Czechoslovak Mathematical Journal

Solar Y. Alsardary

An upper bound on the basis number of the powers of the complete graphs

Czechoslovak Mathematical Journal, Vol. 51 (2001), No. 2, 231-238
Persistent URL: http://dml.cz/dmlcz/127644

Terms of use:

© Institute of Mathematics AS CR, 2001

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://dml.cz

AN UPPER BOUND ON THE BASIS NUMBER OF THE POWERS OF THE COMPLETE GRAPHS

Salar Y. Alsardary, Philadelphia

(Received June 10, 1997)

Abstract

The basis number of a graph G is defined by Schmeichel to be the least integer h such that G has an h-fold basis for its cycle space. MacLane showed that a graph is planar if and only if its basis number is $\leqslant 2$. Schmeichel proved that the basis number of the complete graph K_{n} is at most 3 . We generalize the result of Schmeichel by showing that the basis number of the d-th power of K_{n} is at most $2 d+1$.

1. Introduction

Throughout this paper, we assume that graphs are finite, undirected, and simple. Our terminology and notations will be as in [8]. Let G be a graph, and let $e_{1}, e_{2}, \ldots, e_{q}$ be an ordering of its edges. Then, any subset S of $E(G)$ corresponds to a (0,1)-vector $\left(a_{1}, a_{2}, \ldots, a_{q}\right)$ with $a_{i}=1$ if $e_{i} \in S$ and $a_{i}=0$ if $e_{i} \notin S$. These vectors form a q-dimensional vector space over \mathcal{Z}_{2} denoted by $\left(\mathcal{Z}_{2}\right)^{q}$. Let $\mathcal{C}(G)$, called the cycle space of G, be the subspace of $\left(\mathcal{Z}_{2}\right)^{q}$ generated by the vectors corresponding to the cycles in G. We shall say, however, that the cycles themselves, rather than the vectors corresponding to the cycles, generate $\mathcal{C}(G)$. It is well known that if G is connected, then the dimension of $\mathcal{C}(G)$ is $q-p+1$, where p and q denote, respectively, the number of vertices and edges in G. In fact, given any spanning tree T in G, every graph $T+e, e \notin T$, contains exactly one cycle C_{e}, and the collection of cycles $\left\{C_{e}: e \notin T\right\}$ forms a basis of $\mathcal{C}(G)$, called the fundamental basis corresponding to T. While each edge outside of T occurs in exactly one cycle of this basis, an edge of T itself may occur in many cycles of the basis. This observation suggests the following definition.

Definition. Let h be a positive integer. A basis of $\mathcal{C}(G)$ is called h-fold if each edge of G occurs in at most h of the cycles in the basis. The basis number of G (denoted by $b(G)$) is the smallest integer h such that $\mathcal{C}(G)$ has an h-fold basis.

The first important result concerning the basis number was given by MacLane [9]. He proved the following Theorem:

Theorem 1. A graph G is planar if and only if $b(G) \leqslant 2$.
Schmeichel [10] proved the following theorem:
Theorem 2. For every integer $n \geqslant 5, b\left(K_{n}\right)=3$.
Also in [10] he proved that for $m, n \geqslant 5$, the basis number $b\left(K_{m, n}\right)$ of the complete bipartite graph $K_{m, n}$ is equal 4 except for $K_{6,10}, K_{5, n}, K_{6, n}$, with $n=5,6,7,8$. Moreover, Alsardary and Ali [6] established that $b\left(K_{5, n}\right)=b\left(K_{6, n}\right)=3$ for $n=$ $5,6,7,8$. Banks and Schmeichel [7] proved that for $n \geqslant 7, b\left(Q_{n}\right)=4$, where Q_{n} is the n-cube. Ali [2], [3] and [4] investigated the basis number of the join of graphs, the complete multipartite graphs, the direct product of paths and cycles. Finally, Ali and Marougi [5] found the basis number of the cartesian product of some graphs.

In this paper we investigate the basis number of the d-th power K_{n}^{d} of the complete graph K_{n}. We show that $b\left(K_{n}^{d}\right) \leqslant 2 d+1$ which is a generalization of Theorem 2 .

2. An Upper bound for the basis number of K_{n}^{d}

If G and H are graphs, then the product of G and H is the graph $G \times H$ with $V(G) \times V(H)$ as the vertex set and $\left(g_{1}, h_{1}\right)$ adjacent to $\left(g_{2}, h_{2}\right)$ if either $g_{1} g_{2} \in E(G)$ and $h_{1}=h_{2}$, or else $g_{1}=g_{2}$ and $h_{1} h_{2} \in E(H)$. Let K_{n}^{d} be the product of d copies of the complete graph $K_{n}, n \geqslant 2, d \geqslant 1$. It will be convenient to think of the vertices of K_{n}^{d}, as d-tuples of n-ary digits, i.e. the elements of the set $\{0,1, \ldots, n-1\}$, with edges between two d-tuples differing at exactly one coordinate.

We will say that two vertices $v=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{d}\right)$ and $v^{\prime}=\left(\alpha_{1}^{\prime}, \alpha_{2}^{\prime}, \ldots, \alpha_{d}^{\prime}\right)$ in K_{n}^{d} match if and only if $\alpha_{i}=\alpha_{i}^{\prime}$, for $i=1,2, \ldots, d-1$ but $\alpha_{d} \neq \alpha_{d}^{\prime}$. Let X_{i} denote the set of vertices of K_{n}^{d} having $\alpha_{d}=i, i=0,1, \ldots, n-1$. Then $X_{0}, X_{1}, \ldots, X_{n-1}$ induce subgraphs $H_{0}, H_{1}, \ldots, H_{n-1}$ of K_{n}^{d}, respectively, which are isomorphic to K_{n}^{d-1}.

It is easy to construct a Hamiltonian path in K_{n}^{d} for any $n \geqslant 2, d \geqslant 1$ (see for example Wojciechowski [11]). Let $P_{0}=v_{1}^{(0)}, v_{2}^{(0)}, \ldots, v_{n^{d-1}}^{(0)}$ be a Hamiltonian path in H_{0}. Let $v_{j}^{(i)} \in X_{i}$ be the vertex that matches $v_{j}^{(0)}, i=1,2, \ldots, n-1$, $j=1,2, \ldots, n^{d-1}$. Then

$$
P_{i}=v_{1}^{(i)}, v_{2}^{(i)}, \ldots, v_{n^{d-1}}^{(i)}
$$

is a Hamiltonian path in $H_{i}, i=1,2, \ldots, n-1$. Moreover, the edges of K_{n}^{d} joining a vertex in H_{j} to a vertex in H_{k} are precisely the edges $v_{i}^{(j)} v_{i}^{(k)}, 0 \leqslant j<k \leqslant n-1$, $i=1,2, \ldots, n^{d-1}$. Let J_{i} be the subgraph of K_{n}^{d} induced by the set of vertices $Y_{i}=\left\{v_{i}^{(j)}: j=0,1, \ldots, n-1\right\}, i=1,2, \ldots, n^{d-1}$. Clearly, J_{i} is isomorphic to K_{n}, for every $i=1,2, \ldots, n^{d-1}$.

By Theorem 1 and Theorem $2, b\left(K_{n}\right) \leqslant 3$. Let D_{i} be a 3 -fold basis of $J_{i}, i=$ $1,2, \ldots, n^{d-1}$. Let $C_{i}^{(j, k)}$ be the 4-cycle $v_{i}^{(j)} v_{i+1}^{(j)} v_{i+1}^{(k)} v_{i}^{(k)}$ for every $i=1,2, \ldots, n^{d-1}-$ 1 , and $0 \leqslant j<k \leqslant n-1$. Let

$$
E_{i}=\left\{C_{i}^{(j, k)}: 0 \leqslant j<k \leqslant n-1\right\},
$$

$i=1,2, \ldots, n^{d-1}-1$.
Define a collection $T_{n}^{(d)}$ of cycles in K_{n}^{d} by taking:

$$
T_{n}^{(d)}=\bigcup_{i=1}^{n^{d-1}-1} E_{i} \cup\left\{D_{1}\right\}
$$

We say that

$$
\mathcal{B}=\left\{B_{0}, B_{1}, \ldots, B_{n-1}\right\}
$$

is a foundation of K_{n}^{d} if B_{i} is a basis of $H_{i}, i=0,1, \ldots, n-1$.

Lemma 3. If \mathcal{B} is a foundation of K_{n}^{d}, then the collection

$$
\bigcup_{B \in \mathcal{B}} B \cup T_{n}^{(d)}
$$

is a basis of $\mathcal{C}\left(K_{n}^{d}\right)$.
Proof. Let

$$
\mathcal{B}=\left\{B_{i}: i=0,1, \ldots, n-1\right\}
$$

be any foundation of K_{n}^{d} and let

$$
B_{n}^{(d)}=\bigcup_{B \in \mathcal{B}} B \cup T_{n}^{(d)}
$$

Since K_{n}^{d} is $(n-1) d$-regular, it has $\frac{n^{d}(n-1) d}{2}$ edges and thus

$$
\operatorname{dim} \mathcal{C}\left(K_{n}^{d}\right)=\frac{n^{d}(n-1) d}{2}-n^{d}+1=n^{d}\left(\frac{(n-1) d}{2}-1\right)+1
$$

Thus

$$
\left|B_{i}\right|=\operatorname{dim} \mathcal{C}\left(K_{n}^{d-1}\right)=n^{d-1}\left(\frac{(n-1)(d-1)}{2}-1\right)+1
$$

$i=0,1, \ldots, n-1$. Moreover, we have

$$
\left|E_{i}\right|=\frac{n(n-1)}{2}
$$

and

$$
\left|D_{i}\right|=\operatorname{dim} \mathcal{C}\left(K_{n}\right)=\frac{n(n-1)}{2}-n+1
$$

$i=1,2, \ldots, n^{d-1}$. Therefore, it follows from the definition of $B_{n}^{(d)}$ that

$$
\begin{aligned}
\left|B_{n}^{(d)}\right|= & n\left(n^{d-1}\left(\frac{(n-1)(d-1)}{2}-1\right)+1\right) \\
& +\left(n^{d-1}-1\right)\left(\frac{n(n-1)}{2}\right)+\left(\frac{n(n-1)}{2}-n+1\right) \\
= & n^{d}\left(\frac{(n-1) d}{2}-1\right)+1 \\
= & \operatorname{dim} \mathcal{C}\left(K_{n}^{d}\right)
\end{aligned}
$$

Thus to prove that $B_{n}^{(d)}$ is a basis of $\mathcal{C}\left(K_{n}^{d}\right)$, it suffices to show that the cycles of $B_{n}^{(d)}$ are independent.

Indeed, suppose that some collection S of cycles in $B_{n}^{(d)}$ satisfies a nontrivial relation modulo $2\left(\right.$ that is, $\left.\sum_{C \in S} C=0(\bmod 2)\right)$. Since the graphs $H_{0}, H_{1}, \ldots, H_{n-1}$ are mutually vertex disjoint, and B_{i} is a basis of $H_{i}, i=0,1, \ldots, n-1$, it follows that S must include at least one cycle C

$$
C \in B_{n}^{(d)} \backslash\left(\bigcup_{i=1}^{n-1} B_{i}\right)
$$

Because of symmetry we may assume without loss of generality that $C=C_{i}^{(0,1)}$ for some $i \in\left\{1,2, \ldots, n^{d-1}-1\right\}$. We claim that $C_{1}^{(0,1)} \in S$.

Indeed, if $i=1$, then we are done. If $i>1$, then since $C_{i}^{(0,1)}$ contains the edge $v_{i}^{(0)} v_{i}^{(1)}$ and the only other cycle in $B_{n}^{(d)}$ containing the edge $v_{i}^{(0)} v_{i}^{(1)}$ is $C_{i-1}^{(0,1)}$, we conclude that $C_{i-1}^{(0,1)} \in S$. Continuing by induction we get $C_{1}^{(0,1)} \in S$. But the cycle $C_{1}^{(0,1)}$ contains the edge $v_{1}^{(0)} v_{1}^{(1)}$ which occurs in no other cycle of $B_{n}^{(d)}$, and in particular in no other cycle of S. This means that $\sum_{C \in S} C$ could not be 0 modulo 2, a contradiction. Thus a nontrivial relation among the cycles of $B_{n}^{(d)}$ is impossible, and so $B_{n}^{(d)}$ is an independent collection of cycles and hence a basis of $\mathcal{C}\left(K_{n}^{d}\right)$, and the proof of this lemma is complete.

Theorem 4. For every $n \geqslant 2$ and $d \geqslant 1$, we have $b\left(K_{n}^{d}\right) \leqslant 2 d+1$.
Proof. By Theorem 2, the result is true for $d=1$. We will proceed by induction on d. Assume that $d \geqslant 2$ and that the theorem is true for smaller values of d. By the inductive hypothesis, since H_{i} is isomorphic to K_{n}^{d-1}, we can find a ($2 d-1$)-fold basis B_{i} for $\mathcal{C}\left(H_{i}\right), i=0,1, \ldots, n-1$.

Let $C_{i}^{(j)}=C_{i}^{(j, j+1)}$, i.e. let $C_{i}^{(j)}$ be the 4-cycle $v_{i}^{(j)} v_{i+1}^{(j)} v_{i+1}^{(j+1)} v_{i}^{(j+1)}$ for every $i=1,2, \ldots, n^{d-1}-1$ and $j=0,1, \ldots, n-2$.

Set

$$
F_{i}=\left\{C_{i}^{(j)}: j=0,1, \ldots, n-2\right\},
$$

$i=1,2, \ldots, n^{d-1}-1$. Define the collection B of cycles in K_{n}^{d} by taking:

$$
B=\bigcup_{i=0}^{n-1} B_{i} \cup \bigcup_{i=1}^{n^{d-1}} D_{i} \cup \bigcup_{i=1}^{n^{d-1}-1} F_{i}
$$

where D_{i} 's are defined as before, $i=1,2, \ldots, n^{d-1}$. We have:

$$
\left|B_{i}\right|=\operatorname{dim} \mathcal{C}\left(K_{n}^{d-1}\right)=n^{d-1}\left(\frac{(n-1)(d-1)}{2}-1\right)+1,
$$

$i=0,1, \ldots, n-1$,

$$
\begin{equation*}
\left|D_{i}\right|=\operatorname{dim} \mathcal{C}\left(K_{n}\right)=\frac{n(n-1)}{2}-n+1 \tag{1}
\end{equation*}
$$

$i=1,2, \ldots, n^{d-1}$, and

$$
\begin{equation*}
\left|F_{i}\right|=n-1, \tag{2}
\end{equation*}
$$

where $i=1,2, \ldots, n^{d-1}-1$. Therefore,

$$
\begin{aligned}
|B|= & n\left(n^{d-1}\left(\frac{(n-1)(d-1)}{2}-1\right)+1\right) \\
& +n^{d-1}\left(\frac{n(n-1)}{2}-n+1\right)+\left(n^{d-1}-1\right)(n-1) \\
= & n^{d}\left(\frac{(n-1) d}{2}-1\right)+1 \\
= & \operatorname{dim} \mathcal{C}\left(K_{n}^{d}\right) .
\end{aligned}
$$

Thus to prove that B is a basis of $\mathcal{C}\left(K_{n}^{d}\right)$, it is enough to show that B generates all of $\mathcal{C}\left(K_{n}^{d}\right)$. Since

$$
\mathcal{B}=\left\{B_{0}, B_{1}, \ldots, B_{n-1}\right\}
$$

is a foundation of K_{n}^{d}, the collection

$$
B_{n}^{(d)}=\bigcup_{i=0}^{n-1} B_{i} \cup T_{n}^{(d)}
$$

is a basis of $\mathcal{C}\left(K_{n}^{d}\right)$ by Lemma 3. Therefore, it is enough to show that B generates $B_{n}^{(d)}$, and since $\bigcup_{i=0}^{n-1} B_{i} \subseteq B$, it is enough to prove that B generates $T_{n}^{(d)}$.

Let $G_{n}^{(d)}$ be the spanning subgraph of K_{n}^{d} such that

$$
E\left(G_{n}^{(d)}\right)=\bigcup_{i=0}^{n-1} E\left(P_{i}\right) \cup \bigcup_{i=1}^{n^{d-1}} E\left(J_{i}\right)
$$

Clearly $G_{n}^{(d)}$ is isomorphic to $P \times K_{n}$, where P is a path of length n^{d-1}. Define a collection B^{\prime} of cycles in $G_{n}^{(d)}$ as follows:

$$
B^{\prime}=\bigcup_{i=1}^{n^{d-1}} D_{i} \cup \bigcup_{i=1}^{n^{d-1}-1} F_{i}
$$

We claim that B^{\prime} is a basis of $G_{n}^{(d)}$.
Since J_{i} has $\frac{n(n-1)}{2}$ edges and P_{j} has n^{d-1} edges, $i=1,2, \ldots, n^{d-1}$, and $j=$ $0,1, \ldots, n-1$. We get

$$
\begin{aligned}
\operatorname{dim} \mathcal{C}\left(G_{n}^{(d)}\right) & =\left(\frac{n(n-1) n^{d-1}}{2}+n\left(n^{d-1}-1\right)\right)-n^{d}+1 \\
& =\left(\frac{n-1}{2}\right) n^{d}-n+1
\end{aligned}
$$

Therefore, by (1) and (2) we get

$$
\begin{aligned}
\left|B^{\prime}\right| & =n^{d-1}\left(\frac{n(n-1)}{2}-n+1\right)+\left(n^{d-1}-1\right)(n-1) \\
& =\left(\frac{n-1}{2}\right) n^{d}-n+1 \\
& =\operatorname{dim} \mathcal{C}\left(G_{n}^{(d)}\right)
\end{aligned}
$$

Thus to show that B^{\prime} is a basis of $\mathcal{C}\left(G_{n}^{(d)}\right)$ it suffices to show that the cycles of B^{\prime} are independent. Suppose that some collection R of cycles in B^{\prime} satisfies a nontrivial relation modulo $2\left(\right.$ that is, $\left.\sum_{C \in R} C=0(\bmod 2)\right)$. Since the graphs $J_{1}, J_{2}, \ldots, J_{n^{d-1}}$
are mutually vertex disjoint and D_{i} is a basis of $J_{i}, i=1,2, \ldots, n^{d-1}$, it follows that R must include at least one cycle C in $\bigcup_{i=1}^{n^{d-1}} F_{i}$. Let

$$
C=\left(v_{i}^{(j)} v_{i+1}^{(j)} v_{i+1}^{(j+1)} v_{i}^{(j+1)}\right)
$$

Suppose that $j>0$. Since the cycle $C^{\prime}=\left(v_{i}^{(j-1)} v_{i+1}^{(j-1)} v_{i+1}^{(j)} v_{i}^{(j)}\right)$ is the only other cycle of B^{\prime} containing the edge $v_{i}^{(j)} v_{i+1}^{(j)}$, we conclude that $C^{\prime} \in R$. Continuing by induction, we see that R must contain the cycle $\left(v_{i}^{(0)} v_{i+1}^{(0)} v_{i+1}^{(1)} v_{i}^{(1)}\right)$ which is the only cycle of B^{\prime} containing the edge $v_{i}^{(0)} v_{i+1}^{(0)}$ and in particular is the only cycle of R containing the edge $v_{i}^{(0)} v_{i+1}^{(0)}$. This means that $\sum_{C \in R} C$ could not be 0 modulo 2 , which is a contradiction. Thus a nontrivial relation among the cycles of B^{\prime} is impossible, and so B^{\prime} is an independent collection of cycles and hence a basis of $\mathcal{C}\left(G_{n}^{(d)}\right)$.

Since $B^{\prime} \subseteq B$, and each cycle in $T_{n}^{(d)}$ is a cycle in the graph $G_{n}^{(d)}$, it follows that B generates $T_{n}^{(d)}$ and hence is a basis of K_{n}^{d}.

To complete the proof, it remains to show that B is $(2 d+1)$-fold.
Assume first that

$$
e \in \bigcup_{j=0}^{n-1} E\left(H_{j}\right)
$$

Then by the induction hypothesis, e occurs in at most $2 d-1$ cycles of $\bigcup_{i=0}^{n-1} B_{i}$, in at most 2 cycles of $\bigcup_{i=1}^{n^{d-1}} F_{i}$ and in no cycles of $\bigcup_{i=1}^{n^{d-1}} D_{i}$. Thus e occurs in at most $2 d+1$ cycles of B.

Now assume that

$$
e \in \bigcup_{j=1}^{n^{d-1}} E\left(J_{j}\right)
$$

Then e occurs in at most 3 cycles of $\bigcup_{i=1}^{n^{d-1}} D_{i}$, in at most 2 cycles of $\bigcup_{i=1}^{n^{d-1}-1} F_{i}$, and in no cycles of $\bigcup_{i=0}^{n-1} B_{i}$. Thus e occurs in at most 5 cycles of B. Since $d \geqslant 2$, e occurs in at most $2 d+1$ cycles of B and the proof is complete.

References

[1] A. A. Ali and Salar Y. Alsardary: On the basis number of a graph. Dirasat 14 (1987), 43-51.
[2] A. A. Ali: The basis number of the join of graphs. Arab J. Math. 10 (1989), 21-33.
[3] A. A. Ali: The basis number of complete multipartite graphs. Ars Combin. 28 (1989), 41-49.
[4] A. A. Ali: The basis number of the direct products of paths and cycles. Ars Combin. 27 (1989), 155-164.
[5] A. A. Ali and G. T. Marougi: The basis number of the cartesian product of some graphs. J. Indian Math. Soc. (N.S.) 58 (1992), 123-134.
[6] Salar Y. Alsardary and A. A. Ali: The basis number of some special non-planar graphs. Czechoslovak Math. J. To appear.
[7] J. A. Banks and E.F. Schmeichel: The basis number of the n-cube. J. Combin. Theory, Ser. B 33 (1982), 95-100.
[8] J. A. Bondy and S. R. Murty: Graph Theory with Applications. Amer. Elsevier, New York, 1976.
[9] S. MacLane: A combinatorial condition for planar graphs. Fund. Math. 28 (1937), 22-32.
[10] E.F. Schmeichel: The basis number of a graph. J. Combin. Theory, Ser. B. 30 (1981), 123-129.
[11] J. Wojciechowski: Long snakes in powers of the complete graph with an odd number of vertices. J. London Math. Soc. II, Ser. 50 (1994), 465-476.

Author's address: Department of Mathematics, Physics, and Computer science, University of the Sciences in Philadelphia, 600 South 43rd Street, Philadelphia, PA 19104-4495, U.S.A.

