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SOME TOPOLOGICAL PROPERTIES OF ω-COVERING SETS

Andrzej Nowik, Gdańsk

(Received November 24, 1998)

Abstract. We prove the following theorems:

1. There exists an ω-covering with the property s0.
2. Under cov(N ) = 2ω there exists X such that ∀B∈Bor[B ∩ X is not an ω-covering or

X \B is not an ω-covering].
3. Also we characterize the property of being an ω-covering.

Keywords: ω-covering set, E , hereditarily nonparadoxical set
MSC 2000 : 03E15, 03E20, 28E15

Notation and Definitions

Our set theoretical and topological notation is standard and follows [BJ] and [E],
respectively.

We denote by E the σ-ideal generated by closed, measure zero sets.

If H is an additive subgroup of � then we denote this fact by H � �.

We will use the following well known notion of countable equidecomposability:

Definition 1. Given two sets A, B ⊆ �, we say that A and B are count-
ably equidecomposable if they can be partitioned into at most countably many Tr-

congruent pieces (where Tr denotes the group of all translations of �). In this case
we write A ≈∞ B.

Definition 2. ([P], Definition 0.1.(iii)) A set A ⊆ � is paradoxical if there are
two disjoint subsets A1 and A2 of A such that A1 ≈∞ A and A2 ≈∞ A.
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Definition 3. ([P], Definition 2.1.) A set A ⊆ � is hereditarily nonparadoxical

if A has no uncountable paradoxical subset.

Lemma 1. ([P], Lemma 2.5) For every subset A of � the following assertions are

equivalent:

1. A is hereditarily nonparadoxical;

2. for every countable G � �,

|{x ∈ � : |Gx ∩A| = ω}| � ω.

Definition 4. [C] Suppose κ is a cardinal. A subset X of a group G (2ω or �)

is a κ-covering if every subset Y of G of size κ is contained in a translate of X .

We denote by UC the family of all ω-coverings.

The symbol Sel(H) denotes the class of all selectors of the subgroup H , i.e.,

selectors from the class {x+H : x ∈ �} of cosets of H . We define also

Sel(� ω) =
⋃
{Sel(H) : H � � ∧ |H | � ω}.

Recall here an old result of Marczewski: There exists (in ZFC) a set of measure
zero and of the first category which is an ω-covering. P. Komjáth proved ([K2]) that

assuming MA for every λ < 2ω there exists a set, which is both of measure zero and
the first category, and which is a λ-covering. However, these sets are Borel, so none

of them has the Marczewski s0 property. It is a natural question, whether there
exists an ω-covering with the s0 property. Clearly assuming CH or MA the answer is

yes (under CH (MA) it is easy to construct a Luzin (generalized Luzin, respectively)
set which is an ω-covering). We show the existence of an s0 ω-covering in ZFC only.

Theorem 1. There exists an ω-covering with the property s0.

Lemma 2. There exists a family of disjoint Borel sets:

{Bα}α<2ω

such that for every α < 2ω, Bα is an ω-covering.

�����. Consider the topological space

X =
∏

α<2ω

ω.

866



From the Hewitt-Marczewski-Pondiczery theorem (see [E], Theorem 2.3.15) we ob-

tain that in this space X there exists a dense countable family (hn)n∈ω of functions

hn : 2ω → ω.

Let

{An}n<ω

be disjoint, infinite subsets of ω. Let

{a(i)n }i<ω

be an increasing enumeration of elements of An. Let

{χα}α<2ω

be characteristic functions of all subsets of ω. We define the sets Bα in the following
way:

Bα := {x ∈ 2ω : ∃n∈ω∀m∈ω[hm(α) = n → ∀i∈ωx(a(i)m ) = χα(i)]}.
We check that Bα ∩ Bβ = ∅ for α 
= β. To obtain a contradiction suppose that

there exists x ∈ Bα ∩Bβ , and α 
= β. Fix nα, nβ ∈ ω such that

∀m∈ω[hm(α) = nα → ∀i<ωx(a(i)m ) = χα(i)],

∀m∈ω[hm(β) = nβ → ∀i<ωx(a(i)m ) = χβ(i)].

Choose m < ω such that

hm(α) = nα,

hm(β) = nβ.

Thus
∀i∈ωχα(i) = x(a(i)m ) = χβ(i).

Therefore

χα = χβ ,

which is a contradiction.

Let us check that for every α < 2ω, Bα is an ω-covering.

Let Y ⊆ 2ω be a countable set. Let Y = {yl : l < ω}. Fix α < 2ω. For each n ∈ ω

find tn : A′
n → 2 such that

(tn + yn)(a
(i)
m ) = χα(i)

for each i < ω and m < ω such that hm(α) = n, where A′
n =

⋃
m∈{m : hm(α)=n}

Am.

Choose an element t ∈ 2ω such that ∀n∈ωt � A′
n = tn. Hence t+ Y ⊆ Bα. �
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We will frequently use the following theorem:

Theorem 2. (see [M] Theorem 1) Suppose X ⊆ 2ω is an ω-covering. Then

∀|Z|<2ωX \ Z is an ω-covering.

Next we will modify the classical construction of an s0 set with the cardinality 2ω.

Let

{Pα}α<2ω

be an enumeration of all perfect sets such that

∀β<2ω |Bβ ∩ Pα| � ω.

Let

{Cα}α<2ω

be an enumeration of all sets from [2ω]ω. Assume that the numbers {sα}α<θ are
defined. Lemma 2 now yields ∃s∈2ωCθ + s ⊆ Bθ \

⋃
µ<θ

Pµ. Take an sθ ∈ 2ω such that

Cθ + sθ ⊆ Bθ \
⋃

µ<θ

Pµ. Define

S =
⋃

α<2ω

Cα + sα.

It is easy to see that S is an s0 set. Indeed, let P be a perfect set. We consider two
cases:

If P = Pθ for some θ < 2ω then |P ∩ S| < 2ω, so one can find a perfect subset of
P disjoint with S.

If |P ∩ Bθ| > ω for some θ < 2ω then we have |S ∩ Bθ| � ω so one can find a

perfect subset of P disjoint with S.

K. Muthuvel proved (see [M] Theorem 1) that if X ∈ UC and F is a measure zero
or a first category additive subgroup of the reals �, or |F | < 2ω, then A \ F ∈ UC.
In the next theorem we characterize sets F with this property.

Theorem 3. Suppose A is a set of real numbers. The following conditions are

equivalent:

∀X∈UCX \A ∈ UC,(1)

∀G��
[
|G| � ω

]
⇒ G+A 
∈ UC,(2)

∀C⊆�
[
|C| � ω

]
⇒ C +A 
∈ UC.(3)
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�����. (1) ⇒ (2) Let G � � be a countable subgroup of �. To obtain a

contradiction, suppose that G+A ∈ UC. From (1) we obtain that (A+G)\A ∈ UC.
Thus there exists t ∈ � such that G+t ⊆ (A+G)\A. Therefore, t ∈ (A+G)−G = A,
a contradiction.

(3)⇒ (2) The proof is immediate.
(2)⇒ (1) Suppose A ⊆ � is such that

∀G��
[
|G| � ω

]
⇒ A+G 
∈ UC

and X ∈ UC. It suffices to show that for every H � R, |H | � ω there exists s ∈ �

such that s+H ⊆ X \A. Let H � �, |H | � ω. By assumption, H+A 
∈ UC. Hence
there exists |G| � ω, G � � such that

(4) ∀tG+ t 
⊆ H +A.

Since X ∈ UC, we can find s0 ∈ � such that s0+H +G ⊆ X . From (4) we see that

there exists g0 ∈ G such that

(5) g0 + s0 
∈ H +A.

We show that

(6) s0 + g0 +H ⊆ X \A.

Observe that s0+ g0+H ⊆ X . Let y ∈ s0+ g0+H . Thus, there is h ∈ H such that

y = s0 + g0 + h. As g0 + s0 
∈ H +A, we have g0 + s0 + h 
∈ A. This establishes the
formula (6). �.
(2) ⇒ (3) Let C ⊆ �, |C| � ω. Define G = 〈C〉 (additive subgroup generated by

C). Then |G| � ω. From the assumption (2) we have G + A 
∈ UC. Observe that
C +A ⊆ G+A. Thus C +A 
∈ UC, which completes the proof of (2)⇒ (3). �

Corollary 1. Suppose H � � and |�/H | > ω. Then ∀X∈UCX \H ∈ UC.

�����. If we prove that G +H 
∈ UC for every countable G � �, the assertion
follows. LetG � � be a countable subgroup of �. ThereforeG+H is a subgroup of �.

Note that G+H 
= � by |�/H | > ω. To see that G+H 
∈ UC take any x ∈ G+H ,
y 
∈ G+H . Hence we conclude that there exists no t such that t+ {x, y} ⊆ G+H .

Thus G+H 
∈ UC. This completes the proof of Corollary 1. �

Corollary 2. Suppose that A ⊆ � is such that ∀X∈UCX \A ∈ UC. Suppose that
B ≈∞ A. Then also ∀X∈UCX \B ∈ UC.
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�����. Let A =
⋃

n<ω
An, where (An)n<ω pairwise disjoint. Let (rn)n<ω be a

sequence of real numbers such that B =
⋃

n<ω
An+ rn and the sets {An+ rn}n<ω are

pairwise disjoint. We define G = 〈{rn : n ∈ ω}〉. We will start with showing that
G+A = G+B. Let g ∈ G and a ∈ A. Then there is n ∈ ω such that a ∈ An. Thus

g+ rn+a ∈ G+B. But this implies that g+a ∈ G+B. On the other hand, if g ∈ G

and b ∈ B, then there is n ∈ ω such that b ∈ Bn. Therefore g− rn + b ∈ G+A. But

this implies that g + b ∈ G+A. We shall have established Corollary 2 if we prove

∀H��|H | � ω ⇒ H +B ∈ UC.

Let H � � be a countable subgroup of �. Observe that A+(H+G) = (A+G)+H =

(B +G) +H = B + (H +G). It is evident that |H +G| � ω and H +G � �. But
this implies that A+(H +G) 
∈ UC, so B+(H +G) 
∈ UC and finally B+H 
∈ UC,
proving Corollary 2. �

Theorem 4. Suppose X ⊆ �. The following conditions are equivalent:

X ∈ UC,(7)

∀S∈Sel(�ω)S ∩X 
= ∅.(8)

�����. (7) ⇒ (8) Let S ∈ Sel(H), where H � �. Suppose, contrary to our

claim, that S ∩X = ∅. Hence (t+H) ∩ S 
= ∅ for every t ∈ �. Thus t+H 
⊆ X for
every t. This contradicts our assumption (7). This completes the proof of (7)⇒ (8).
(8)⇒ (7). It is sufficient to show that for every countable subgroup H of � there

exists t such that H + t ⊆ X . To obtain a contradiction, suppose that there exists a

countable subgroup H � � such that ∀t∈�∃s∈�s ∈ (H+ t)\X . From this we see that
there exists S ∈ Sel(H) such that S ∩X = ∅, contrary to our assumption (8). �

Theorem 5. Let X ⊆ � be a hereditarily nonparadoxical set. Then ∀Y ∈UCY \
X ∈ UC. Thus, in particular, no hereditarily nonparadoxical set is an ω-covering

set.

�����. It is sufficient to prove that for every countable H � �, H + A 
∈ UC.
Let H � � be a countable subgroup of �. Choose H ′ � � such that |H ′| = ω and

H ∩H ′ = {0}. Define H1 = H +H ′. We first prove

(9) {x0 : (x0 +H1) 
⊆ X +H} ⊇ {x0 : |(x0 +H1) ∩X | < ω}.

Suppose, contrary to (9), that there exists x0 such that |(x0 +H1) ∩X | < ω and
x0+H1 ⊆ X+H . For every h ∈ H ′ find xh ∈ X , kh ∈ H such that x0+h = xh+kh.
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Suppose that h, g ∈ H ′ and that xg = xh. Therefore

{
x0 + h = xh + kh,

x0 + g = xg + kg.

Thus h − g = kh − kg, h − g ∈ H ′ and kh − kg ∈ H . Since H ∩H ′ = {0}, the last
equality shows that h = g. By assumption, |H ′| = ω. Hence |(x0+H ′−H)∩X | = ω, a
contradiction. This establishes the inclusion (9). By assumption, X is a hereditarily

nonparadoxical set. Therefore |{x0 : |(x0 +H1) ∩X | = ω}| � ω.

It follows from (9) that |{x0 : x0+H1 ⊆ X+H}| � ω. Suppose that H+X ∈ UC.
By Theorem 1 from [M],

H +X \ {x0 : x0 +H1 ⊆ X +H} ∈ UC.

Then there is x1 ∈ � such that

x1 +H1 ⊆ H +X \ {x0 : x0 +H1 ⊆ X +H}.

Thus x1 ∈ {x0 : x0 +H1 ⊆ X +H}, which is impossible. This completes the proof
of Theorem 5. �

Theorem 6. Assume cov(M) = 2ω (cov(N ) = 2ω). Then there exists X , a

generalized Luzin set (Sierpiński set) such that

∀B∈BorB ∩X 
∈ UC ∨X \B 
∈ UC.

�����. We give the proof only for the case of a generalized Sierpiński set; the

other case is similar. Assume cov(N ) = 2ω. Let (Cθ)θ<2ω be an enumeration of all
countable sets in �. Let (Bθ)θ<2ω be an enumeration of all Borel sets in �. Now

define by induction a sequence (tθ)θ<2ω of real numbers and a sequence (Zθ)θ<2ω of
measure zero sets in the following way. Assume that the sets (Zα)α<θ and the real

numbers (tα)α<θ are defined.

Consider two cases:

Case 1

(10) µ(Bθ) > 0.

We first observe that {x : x + � ⊆ Bc} = (B + �)c for every B ⊆ �. From this
we obtain (Bθ + �)c ∈ N (this follows easily from the Steinhaus property of the
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Lebesgue measure). Define Zθ = (Bθ+�)c . By the assumption cov(M) = 2ω, there
exists tθ such that (Cθ + tθ) ∩

⋃
α�θ

Zα = ∅.
Case 2

(11) µ(Bc
θ) > 0.

From this we obtain (Bc
θ + �)c ∈ N . Define Zθ = (Bc

θ + �)c . Thus there exists

tθ ∈ � such that (Cθ + tθ) ∩
⋃

α�θ

Zα = ∅.

We define X =
⋃

θ<2ω

(Cθ + tθ). Obviously, X ∈ UC.
We shall now show that for every θ ∈ 2ω, X \Bθ 
∈ UC or X ∩Bθ 
∈ UC.
Consider an arbitrary θ < 2ω.

Case 1

(12) µ(Bθ) > 0.

Thus

{x : x+ � ⊆ X \Bθ} = {x : x+ � ⊆ X} ∩ {x : x+ � ⊆ Bc
θ}

= {x : x+ � ⊆ X} ∩ (Bθ + �)c

= {x : x+ � ⊆ X} ∩ Zθ

⊆ X ∩ Zθ ⊆
⋃

α�θ

Cα + tα.

Therefore |{x : x+� ⊆ X \Bθ}| < 2ω. Suppose X \Bθ ∈ UC. Then by Theorem 1
from [M] we have (X \ Bθ) \ {x : x + � ⊆ X \ Bθ} ∈ UC. Then there is x0 ∈ �

such that x0 + � ⊆ (X \ Bθ) \ {x : x + � ⊆ X \ Bθ}, which is impossible. Hence
X \Bθ 
∈ UC.
Case 2

(13) µ(Bc
θ) > 0.

Thus

{x : x+ � ⊆ X ∩Bθ}
= {x : x+ � ⊆ X} ∩ {x : x+ � ⊆ Bθ}
= {x : x+ � ⊆ X} ∩ (Bc

θ + �)
c

= {x : x+ � ⊆ X} ∩ Zθ ⊆ X ∩ Zθ

⊆
⋃

α�θ

Cα + tα.
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Therefore |{x : x+� ⊆ X∩Bθ}| < 2ω. SupposeX∩Bθ ∈ UC. Then by Theorem 1
from [M]

(X ∩Bθ) \ {x : x+ � ⊆ X ∩Bθ} ∈ UC.

Then there is x0 ∈ � such that x0 + � ⊆ (X ∩ Bθ) \ {x : x + � ⊆ X ∩ Bθ}, which
is impossible. Hence X ∩ Bθ 
∈ UC. It remains to prove that X is a generalized
Sierpiński set. To show it let N ∈ N be a Borel set. Thus � + N ∈ N ∩ Bor.

Therefore there exists θ ∈ 2ω such that � + N = Bθ. Note that µ(Bc
θ) > 0. Using

the definition of the set Zθ, we get Zθ = (Bc
θ +Q)c, i.e. Zθ = ((� +N)c + �)c .

Claim 3.
(
(� +N)c + �

)c
= � +N .

Indeed, let q1 + n1 ∈ � + N , q1 ∈ �, n1 ∈ N . Suppose that q1 + n1 = q2 +m2

for some m2 ∈ (� + N)c, q2 ∈ �. Therefore m2 = n1 + (q1 − q2) ∈ N + �,
which is a contradiction. On the other hand, (� + N)c ⊆ (� + N)c + �. Hence(
(� + N)c + �

)c ⊆ � + N . This proves Claim 1. As a consequence we have
Zθ = � +N .

Since Zθ = � + N , it follows by the construction of X that X ∩ (� + N) ⊆⋃
α�θ

Cα + tα. Since
∣∣∣∣
⋃

α�θ

Cα + tα

∣∣∣∣ < 2ω,

it follows that |X ∩ (� +N)| < 2ω. Thus |X ∩N | < 2ω. Note that |X | = 2ω. This
completes the proof of Theorem 6. �

The following theorem can be found in [BJ]:

Theorem 7. (Theorem 6.3 [BJ]) There exists a measure zero set H ⊆ 2ω such
that for every perfect set P , if P +H ∈ N then ∃x∈2ωP + x ⊆ H .

In our next theorem we show that there is no such set E ∈ E .

Theorem 8. There is no E ∈ E such that

(14) ∀Q∈PerfQ+ E ∈ N ⇒ ∃t∈�Q+ t ⊆ E.

�����. We may assume that E =
⋃

n<ω
Kn, where Kn are compact, nowhere

dense. We have the following lemma:

Lemma 4. Let K ⊆ � be a compact, nowhere dense set, and suppose that I ⊆ �

is an open interval. Then there are pairwise disjoint intervals I0, . . . , Ik ⊆ I such

that

(15) ∀t∈�∃0�i�kIi ∩ (K + t) = ∅.
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�����. First note that there is a compact interval L such that ∀t∈�(K+ t)∩I 
=
∅ ⇒ t ∈ L.

For every x ∈ L there is an open set Ux � x and a closed subinterval Ix ⊆ I such
that (Ux+K)∩Ix = ∅. By the compactness of L we can choose numbers {xi}k

i=1 ⊆ L

such that
k⋃

i=1
Uxi ⊇ L. We may assume (after shrinking Ix1 , . . . , Ixk

, if necessary)

that Ix1 , . . . , Ixk
are pairwise disjoint. It is easy to check that (15) is satisfied. This

completes the proof of Lemma 3. �

Choose an enumeration (nk)k∈ω = ω such that for each n ∈ ω,

|{k : nk = n}| = ω.

We will construct a system of closed intervals as follows:

0. Set I∅—any closed interval.

1. From Lemma 3 we see that there are pairwise disjoint closed intervals
I〈1〉, . . . , I〈k0〉 ⊆ I∅ such that

∀t∈�∃1�i�k0I〈i〉 ∩ (Kn0 + t) = ∅.

Without loss of generality we may assume (after shrinking I〈1〉, . . . , I〈k0〉, if necessary)

that

µ

[( ⋃

i=1,...,k0

I〈i〉

)
+Kn0

]
� 1
0 + 1

.

2. Again from Lemma 3 we see that for each i ∈ {1, . . . k0} there are pairwise
disjoint closed intervals I〈i,1〉, . . . , I〈i,k1〉 ⊆ I〈i〉 (we may assume that k1 is the same

for different i) such that

∀t∈�∃1�j�k1I〈i,j〉 ∩ (Kn1 + t) = ∅.

Without loss of generality we may assume (after shrinking I〈i,j〉,if necessary) that

µ
[ ⋃

i=1,...,k0

⋃

j=1,...,k1

I〈i,j〉 +Kn1

]
� 1
1 + 1

.

In general:

1+2. From Lemma 3 we see that for each

(i0, . . . , il) ∈ {1, . . . , k0} × {1, . . . , k1} × . . .× {1, . . . , kl}
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there are pairwise disjoint intervals I〈i0,...,il,1〉, . . . , I〈i0,...,il,kl+1〉 (we may assume that

kl+l is the same for different i) such that

∀t∈�∃1�j�kl+1I〈i0,...,il,j〉 ∩ (Knl+1 + t) = ∅.

We may assume (after shrinking I〈i0,...,il,j〉, if necessary) that

µ

[ ⋃

i0=1,...,k0

⋃

i1=1,...,k1

. . .
⋃

il+1=1,...,kl+1

I〈i0,...,il+1〉 +Knl+1

]
� 1
(l + 1) + 1

.

Define H =
∞∏

i=0
{1, . . . , kl} and

Q =
⋃

x∈H

∞⋂

n=0

Ix�n.

It is clear that Q is a perfect set. We show that Q is as required:

A. Let m ∈ ω, then ∃∞l nl = m. By the construction of I〈i0,...,il〉,

Q ⊆
⋃

i0=1,...,k0

. . .
⋃

il=1,...,kl

I〈i0,...,il〉.

Thus Q+Knl
⊆

[ ⋃
i0=1,...,k0

. . .
⋃

il=1,...,kl

I〈i0,...,il〉+Knl

]
. Therefore µ(Q+Knl

) � 1
l+1 .

Note that we have actually proved that for each l ∈ {l : nl = m}, µ(Q+Km) � 1
l+1 .

Thus µ(Q+Km) = 0. This completes the proof of E +Q ∈ N .
B. To obtain a contradiction, suppose that there exists t0 ∈ � such that Q+ t0 ⊆⋃

n∈ω
Kn. Since {Kn}n∈ω are closed, we conclude that there is an open set W and a

natural number m ∈ ω such that W ∩Q 
= ∅ and

(16) (W ∩Q) + t0 ⊆ Km.

Thus there exists an interval Ii0,...,il
such that

(17) Q ∩ Ii0,...,il
⊆ Q ∩W.

Therefore there is an interval Ii0,...,il,...,ip ⊆ Ii0,...,il
such that np+1 = m. From the

construction of the intervals {Ii0,...,ip}0�j�kp+1 we see that there exists 1 � j′ � kp+1

such that

(18) Ii0,...,ip,j′ ∩ (Knp+1 − t0) = ∅.
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But np+1 = m, thus

(19) Ii0,...,ip,j′ ∩ (Km − t0) = ∅.

Note that

(20) Q ∩ Ii0,...,ip,j′ ⊆ Q ∩W.

Therefore

(21) (Ii0,...,ip,j′ + t0) ∩Km = ∅.

From (16) we obtain

(22) (Q ∩ Ii0,...,ip,j′) + t0 ⊆ Km.

Thus Q ∩ Ii0,...,ip,j′ = ∅, contrary to the definition of the set Q. This completes the
proof of Theorem 8. �

Theorem 9. There exists a set E ∈ E such that ∀N∈N∗∃tN + t ⊆ E.

�����. For each n ∈ ω pick βn ∈ ω such that

{
n|βn

2−βn < 2−n2

nn .

Let (In)n∈ω be any partition of ω into finite, disjoint intervals such that ∀n∈ω|In| =
βn. For each n ∈ ω divide In into pairwise disjoint intervals of size

βn

n , {J
(n)
i : 1 �

i � n}. Put
E = {x : ∀∞n ∃1�i�nx � J

(n)
i = 0 � J

(n)
i }.

First observe that E ∈ Fσ. Define

(23) Hn = {u ∈ 2In : ∃1�i�nu � J
(n)
i = 0 � J

(n)
i }.

By (23) we have |Hn| �
n∑

i=1
|{u ∈ 2In : u � J

(n)
i = 0 � J

(n)
i }| =

n∑
i=1

2|In|

2|J
(n)
i

|
= n · 2βn

2
βn
n

=

n ·2βn(n−1
n ). Therefore

∞∑
n=1

|Hn|
2|In| �

∞∑
n=1

n·2βn(n−1
n )

2βn
=

∞∑
n=1

n ·2− βn
n =

∞∑
n=1

n ·(2−βn)
1
n �

∞∑
n=1

n ·
(
2−n2

nn

) 1
n =

∞∑
n=1

n · 2−n

n < ∞. Since E = {x : ∀∞n x � In ∈ Hn} we have E ∈ N .
Thus E ∈ E .
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We show that E is as required. Let N ∈ N ∗. By Theorem 3.2 from [BJ] there

exists a sequence (Tn)n∈ω such that ∀n|Tn| � n and

(24) N ⊆ {x : ∀∞n x � In ∈ Tn}.

Let Tn = {t(n)1 , . . . , t
(n)
n }. Pick t ∈ 2ω such that

(25) ∀n∀1�i�nt � J
(n)
i = t

(n)
i � J

(n)
i .

To complete the proof it is enough to show that N + t ⊆ E. Let x ∈ N . From (24)
we conclude that ∀∞n x � In ∈ Tn, i.e. ∀n>N0x � In ∈ Tn for some N0 ∈ ω. Let n > N0.

Then x � In ∈ Tn. So there is 1 � i � n such that x � In = t
(n)
i . By the definition

of t, we know that t � J
(n)
i = t

(n)
i � J

(n)
i . Thus (t + x) � J

(n)
i = 0 � J

(n)
i . Therefore,

∀n>N0∃1�i�n(t + x) � J
(n)
i = 0 � J

(n)
i . Thus, we have shown that ∀x∈Nx + t ∈ E.

This completes the proof of the theorem. �

References
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