
d(x, T y) + d(y, Tx)

]}

� max
{
3,
1
2
(
6
7
+ 8),

1
3
(6 + 3)

}
= 5− 4

7
< 5 � d(Tx, T y)

for any a, b, c � 0 with a+ 2b+ 3c � 1.
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