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AN UPPER BOUND ON THE BASIS NUMBER OF THE POWERS

OF THE COMPLETE GRAPHS

Salar Y. Alsardary, Philadelphia

(Received June 10, 1997)

Abstract. The basis number of a graph G is defined by Schmeichel to be the least integer
h such that G has an h-fold basis for its cycle space. MacLane showed that a graph is
planar if and only if its basis number is � 2. Schmeichel proved that the basis number of
the complete graph Kn is at most 3. We generalize the result of Schmeichel by showing
that the basis number of the d-th power of Kn is at most 2d+ 1.

1. Introduction

Throughout this paper, we assume that graphs are finite, undirected, and sim-
ple. Our terminology and notations will be as in [8]. Let G be a graph, and let

e1, e2, . . . , eq be an ordering of its edges. Then, any subset S of E(G) corresponds to
a (0, 1)-vector (a1, a2, . . . , aq) with ai = 1 if ei ∈ S and ai = 0 if ei /∈ S. These vectors

form a q-dimensional vector space over Z2 denoted by (Z2)q. Let C(G), called the
cycle space of G, be the subspace of (Z2)q generated by the vectors corresponding to
the cycles in G. We shall say, however, that the cycles themselves, rather than the
vectors corresponding to the cycles, generate C(G). It is well known that if G is con-
nected, then the dimension of C(G) is q − p+ 1, where p and q denote, respectively,
the number of vertices and edges in G. In fact, given any spanning tree T in G,

every graph T + e, e /∈ T , contains exactly one cycle Ce, and the collection of cycles
{Ce : e /∈ T } forms a basis of C(G), called the fundamental basis corresponding to T .

While each edge outside of T occurs in exactly one cycle of this basis, an edge of T
itself may occur in many cycles of the basis. This observation suggests the following

definition.
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Definition. Let h be a positive integer. A basis of C(G) is called h-fold if each

edge of G occurs in at most h of the cycles in the basis. The basis number of G

(denoted by b(G)) is the smallest integer h such that C(G) has an h-fold basis.

The first important result concerning the basis number was given by MacLane [9].
He proved the following Theorem:

Theorem 1. A graph G is planar if and only if b(G) � 2.

Schmeichel [10] proved the following theorem:

Theorem 2. For every integer n � 5, b(Kn) = 3.

Also in [10] he proved that for m, n � 5, the basis number b(Km,n) of the complete
bipartite graph Km,n is equal 4 except for K6,10, K5,n, K6,n, with n = 5, 6, 7, 8.

Moreover, Alsardary and Ali [6] established that b(K5,n) = b(K6,n) = 3 for n =
5, 6, 7, 8. Banks and Schmeichel [7] proved that for n � 7, b(Qn) = 4, where Qn is

the n-cube. Ali [2], [3] and [4] investigated the basis number of the join of graphs,
the complete multipartite graphs, the direct product of paths and cycles. Finally,

Ali and Marougi [5] found the basis number of the cartesian product of some graphs.
In this paper we investigate the basis number of the d-th powerKd

n of the complete

graph Kn. We show that b(Kd
n) � 2d+ 1 which is a generalization of Theorem 2.

2. An upper bound for the basis number of Kd
n

If G and H are graphs, then the product of G and H is the graph G × H with

V (G)×V (H) as the vertex set and (g1, h1) adjacent to (g2, h2) if either g1g2 ∈ E(G)
and h1 = h2, or else g1 = g2 and h1h2 ∈ E(H). Let Kd

n be the product of d copies of

the complete graph Kn, n � 2, d � 1. It will be convenient to think of the vertices
of Kd

n, as d-tuples of n-ary digits, i.e. the elements of the set {0, 1, . . . , n− 1}, with
edges between two d-tuples differing at exactly one coordinate.
We will say that two vertices v = (α1, α2, . . . , αd) and v′ = (α′1, α

′
2, . . . , α

′
d) in Kd

n

match if and only if αi = α′i, for i = 1, 2, . . . , d− 1 but αd �= α′d. Let Xi denote the
set of vertices ofKd

n having αd = i, i = 0, 1, . . . , n−1. Then X0, X1, . . . , Xn−1 induce

subgraphs H0, H1, . . . , Hn−1 of Kd
n, respectively, which are isomorphic to Kd−1

n .
It is easy to construct a Hamiltonian path in Kd

n for any n � 2, d � 1 (see
for example Wojciechowski [11]). Let P0 = v

(0)
1 , v

(0)
2 , . . . , v

(0)
nd−1 be a Hamiltonian

path in H0. Let v
(i)
j ∈ Xi be the vertex that matches v

(0)
j , i = 1, 2, . . . , n − 1,

j = 1, 2, . . . , nd−1. Then

Pi = v
(i)
1 , v

(i)
2 , . . . , v

(i)
nd−1
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is a Hamiltonian path in Hi, i = 1, 2, . . . , n− 1. Moreover, the edges of Kd
n joining

a vertex in Hj to a vertex in Hk are precisely the edges v
(j)
i v

(k)
i , 0 � j < k � n− 1,

i = 1, 2, . . . , nd−1. Let Ji be the subgraph of Kd
n induced by the set of vertices

Yi = {v(j)i : j = 0, 1, . . . , n − 1}, i = 1, 2, . . . , nd−1. Clearly, Ji is isomorphic to Kn,

for every i = 1, 2, . . . , nd−1.

By Theorem 1 and Theorem 2, b(Kn) � 3. Let Di be a 3-fold basis of Ji, i =

1, 2, . . . , nd−1. Let C(j,k)i be the 4-cycle v
(j)
i v

(j)
i+1v

(k)
i+1v

(k)
i for every i = 1, 2, . . . , nd−1−

1, and 0 � j < k � n− 1. Let

Ei = {C(j,k)i : 0 � j < k � n− 1},

i = 1, 2, . . . , nd−1 − 1.
Define a collection T

(d)
n of cycles in Kd

n by taking:

T (d)n =
nd−1−1⋃

i=1

Ei ∪ {D1}.

We say that

B = {B0, B1, . . . , Bn−1}

is a foundation of Kd
n if Bi is a basis of Hi, i = 0, 1, . . . , n− 1.

Lemma 3. If B is a foundation of Kd
n, then the collection

⋃

B∈B
B ∪ T (d)n

is a basis of C(Kd
n).

�����. Let

B = {Bi : i = 0, 1, . . . , n− 1}

be any foundation of Kd
n and let

B(d)n =
⋃

B∈B
B ∪ T (d)n .

Since Kd
n is (n− 1)d-regular, it has nd(n−1)d

2 edges and thus

dim C(Kd
n) =

nd(n− 1)d
2

− nd + 1 = nd

(
(n− 1)d
2

− 1
)
+ 1.
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Thus

|Bi| = dim C(Kd−1
n ) = nd−1

(
(n− 1)(d− 1)

2
− 1

)
+ 1,

i = 0, 1, . . . , n− 1. Moreover, we have

|Ei| =
n(n− 1)
2

,

and

|Di| = dim C(Kn) =
n(n− 1)
2

− n+ 1,

i = 1, 2, . . . , nd−1. Therefore, it follows from the definition of B(d)n that

|B(d)n | = n

(
nd−1

(
(n− 1)(d− 1)

2
− 1

)
+ 1

)

+
(
nd−1 − 1

)(
n(n− 1)
2

)
+

(
n(n− 1)
2

− n+ 1

)

= nd

(
(n− 1)d
2

− 1
)
+ 1

= dim C(Kd
n).

Thus to prove that B
(d)
n is a basis of C(Kd

n), it suffices to show that the cycles of
B
(d)
n are independent.

Indeed, suppose that some collection S of cycles in B
(d)
n satisfies a nontrivial

relation modulo 2 (that is,
∑

C∈S

C = 0 (mod 2)). Since the graphs H0, H1, . . . , Hn−1

are mutually vertex disjoint, and Bi is a basis of Hi, i = 0, 1, . . . , n − 1, it follows
that S must include at least one cycle C

C ∈ B(d)n \
(n−1⋃

i=1

Bi

)
.

Because of symmetry we may assume without loss of generality that C = C
(0,1)
i for

some i ∈ {1, 2, . . . , nd−1 − 1}. We claim that C
(0,1)
1 ∈ S.

Indeed, if i = 1, then we are done. If i > 1, then since C
(0,1)
i contains the edge

v
(0)
i v

(1)
i and the only other cycle in B

(d)
n containing the edge v

(0)
i v

(1)
i is C

(0,1)
i−1 , we

conclude that C
(0,1)
i−1 ∈ S. Continuing by induction we get C

(0,1)
1 ∈ S. But the

cycle C
(0,1)
1 contains the edge v

(0)
1 v

(1)
1 which occurs in no other cycle of B(d)n , and in

particular in no other cycle of S. This means that
∑

C∈S

C could not be 0 modulo 2,

a contradiction. Thus a nontrivial relation among the cycles of B
(d)
n is impossible,

and so B
(d)
n is an independent collection of cycles and hence a basis of C(Kd

n), and
the proof of this lemma is complete. �
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Theorem 4. For every n � 2 and d � 1, we have b(Kd
n) � 2d+ 1.

�����. By Theorem 2, the result is true for d = 1. We will proceed by induction

on d. Assume that d � 2 and that the theorem is true for smaller values of d. By
the inductive hypothesis, since Hi is isomorphic to Kd−1

n , we can find a (2d− 1)-fold
basis Bi for C(Hi), i = 0, 1, . . . , n− 1.
Let C

(j)
i = C

(j,j+1)
i , i.e. let C

(j)
i be the 4-cycle v

(j)
i v

(j)
i+1v

(j+1)
i+1 v

(j+1)
i for every

i = 1, 2, . . . , nd−1 − 1 and j = 0, 1, . . . , n− 2.
Set

Fi = {C(j)i : j = 0, 1, . . . , n− 2},

i = 1, 2, . . . , nd−1 − 1. Define the collection B of cycles in Kd
n by taking:

B =
n−1⋃

i=0

Bi ∪
nd−1⋃

i=1

Di ∪
nd−1−1⋃

i=1

Fi,

where Di’s are defined as before, i = 1, 2, . . . , nd−1. We have:

|Bi| = dim C(Kd−1
n ) = nd−1

(
(n− 1)(d− 1)

2
− 1

)
+ 1,

i = 0, 1, . . . , n− 1,

(1) |Di| = dim C(Kn) =
n(n− 1)
2

− n+ 1,

i = 1, 2, . . . , nd−1, and

(2) |Fi| = n− 1,

where i = 1, 2, . . . , nd−1 − 1. Therefore,

|B| = n

(
nd−1

(
(n− 1)(d− 1)

2
− 1

)
+ 1

)

+ nd−1
(

n(n− 1)
2

− n+ 1

)
+ (nd−1 − 1)(n− 1)

= nd

(
(n− 1)d
2

− 1
)
+ 1

= dim C(Kd
n).

Thus to prove that B is a basis of C(Kd
n), it is enough to show that B generates all

of C(Kd
n). Since

B = {B0, B1, . . . , Bn−1}
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is a foundation of Kd
n, the collection

B(d)n =
n−1⋃

i=0

Bi ∪ T (d)n

is a basis of C(Kd
n) by Lemma 3. Therefore, it is enough to show that B generates

B
(d)
n , and since

n−1⋃
i=0

Bi ⊆ B, it is enough to prove that B generates T
(d)
n .

Let G
(d)
n be the spanning subgraph of Kd

n such that

E(G(d)n ) =
n−1⋃

i=0

E(Pi) ∪
nd−1⋃

i=1

E(Ji).

Clearly G
(d)
n is isomorphic to P × Kn, where P is a path of length nd−1. Define a

collection B′ of cycles in G
(d)
n as follows:

B′ =
nd−1⋃

i=1

Di ∪
nd−1−1⋃

i=1

Fi.

We claim that B′ is a basis of G(d)n .
Since Ji has

n(n−1)
2 edges and Pj has nd−1 edges, i = 1, 2, . . . , nd−1, and j =

0, 1, . . . , n− 1. We get

dim C(G(d)n ) =

(
n(n− 1)nd−1

2
+ n(nd−1 − 1)

)
− nd + 1

=

(
n− 1
2

)
nd − n+ 1.

Therefore, by (1) and (2) we get

|B′| = nd−1
(

n(n− 1)
2

− n+ 1

)
+ (nd−1 − 1)(n− 1)

=

(
n− 1
2

)
nd − n+ 1

= dim C(G(d)n ).

Thus to show that B′ is a basis of C(G(d)n ) it suffices to show that the cycles of B′

are independent. Suppose that some collection R of cycles in B′ satisfies a nontrivial
relation modulo 2 (that is,

∑
C∈R

C = 0 (mod 2)). Since the graphs J1, J2, . . . , Jnd−1
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are mutually vertex disjoint and Di is a basis of Ji, i = 1, 2, . . . , nd−1, it follows that

R must include at least one cycle C in
nd−1−1⋃

i=1
Fi. Let

C = (v(j)i v
(j)
i+1v

(j+1)
i+1 v

(j+1)
i ).

Suppose that j > 0. Since the cycle C′ = (v(j−1)i v
(j−1)
i+1 v

(j)
i+1v

(j)
i ) is the only other

cycle of B′ containing the edge v
(j)
i v

(j)
i+1, we conclude that C′ ∈ R. Continuing

by induction, we see that R must contain the cycle (v(0)i v
(0)
i+1v

(1)
i+1v

(1)
i ) which is the

only cycle of B′ containing the edge v
(0)
i v

(0)
i+1 and in particular is the only cycle of R

containing the edge v
(0)
i v

(0)
i+1. This means that

∑
C∈R

C could not be 0 modulo 2, which

is a contradiction. Thus a nontrivial relation among the cycles of B′ is impossible,
and so B′ is an independent collection of cycles and hence a basis of C(G(d)n ).

Since B′ ⊆ B, and each cycle in T
(d)
n is a cycle in the graph G

(d)
n , it follows that

B generates T
(d)
n and hence is a basis of Kd

n.

To complete the proof, it remains to show that B is (2d+ 1)-fold.

Assume first that

e ∈
n−1⋃

j=0

E(Hj).

Then by the induction hypothesis, e occurs in at most 2d − 1 cycles of
n−1⋃
i=0

Bi, in

at most 2 cycles of
nd−1−1⋃

i=1
Fi and in no cycles of

nd−1⋃
i=1

Di. Thus e occurs in at most

2d+ 1 cycles of B.

Now assume that

e ∈
nd−1⋃

j=1

E(Jj).

Then e occurs in at most 3 cycles of
nd−1⋃
i=1

Di, in at most 2 cycles of
nd−1−1⋃

i=1
Fi, and in

no cycles of
n−1⋃
i=0

Bi. Thus e occurs in at most 5 cycles of B. Since d � 2, e occurs in
at most 2d+ 1 cycles of B and the proof is complete. �
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