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Abstract. Classical analytic spaces can be characterized as projections of Polish spaces.
We prove analogous results for three classes of generalized analytic spaces that were intro-
duced by Z. Frolík, D. Fremlin and R. Hansell. We use the technique of complete sequences
of covers. We explain also some relations of analyticity to certain fragmentability properties
of topological spaces endowed with an additional metric.
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Introduction

We consider especially the classes of scattered-K-analytic, Čech-analytic and
isolated-K-analytic spaces. We prove several characterizations of them in Section 1,

mainly those which are formulated in terms of projections along the Polish space ��

of some “complete” space, and some internal ones employing complete sequences

of covers. Using these characterizations, we explain some relationships of different
classes of “analytic spaces” in Section 2. The last section is devoted to the notion

of σ-fragmentability which was introduced in [11] and which we extend to show
connections to various classes of generalized analytic spaces. Proposition 5 and

Theorem 6, together with Theorem 1 and Theorem 4, improve our [8, Theorems 5

Our investigation was supported by GAUK 190/1996, GAČR 201/97/0216.

791



and 6] and also [11, Theorem 4.1, (c) implies (a) for Čech-analytic spaces]. The proof

of Proposition 5 here is quite straightforward and it needs essentially no reference to
results which are not proved here (except for Lemma 3 ([11], Lemma 4.4]) concluding
the proof).

We should remark that due to our Theorem 1 (the equivalence of (a) and (c)) and
to [15, Lemma 2.3], the result [15, Theorem 5.2] is stronger than our Proposition 5

within completely regular spaces if D stands for scattered families. There is also
a new paper [16] which studies more σ-fragmented subsets of Cp(K) (the space of

continuous functions on a compact space K endowed with the topology of pointwise
convergence and the supremum metric) than our Corollary below. Many results on

generalized analytic spaces can be found in, or are related to, the outstanding paper
[6] of R.W. Hansell, where the relations to nonseparable Banach spaces play a central

role. Our Section 1 can be understood as a supplement to the results which originate
in [6], or to those which can be found in [5], [8] and [10]. Our aim is to add a few

new characterizations and to present missing proofs of some announced results.
All topological spaces are supposed to be Hausdorff in what follows, mostly they

are regular, but this assumption will be pointed out explicitly wherever it is needed.

1. Generalized analytic and complete spaces

A collection N of subsets of X is called a network for a collection C of subsets
of X if each C ∈ C equals ⋃{N ∈ N ; N ⊂ C}. Let us recall that a topological
space X has a network N if N is a network for the collection of all open subsets
of X .
A compact-valued map f of a topological space X to compact subsets of a topo-

logical space Y is upper semi-continuous if {x ∈ X ; f(x) ⊂ G} is open whenever
G is an open subset of Y . We write usc-K instead of upper semi-continuous and

compact-valued in what follows.
An indexed family (Ca ; a ∈ A) of subsets of X is point-countable if |{a ; x ∈

Ca}| � ℵ0 for every x ∈ X .
We introduce first a notion of generalized analytic spaces which generalizes [5, De-

finition 6.7] and [9, Definition 9]. Later on we are primarily interested in special cases
which coincide with the notions introduced first by Z. Frolík in [1], and by R. Hansell

in [6]. Frolík’s “WT-analytic spaces” coincide with Hansell’s “K-descriptive spaces”.
They are called here, in the same way as in [5, Definition 6.7], isolated-K-analytic.

Hansell’s “almost-K-descriptive spaces” are called here, also in accordance with [5,
Definition 6.7], scattered-K-analytic spaces.

In what follows D stands exclusively for particular collections of families from
P(P(X)) for all topological spaces X under consideration.
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Definition 1. Let X be a topological space and D be a collection of families
of subsets of X . The space X is called D-K-analytic if there is an usc-K map f

of a complete metric space M onto X such that the indexed family (f(C) ; C ∈ C)
is point-countable and {f(C) ; C ∈ C} has a network N from Dσ, i.e. N =

⋃
n∈�

Nn

with Nn ∈ D, for every discrete family C of subsets of M .
A topological space X is D-analytic if there is a continuous map f of a complete

metric space onto X with the same properties as the compact-valued map f above.
(We identify continuous f : M → X with the usc-K map defined by f̃(x) = {f(x)}
in what follows.

Remark 1. Here and in what follows a family C of subsets of a topological spaceX

is discrete in X if every point of X has a neighbourhood intersecting at most one

element of C. It is known that the notion of generalized analytic spaces would not
change if we used the discreteness in the metric of M instead of the topological

discreteness of C in the above definition.
We have in mind mainly the following examples of collections D.
Definition 2. Let X denote a topological space. We say that a family C of pair-

wise disjoint subsets of X is scattered if every nonempty subfamily C0 of C contains
an element that is relatively open in

⋃ C0. If S denotes the collection of all scattered
families, we say that X is scattered-K-analytic if it is S-K-analytic and that X is
scattered-analytic if it is S-analytic.
We denote by I the collection of all isolated families (or, equivalently, relatively

discrete families), i.e. of families E of subsets of a topological space which are discrete
in

⋃ E . The I-K-analytic spaces are called isolated-K-analytic and I-analytic spaces
are called isolated-analytic.
Another significant class, say O, is formed by relatively open families, i.e. fami-

lies R such that every R ∈ R is open in ⋃R.
Let us remark that the assumption of point-countability in Definition 1 is not

necessary for the case of scattered-K-analytic spaces (see [10, Theorem 1]). However,
there is a space X which is not isolated-K-analytic and such that there is an usc-K

map f of a complete metric space onto X with {f(C) ; C ∈ C} having a σ-isolated
network if C is discrete in M . We may consider the space X =

⋃
Xα ∪ {p∞} of

H. Junnila and J. Pelant described in [5, Example 6.22] to show that the implication
(b) ⇒ (a) of Theorem 2 below does not hold without the additional assumption

that X is hereditarily weakly θ-refinable. We may notice that f(α) = Xα ∪{p∞}, in
the notation from [5], gives an usc-K map of [0, ω1) with the discrete metric onto X

and every union of Xα∪{p∞} has a σ-isolated network consisting of {p∞} and some
Xα’s.
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We recall the definition of D. Fremlin of another class of “analytic spaces” which

turn out to be closely related with the notion of relatively open families. More
information can be found in [5, Section 5].

Definition 3. A completely regular topological space X is called Čech-analytic
if it is the projection of some Čech-complete subspace of X × �� .

Let us notice that I = O∩S and that every relatively open family has a scattered
refinement. Clearly, isolated families are exactly those which are relatively open and
pairwise disjoint.

We recall now two useful auxiliary constructions related to isolated, relatively
open, and scattered families of sets (cf. e.g. [5, Definition 6.1]).

Associated open sets. If C is an arbitrary scattered family of sets, then we may
choose some well ordering < of C and open sets U(C), C ∈ C, such that C ⊂ U(C)

and U(C) ∩ B = ∅ for C, B ∈ C if C < B. The existence is ensured for example by
Lemma 1 of [10] and follows easily from Definition 2. The family {U(C) ; C ∈ C} is
called the associated family of open sets in this case.
If C is an arbitrary relatively open family of sets, then we can find open sets U(C)

such that U(C)∩⋃ C = C. Since isolated family is relatively open (and disjoint), we
may and shall use the same U(C) for the associated family of open sets for isolated
families.

Associated Borel sets. If C is a scattered family and U(C), C ∈ C, form the
associated family of open sets as above, the sets B(C) = C ∩ (U(C) \⋃{U(E) ; E <

C}) are useful. They form a scattered family of sets of the form B(C) = F ∩ G,
where F is closed and G is open, and we call them the associated Borel sets.

It is also useful to consider the sets B(C) = C∩U(C) for elements C of an isolated
family C and U(C) the associated open sets. The “associated family of Borel sets”

{B(C) ; C ∈ C} is isolated in this case.
Now we point out several properties of collections D of families of subsets of a

topological space which are significant for our further investigation.
Heredity. We say that the collection D is hereditary if for any family E = {Ea ; a ∈

A} from D and any family {Fa ; a ∈ A} such that Fa ⊂ Ea, a ∈ A, the family
{Fa ; a ∈ A} is also in D.
We may notice that the collections I, S, Iσ or Sσ are hereditary. Clearly, the

same is not true for O.
Property of unions. The collection D has the property of unions if, given Ea ∈ D,

a ∈ A, such that the family {⋃ Ea = Ea ; a ∈ A} is also in D, then the union ⋃
a∈A

Ea

is in D.
It can be easily checked that the collections S, Sσ, I, Iσ and O have the property

of unions.
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However, Oσ does not have the property of unions. Consider e.g. the intervals

[0, α+1) of ordinals as open subsets of the space X = [0, ω1) endowed with the order
topology. Put Eα = {{β} ; β ∈ [0, α + 1)}. The families Eα are countable and thus
in Oσ but {{β} ; β ∈ X} is not in Oσ.

Cross-section property. We say that the collection D has the cross-section property
if, whenever E1, E2 are from D, then the family E1∧E2 = {E1∩E2 ; E1 ∈ E1, E2 ∈ E2}
is in D, too.
The collections S, O and I have the cross-section property. It follows immediately

that the same is true concerning Sσ, Oσ, or Iσ.
Trace property. We say that D has the trace property if given any E ∈ D and

F ⊂ X the family {E ∩ F ; E ∈ E} is in D.
The key role in our investigation is played by the following notion.

Definition 4. We say that Cn is a complete sequence of covers of a topological

space X if every filter U , with U ∩ Cn 
= ∅ for every n ∈ �, has a cluster point,
i.e.

⋂{U ; U ∈ U} 
= ∅.
Remark 2. Let us remark that the notion of the complete sequence of covers

was used by Z. Frolík ([2], Theorem 2.8] and [3, Theorem 9.3]) to characterize Čech-
complete spaces and regular K-analytic spaces.

Notice that, if Cn is a complete sequence of covers of X , then any sequence En of
covers of X such that En refines Cn is also complete.

If X is a regular space, then the completeness of the sequence Cn of covers of X
is equivalent to the following property.

For every (respectively, for every centered) sequence of elements Cn ∈ Cn,
the sequence C1 ∩ . . . ∩Cn converges to a (respectively nonempty) compact set

K =
∞⋂

n=1
C1 ∩ . . . ∩ Cn, i.e. for every open G ⊃ K there is an n0 such that

K ⊂ C1 ∩ . . . ∩ Cn ⊂ G for n > n0 (see e.g. Proposition 1 from [10]).

It follows from the above property that the map f :
∞∏

n=1
Cn → X defined by the

equality f((Cn)∞n=1) =
∞⋂

n=1

n⋂
k=1

Ck is an usc-K map of the complete metric space

∞∏
n=1

Cn, defined as the countable product of Cn’s endowed with the discrete metric,

onto X .

We want to make clear the relations of our “generalized analytic” spaces to the
projections of spaces which are “complete” in an appropriate sense.

Definition 5.
(a) A topological space X is D-K-complete if there is a complete sequence of covers
from D.
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(b) The space X is D-complete if there is a complete sequence of covers Cn from D
such that

⋂
n∈�

C1 ∩ . . . ∩ Cn is a singleton for an arbitrary centered sequence of

sets Cn with Cn ∈ Cn.

Remark 3. We should mention that scattered-K-complete spaces, i.e. S-K-
complete spaces, in our present terminology are called “cover-complete” e.g. in [7]
or “scattered-complete” in [5, 6.17]. Their projections along �� are called “cover-

analytic” in [7]. Also isolated-K-complete spaces are called “hypercomplete” or
“partition complete” (see [5, 6.17]).

The O-K-complete completely regular spaces coincide with the Čech-complete
ones ([2, Theorem 2.8]). We have introduced our terminology to cover several related
situations simultaneously.

We are going to summarize some characterizations of scattered-analytic, scattered-
K-analytic, Čech-analytic, isolated-analytic and isolated-K-analytic spaces. We be-

gin with an implication proved implicitly in [10, Lemma 2], where only scattered-K-
analytic spaces were investigated.

Proposition 1. Let X be a regular D-K-analytic, or even D-analytic, space and
let Dσ have the property of unions, the trace property, and the heredity property.

Then X is Dσ-K-complete, or even Dσ-complete, respectively.

�����. Let f : M → X be a parameterization from the definition of D-K-
analytic spaces, or D-analytic spaces, respectively. The statement can be checked
by following word by word the proof of Lemma 2 in [10] considering any complete

sequence Un of σ-discrete covers of M by sets of diameter less than 1/n and substi-
tuting D for scattered. In fact, Lemma 2 of [10] gives additional information on the
possibility to consider other than (σ-)discrete families in M in the definition of the
parameterization f . �

Now we are interested in special continuous maps, the projections along �� . We
investigate the preservation of the relevant properties by such projections in the

following two assertions.

Lemma 1. Let X be a topological space and S be a topological space with

a countable network N . Let C be a family of subsets of X × S from D, where D
stands for I, O, or S. Then {π(C) ; C ∈ C} has a network from Dσ, where π is the

projection of X × S onto X . Moreover, if D = I or D = S, then (π(C) ; C ∈ C) is
point-countable.

�����. Let U(C), C ∈ C, be the associated family of open sets for C in any of
the three cases. For N ∈ N and C ∈ C there is the maximal open set GC(N) ⊂ X
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such that GC(N) × N ⊂ U(C). We define DC(N) = π(C ∩ (X × N)) ∩ GC(N).

Notice that π(C) =
⋃

N∈N
DC(N) (the inclusion “⊂” follows because U(C) is open, it

contains C, and N is a network; the inclusion “⊃” follows since DC(N) ⊂ π(C) by

the definition) and it is not difficult to check that the family {DC(N) ; C ∈ C}, for
every N ∈ N , has the property I, O, or S, respectively, with the associated family
of open sets {GC(N) ; C ∈ C}.
Let us explain the last claim for each of the three cases in more details.

Firstly, let D = O or D = I. We will prove that DC(N) =
⋃

C′∈C
DC′(N)∩GC(N).

The inclusion “⊂” follows from the fact that DC(N) ⊂ GC(N). Let x ∈ DC′(N) ∩
GC(N) for some C′ ∈ C. Then there is a y ∈ N such that (x, y) ∈ C′. As y ∈ N and
x ∈ GC(N), we have that (x, y) ∈ U(C). So C′ ∩ U(C) 
= ∅ and we conclude that
(x, y) ∈ C. If C was disjoint, then so is {DC(N) ; C ∈ C} for every N ∈ N .
Secondly, let D = S. Let < be the well ordering and the U(C) above be the

corresponding associated open sets for C. Let C < C′ be two elements of C. We
want to show that GC(N) ∩DC′(N) = ∅ and so the sets GC(N) form an associated
family for {DC(N) ; C ∈ C}. Let x ∈ GC(N)∩DC′(N). Then there is a y ∈ N such

that (x, y) ∈ C′. However, as GC(N)×N ⊂ U(C), we have (x, y) ∈ U(C)∩C′ which
is a contradiction. Notice that {DC(N) ; C ∈ C} is disjoint for every N ∈ N in this
case.

So the claim follows. Also the assertion on point-countability follows using the

supplements on disjointness of the families {DC(N) ; C ∈ C}. �

Remark 4. Compare with [8, Lemma 5], [6, Lemma 7.1]. The proof of Lemma 6.9
in [5] seems to be not completely correct. It is not clear at all why the families Nn(a)
and Nn(b), a 
= b, from that proof of part (b) should be disjoint. It seems however

that this shortage could be circumvented by refining the proof.

Proposition 2. Let P ⊂ X × �
� and X = π(P ) be a regular space, where π is

the projection of X × �
� onto X .

(a) If P is O-K-complete, or even O-complete, then X is Oσ-K-complete, or even

Oσ-complete, respectively.

(b) If P is I-K-complete, or even I-complete, then X is Iσ-K-complete, or even

Iσ-complete, respectively.

Remark 5. Analogical result holds also for scattered-K-analytic spaces but we
derive it, using other arguments, in Theorem 1 below.

�����. Let En, n ∈ �, form the complete sequence of covers of P with the
corresponding property from (a) or (b).
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We use N(k1, . . . , kn) = {ν ∈ �� ; (ν1, . . . , νn) = (k1, . . . , kn)}, (k1, . . . , kn) ∈ �n ,

to denote the Baire intervals of order n. We shall construct families Cn(s1, . . . , sn)
of subsets of X , for n ∈ �, s1, . . . , sn ∈ �=

⋃
k∈�

�
k , such that

(i) Cn :=
⋃{Cn(s1, . . . , sn) ; s1, . . . , sn ∈ �} is a cover of X ;

(ii) each Cn(s1, . . . , sn) is relatively open (and disjoint if En is disjoint);
(iii) each {⋃ Cn(s1, . . . , sn) ; sn ∈ �} is disjoint;
(iv)

⋃ Cn+1(s1, . . . , sn, sn+1) ⊂
⋃ Cn(s1, . . . , sn); and

(v) if C ∈ Cn(s1, . . . , sn), then

C ⊂ π([X ×N(s1, . . . , sn)] ∩ P )

and

there is an E ∈ En such that [C ×N(s1, . . . , sn)] ∩ P ⊂ E.

Here N(s1, . . . , sn) = N(s1∧ . . .∧ sn), where s1
∧ . . .∧ sn is the concatenation of

the sequences s1, . . . , sn. �

We claim that the Cn’s (from (i)) form the required sequence of covers of X if (i)

to (v) hold. Using (i) we get that they are covers. Due to (ii) and the fact that �
is countable, they are σ-relatively open (or σ-isolated). Let Cn ∈ Cn be centered.
By (iii) and (iv) there is a unique sequence sn ∈ � such that Cn ∈ Cn(s1, . . . , sn).

From the first part of (v) we get that [Cn × N(s1, . . . , sn)] ∩ P , n ∈ N , is centered
and from the other part of (v) that each [Cn×N(s1, . . . , sn)]∩P is contained in some

En ∈ En. Thus E1 ∩ . . . ∩En converge to a compact set K × {s} ⊂ P ⊂ X × �
� .

It follows that C1 ∩ . . . ∩ Cn converge to a compact subset of K in X and Cn is

complete. Moreover, in cases of O-complete and I-complete spaces, K × {s} is a
singleton and so K is also a singleton in X .

It remains to construct Cn(s1, . . . , sn) for n ∈ � and s1, . . . , sn ∈ � such that
(i) to (v) hold. Let us first describe C1(s) for s ∈ �. For an E ∈ E1 and
s ∈ � =

∞⋃
k=1

�
k we may find the maximal open set GE(s) such that (GE(s) ×

N(s)) ∩ P ⊂ E. Further, we define DE(s) = π(E ∩ (X × N(s))) ∩ GE(s). We

choose some well ordering < of the set � and we define, by induction over s ∈ �,
C1(s) = {CE(s) = DE(s) \

⋃
t<s

⋃ C1(t) ; E ∈ E1}.
Now C1 =

⋃{C1(s) ; s ∈ �} is a cover of X because E1 is relatively open and so,
for every x ∈ E ∈ E1, there are an s ∈ � and an open U such that x ∈ U ×N(s) and
(U ×N(s)) ∩ P ⊂ E.

The families C1(s) are relatively open due to the fact that they are traces, to
the complement of

⋃
t<s

C1(t), of the families {DE(s) ; E ∈ E1} that are relatively
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open since GE(s) ∩
⋃

E′∈E1
DE′(s) = DE(s). Indeed, the inclusion “⊃” is obvious and

we check the validity of the other one. Let x ∈ GE(s) ∩ DE′(s). Then there is a
y ∈ N(s) such that (x, y) ∈ E′ since x ∈ DE′(s). Then (x, y) ∈ P and, as x ∈ GE(s),
(x, y) ∈ E and so x ∈ DE(s).

As � is countable, the family C1 is σ-relatively open, and if E1 was disjoint, then
C1(s) are also disjoint and C1 is σ-isolated.

The sets
⋃ C1(s), s ∈ �, are pairwise disjoint since they were defined inductively

by subtracting the previously constructed sets
⋃ C1(t) with t < s.

Finally, for E ∈ E1, we get CE(s) ⊂ DE(s) ⊂ π[E∩(X×N(s))] ⊂ π[P∩(X×N(s))]
and (CE(s)×N(s)) ∩ P ⊂ (GE(s)×N(s)) ∩ P ⊂ E.

So the points (i), (ii), (iii), (v) are satisfied and (iv) says nothing for n = 1.
Put moreover X1(s) =

⋃ C1(s) and P1(s) = P ∩ (X(s)×N(s)).

Let us suppose that we have constructed

Cn(s1, . . . , sn) = {CE(s1, . . . , sn) ; E ∈ En},
Xn(s1, . . . , sn) =

⋃
Cn(s1, . . . , sn),

and

Pn(s1, . . . , sn) = Pn−1(s1, . . . , sn−1) ∩ (Xn(s1, . . . , sn)×N(s1, . . . , sn)),

where P0(s1, . . . , s0) = P . We define the same objects for n+1 so that (i) to (v) are
satisfied similarly as we did for n = 1 above.

Let GE(s1, . . . , sn+1) be the maximal open set such that

[GE(s1, . . . , sn+1)×N(s1, . . . , sn+1)] ∩ Pn(s1, . . . , sn) ⊂ E ∩ Pn(s1, . . . , sn)

for each E ∈ En+1. Further, put

DE(s1, . . . , sn+1) = π[(E ∩ Pn(s1, . . . , sn)) ∩X(s1, . . . , sn)] ∩GE(s1, . . . , sn+1).

Finally, we define

Cn+1(s1, . . . , sn+1) = {CE(s1, . . . , sn+1)

= DE(s1, . . . , sn+1) \
⋃

t<sn+1

⋃
Cn+1(s1, . . . , sn, t) ; E ∈ En+1},

and for the next construction needed

Xn+1(s1, . . . , sn+1) =
⋃
Cn+1(s1, . . . , sn+1)

and

Pn+1(s1, . . . , sn+1) = Pn(s1, . . . , sn) ∩ (X(s1, . . . , sn+1)×N(s1, . . . , sn+1)).
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Now (i) to (v) follow by the facts that firstly
⋃
s∈�

Cn+1(s1, . . . , sn, s) has the

properties analogical to (i), (ii), (iii), (v) with respect to the sets Xn(s1, . . . , sn),
Pn(s1, . . . , sn) which can be verified similarly as the corresponding properties of⋃
s∈�

C1(s) with respect to X , P above, and secondly, the families

{Xn(s1, . . . , sn−1, s) ; s ∈ �} and {Pn(s1, . . . , sn−1, s) ; s ∈ �}

are disjoint covers of the sets Xn−1(s1, . . . , sn−1) and Pn−1(s1, . . . , sn−1), respec-
tively. �

We need an extra covering property to study the Iσ-K-complete spaces in Propo-

sitions 3 and 4. We formulate it in a more general setting because we are going to
use it in Proposition 5 below in that form. Notice that the respective property is

fulfilled automatically if D from the definition coincides with S or with O, and it
means “hereditarily weakly θ-refinable” if D coincides with I.

Definition 6. Let X be a topological space and D be a collection of families of
its subsets. We say that X has the property of Dσ refinements if every family U of
open subsets of X has a refinement C from Dσ such that

⋃ C = ⋃U .

In what follows we want to show the respective analyticity from the existence

of corresponding complete sequence of covers. The first part (a) of the following
Proposition 3 concerns the cases of Dσ-K-complete spaces for D = S, and D = I
under the assumption that X has the property of Dσ refinements.
The part (b) is a partial result concerning the case of O-K-complete spaces which

we don’t apply later and we introduce it just for completeness. The statement (c)
shows that, in a very special case of I-K-complete spaces, we can easily deduce the
I-K-analyticity even if no additional covering property of X is supposed.

Proposition 3.
(a) Let X be a Dσ-K-complete, or even a Dσ-complete, regular space. Let D = S
or D = I, and X have the property of Iσ refinements in the latter case. Then

X is D-K-analytic, or even D-analytic, respectively.
(b) Let X be an O-K-complete, or even an O-complete, regular space. Then there
is a discrete metric space Γ and an usc-K map f of Γ� onto X , or even a

single-valued map of a closed subset F ⊂ Γ� onto X respectively, such that

{f(B) ; B ∈ B} ∈ O, with

B = {{γ ∈ Γ� ; (γ1, . . . , γn) = (δ1, . . . , δn)} ; n ∈ �, (δ1, . . . , δn) ∈ Γ�}

the canonical base for Γ�.
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(c) Let X be I-K-complete, or even I-complete. Then X is I-K-analytic, or even
I-analytic, respectively.

�����. (a) In fact, we use the following properties of the collections D here.
• D has the cross-section property;
• D has the heredity property;
• D has the following “property of regular refinements”:
Let C ∈ D. There are HC(C) for every C ∈ C such that

H(C) :=
⋃

C∈C
HC(C) ∈ Dσ,

⋃
HC(C) = C,

{⋃
{H ; H ∈ HC(C)} ; C ∈ C

}
∈ Dσ.

We verify first that the preceding properties of D are fulfilled in both cases con-
sidered.

The first two properties are satisfied by S and I as we already mentioned.
We shall verify the latter property. Let C be scattered or isolated in X and B(C),

C ∈ C, form the family of “associated Borel sets”. Since they are differences of open
sets and X is regular, it is easy to realize that for every C ∈ C there is some relatively
open cover H′

C(C) of C with H ′ ⊂ B(C) for every H ′ ∈ H′
C(C). Now we choose any

Dσ refinement HC(C) of H′
C(C) which exists because the property of Dσ refinements

is obviously hereditary to subspaces for D = I and it holds even in any space for
D = S. Since ⋃{H ; H ∈ HC(C)} ⊂ B(C) for every C ∈ C and the collections S
and I have the heredity property, the family

{⋃{H ; H ∈ HC(C);C ∈ C
}
is in D.

Using this fact, the property of unions and the fact that each HC(C) is in Dσ, we
conclude that H(C) is in Dσ. So the properties hold for D = S and D = I.
Now let Cn ∈ Dσ form a complete sequence of covers of X . Let us define a new

sequence of covers En ∈ Dσ so that E1 = H(C1), and having En already defined, we

put En+1 = H(Cn+1 ∧ En).
We consider now the sets En endowed with the discrete metric and we define the

compact-valued map f :
∞∏

n=1
En → X by f((En)∞n=1) =

⋂{En ; n ∈ �} if (En)∞n=1 ∈

F ⊂
∞∏

n=1
En, where (En)∞n=1 ∈ F if there are Hn ∈ HEn(En) such that En+1 ⊂ Hn(⊂

En) for every n ∈ �. Otherwise, we put f((En)∞n=1) = ∅.
The map f is usc-K since En form a complete sequence of covers in the regular

space X (see Remark 2) and F is a closed subset of
∞∏

n=1
En. The map f maps the

base B of
∞∏

n=1
En formed by sets of the form

{
(E′

n)
∞
n=1 ∈

∞∏
n=1

En ; (E′
1, . . . , E

′
n) =

(E1, . . . , En)
}
with (E1, . . . , En) ∈

n∏
k=1

Ek to families from Dσ because

f({(E′
k)
∞
k=1 ; (E

′
1, . . . , E

′
n) = (E1, . . . , En)}) ⊂

⋃
{H ; H ∈ HEn(En)}.
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It suffices to use the fact that
{⋃{H ; H ∈ HEn(En)} ; En ∈ En

}
is in Dσ by our

assumptions and that Dσ has the heredity property.

Let E be a discrete family of subsets of F ⊂
∞∏

n=1
En in the product metric. Then

there is an n ∈ � such that, for E ∈ E ,

E ⊂ {B ∈ Bn ; B ∩ E 
= ∅} = BE ,

where Bn = {{(E′
k)
∞
k=1 ; E′

1 = E1, . . . , E
′
n = En} for some E1 ∈ E1, . . . , En ∈ En}.

We know that {f(B) ; B ∈ B} is in Dσ, and thus it is also point-countable. Since
{BE ; E ∈ E} is disjoint, the family {f(BE) ; E ∈ E} is point-countable. By the
heredity property of D, we finally get that {f(B)∩f(E) ; B ∈ Bn, E ∈ EB∩E 
= ∅}
forms a Dσ network for {f(E) ; E ∈ E}. The family {f(E) ; E ∈ E} is point-
countable because {f(BE) ; E ∈ E} is point-countable and f(E) ⊂ f(BE).
The case of Dσ-complete spaces can be treated in the same way and we arrive at

a continuous map f of F onto X .
(b) Let Cn form a complete sequence of open covers of X by open sets. Similarly

as in (a), we define a complete sequence of covers En. Put E1 = C1 and let En be
already chosen. We choose for every C ∈ En ∧ Cn+1 an open family HC(n+ 1) such

that
⋃{H ; H ∈ HC(n+1)} = C. We define En+1 =

⋃{HC(n+ 1); C ∈ En∧Cn+1}.
Let F ⊂

∞∏
n=1

En be the closed set of sequences (En)∞n=1 such that En+1 ⊂ En. Clearly

F is closed and the map f defined similarly as in (a) is usc-K and f(B) is an open
set for every B ∈ Bn defined as above.

Again, if En is a complete sequence of open covers from the definition ofO-complete
spaces, then f is a continuous map on F . Obviously,

∞∏
n=1

En is a closed subspace of

some complete metric space of the form Γ� desired in (b).

(c) Let Cn form the complete sequence of isolated covers. Define E1 = C1 and
En+1 = En ∧ Cn+1. Now put f((Cn)∞n=1) =

⋂{En ; n ∈ �}. This gives the desired
correspondence because the sets En ∈ En are clopen in this case.
If Cn comes from the definition of I-complete spaces for X I-complete, then f is

a continuous map. �

The crucial step to obtain a description of analyticity by projections along ��

seems to be the following Proposition 4.

Proposition 4.
(a) Let X be a regular Sσ-K-complete space. Then there is an S-K-complete space

P ⊂ X × �
� such that π(P ) = X .

(a′) Let X be a regular Sσ-complete space. Then there is an S-complete space
P ⊂ X × �� such that π(P ) = X .
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(b) Let X be a regular Iσ-K-complete space having the property of σ-isolated

refinements. Then there is an I-K-complete space P ⊂ X × �
� such that

π(P ) = X .

(b′) Let X be a regular Iσ-complete space. Then there is an I-complete space
P ⊂ X × �� such that π(P ) = X .

(c) Let X be a regularOσ-K-complete space. Then there is an O-K-complete space
P ⊂ X × �� such that π(P ) = X .

(c′) Let X be a regular Oσ-complete space. Then there is an O-complete space
P ⊂ X × �

� such that π(P ) = X .

�����. Cases (a), (a′), (b), and (b′). Let us suppose that Cn =
⋃

k∈�
Cn(k), n ∈

�, form a complete sequence of covers of X and Cn(k) are scattered (or isolated,
respectively). Due to the heredity and to the cross-section properties of Sσ and Iσ,

we may suppose without loss on the generality that Cn’s are partitions and that Cn+1

refines Cn.

Let Un,k(C), C ∈ Cn(k), be the associated open sets. Notice that if X is an
Iσ-complete space, then the elements of the covers of the complete sequence of

covers from the definition of Iσ-complete spaces form a network and so X has the
property of Iσ refinements. Due to the regularity (and moreover the property of

σ-isolated refinements in cases (b) and (b′), respectively), by another refinement
made inductively in n, we may achieve that, if D ∈ Cn+1, there is some C ∈ Cn(k)

such that D ⊂ C and D ⊂ Un,k(C). We put

Cn(k1, . . . , kn) = {C ∈ Cn(kn) ; ∃(Ci)
n−1
i=1 C ⊂ Ci, Ci ∈ Ci(ki), i = 1, . . . , n− 1},

where k1, . . . , kn are arbitrary natural numbers. The sets Un,kn(C) for C ∈ Cn(kn)

described above will be denoted by Uk1,...,kn(C) if C ∈ Cn(k1, . . . , kn). Thus we have
D ⊂ Uk1,...,kn(C) whenever C ∈ Cn(k1, . . . , kn), D ∈ Cn+1(k1, . . . , kn, kn+1).

Now we define the set P ⊂ X × �� . We use the notation N(k1, . . . , kn) for the

set of all (infinite) sequences of natural numbers such that k1, . . . , kn are the first n

of them. Let us put

P =
⋂

n∈�

⋃

(k1,...,kn)∈�n

[⋃
{C ∩ Uk1,...,kn(C) ; C ∈ Cn(k1, . . . , kn)}

]
×N(k1, . . . , kn).

Obviously, every x ∈ X belongs to the projection of P along �� because x ∈
∞⋂

n=1
Cn

for some Cn ∈ Cn(k1, . . . , kn), n ∈ N , and we have Cn ∩ Uk1,...,kn(Cn) ⊃ Cn. So
π(P ) = X .
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We shall show that the families

En = {P∩[(C∩Uk1,...,kn(C))×N(k1, . . . , kn)] ; C ∈ Cn(k1, . . . , kn), (k1, . . . , kn) ∈ �n}

form a complete sequence of scattered (or isolated) covers of P . It is obvious from

the definition of P that all En’s are covers. Every En is scattered (isolated) because
{X ×N(k1, . . . , kn) ; (k1, . . . , kn) ∈ �n} is discrete and thus isolated and scattered,
and for a fixed (k1, . . . , kn), the system

{(C ∩ Uk1,...,kn(C)) ×N(k1, . . . , kn) ; C ∈ Cn(k1, . . . , kn)}

is clearly scattered (or isolated) due to the fact that the open sets Uk1,...,kn(C) are
the associated open sets for Cn(k1, . . . , kn).

It remains to show that the sequence {En} is complete. Let

En = P ∩
{
[Cn ∩ Uk1(n),...,kn(n)(Cn)]×N(k1(n), . . . , kn(n))

}

be a centered sequence of sets and Cn ∈ Cn(k1(n), . . . , kn(n)). It is enough to show
that this sequence converges to some compact set (see Remark 2 above). Since

(En)∞n=1 is centered, it is obvious that k1(n), . . . , kn(n) are initial sequences of one
and only one infinite sequence (k1, k2 . . .) ∈ �� . The sets Cn ∩ Uk1,...,kn(Cn), Cn ∈
Cn(k1, . . . , kn), are pairwise disjoint and we claim that Cn ⊂ Cn−1. Namely, for
every Cn ∈ Cn there is a C′

n−1 ∈ Cn−1(k1, . . . , kn−1) such that Cn ⊂ C′
n−1. If Cn

is not a subset of Cn−1, then [C′
n−1 ∩ U(C′

n−1)] ∩ [Cn−1 ∩ U(Cn−1)] = ∅. However,
En ⊂ Cn ×�� ⊂ [C′

n−1 ∩U(C′
n−1)]× �� and En−1 ⊂ [Cn−1 ∩U(Cn−1)]×�� which

is a contradiction with the fact that En is centered. Thus the sequence (Cn)∞n=1 is
also centered in X . Thus the sequence of sets Cn converges to a compact set P∞
in X and also the sequence of sets Cn ∩ Uk1,...,kn(Cn) converges to P∞ because
Cn+1 ⊂ Uk1,...,kn(Cn) due to our choice of the systems Cn(k1, . . . , kn). Since obviously

P∞ ⊂
⋂

n∈�

⋃
{C ∩ Uk1,...,kn(C) ; C ∈ Cn(k1, . . . , kn)},

the sequence (E1 ∩ . . . ∩ En)∞n=1 converges to P∞ × {(k1, k2, . . .)} in P . (Let us
notice that Cn ⊃ Cn ∩ U(Cn) ⊃ Cn+1 ⊃ P∞ and so P∞ × {k} ⊂ E1 ∩ . . . ∩ En ⊂
Cn ×N(k1, . . . , kn).)
Cases (c) and (c’). Let Cn =

⋃
k∈�

Cn(k) form a complete sequence of covers of X

and Cn(k), k ∈ �, be relatively open. We define Dn(k1, . . . , kn) = C1(k1) ∧ . . . ∧
Cn(kn). Further, we put D∗1(k) = D1(k) for k ∈ �, and when D∗n(k1, . . . , kn)
are already defined for some n ∈ �, using the regularity of X we find relatively
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open refinements D∗n+1(k1, . . . , kn+1) of Dn+1(k1, . . . , kn+1) such that for every D ∈
D∗n+1(k1, . . . , kn+1) there is a set C ∈ D∗n(k1, . . . , kn) such that D ⊂ Uk1,...,kn(C)
and D ⊂ C. Here Uk1,...,kn(C) is the corresponding associated open set for C ∈
D∗n(k1, . . . , kn). We define

P =
⋂

n∈�

⋃

(k1,...,kn)∈�n

[⋃
{C ∩ Uk1,...,kn(C) ; C ∈ D∗n(k1, . . . , kn)}

]
×N(k1, . . . , kn)

similarly as in (a) above.

Now, the projection π(P ) of P along �� is X because C ∩ Uk1,...,kn(C) ⊃ C and⋃
kn∈�

D∗n(k1, . . . , kn) is a cover of
⋃D∗n−1(k1, . . . , kn−1)

⋃Dn−1(k1, . . . , kn−1), and

D∗0(∅) = X .
We define collections

En =
{
P ∩

(
[C ∩ Uk1,...,kn(C)]×N(k1, . . . , kn)

)
; (k1, . . . , kn) ∈ �� ,

C ∈ D∗n(k1, . . . , kn)
}
.

Obviously, each En is a cover of P .

Each En consists of open subsets of P . Let En ∈ En, i.e. En = P ∩ ([C ∩
Uk1,...,kn(C)]×N(k1, . . . , kn)) for some C ∈ D∗n(k1, . . . , kn), k1, . . . , kn ∈ N . Namely,
the inclusion C′∩Uk1,...,kn(C) ⊂ C for every C, C′ ∈ D∗n(k1, . . . , kn) holds and implies
that

C ∩ Uk1,...,kn(C) = Uk1,...,kn(C) ∩
⋃
{C′ ∩ Uk1,...,kn(C

′) ; C′ ∈ D∗n(k1, . . . , kn)}

for every C ∈ D∗n(k1, . . . , kn). Therefore
⋃
En ∩ [Uk1,...,kn(C)×N(k1, . . . , kn)] = P ∩ ([C ∩ Uk1,...,kn(C)]×N(k1, . . . , kn)).

It remains to show that En is a complete sequence. Let

En = P ∩ ([Cn ∩ Uk1(n),...,kn(n)(Cn)]×N(k1(n), . . . , kn(n))) ∈ En

form a centered sequence. Then, by the definition of the Baire intervalsN(k1, . . . , kn),
there is a unique sequence k ∈ �

� such that (k1(n), . . . , kn(n)) = (k1, . . . , kn) for

every n ∈ �. Obviously, it suffices to study the centered sequence Pk ∩ [Cn ∩
Uk1,...,kn(Cn)], where Pk = {x ∈ X ; (x, k) ∈ P}, Cn ∈ D∗n(k1, . . . , kn). We realize

first that the following inclusions hold for every n ∈ N :

Pk ∩ Uk1(C1) ∩ . . . ∩ Uk1,...,kn(Cn)

⊂
⋃
D∗n(k1, . . . , kn) ∩ Uk1(C1) ∩ . . . ∩ Uk1,...,kn(Cn)

⊂
⋃
D∗n(k1, . . . , kn) ∩ Uk1(C1) ∩ . . . ∩ Uk1,...,kn(Cn) ⊂ C1 ∩ . . . ∩ Cn.
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We used that Uk1,...,ki(Ci) are open for the second inclusion.

It follows that the sequence (Cn)∞n=1 is centered in X and from the completeness

of (Cn)∞n=1 and the definition of D∗n we obtain that C1 ∩ . . . ∩Cn converge to some
compact set K ⊂ X . Moreover, we see from the above inclusions that

Pk ∩ C1 ∩ Uk1(C1) ∩ . . . ∩ Cn ∩ Uk1,...,kn(Cn) ⊂ C1 ∩ . . . ∩ Cn

and so we get that

Pk ∩ C1 ∩ Uk1(C1) ∩ . . . ∩ Cn ∩ Uk1,...,kn(Cn) ⊂ C1 ∩ . . . ∩ Cn

converge to some compact L ⊂ K ⊂ X . Finally, we have that

L =
⋂

n∈�
Pk ∩C1 ∩ Uk1(C1) ∩ . . . ∩ Cn ∩ Uk1,...,kn(Cn) ⊂

⋂

n∈�
C1 ∩ . . . ∩Cn.

However, by our assumptions there are Dn−1 ∈ D∗(k1, . . . , kn−1) such that

L ⊂
⋂

n∈�
C1 ∩ . . . ∩ Cn ⊂

⋂

n∈�
Dn ∩ Uk1,...,kn(Dn) ⊂ Pk.

So we have that the sequence En is complete in P . �

Now we formulate theorems containing characterizations of scattered-analytic,
scattered-K-analytic, isolated-analytic, isolated-K-analytic and Čech-analytic spaces

which follow from Propositions 1 to 4 above. Notice that the classes of scattered-
analytic and scattered-K-analytic spaces allow characterizations by both the projec-

tions and the complete sequences of covers without any restriction.

Theorem 1. Let X be a regular Hausdorff space. Then the following asser-

tions (a), (b), and (c) are equivalent.

(a) X is scattered-K-analytic;

(b) X is Sσ-K-complete;

(c) X is the projection of an S-K-complete subspace of X × �
� .

Also the assertions (a′), (b′), and (c′) are equivalent, where

(a′) X is scattered-analytic;

(b′) X is Sσ-complete;

(c′) X is the projection of an S-complete subspace of X × �
� .

����� of Theorem 1.

The implications (a) implies (b) and (a′) implies (b′) follow from Proposition 1
above because σ-scattered families satisfy the assumptions on Dσ of Proposition 1.
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Due to Proposition 3 (a), (b) implies (a) and (b′) implies (a′).

Now, let the space X be the projection π(C) of a scattered-K-complete or
scattered-complete space C ⊂ X × �

� . By definition, we know that C admits a

complete sequence of scattered covers and, by the implication (b) implies (a), or
(b′) implies (a′), we get that C is scattered-K-analytic, or scattered-analytic, if it is

regular. Really, it is regular as a subspace of X × �
� . Finally, the projection of a

scattered-K-analytic, or scattered-analytic, space C along �� , i.e. X , is scattered-

K-analytic, or scattered-analytic, by Lemma 1. Namely, we may compose π with
the parameterization f of X from the definition of the respective analyticity.

To finish the proof of Theorem 1 it is enough to prove the implications (b) implies
(c) and (b′) implies (c′). However, this follows from the statements (a) and (a′) of

Proposition 4. �

Remark 6. The equivalence of (a) and (b) is proved in [10, Theorem 1], (a)⇔ (d).
Another proof in [5, Theorem 6.18] uses [5, Lemma 6.9] the proof of which needs
some correction as indicated in Remark 4 above.

Instead of Lemma 1, we might use e.g. [8, Lemma 5 or its corollary] in this case.

Let us notice that there are other characterizations. In [5, Theorem 6.18] it is

stated that scattered-K-analytic spaces are images of Čech-complete spaces by con-
tinuous maps taking scattered families to families that are countable unions of fam-
ilies having a scattered refinement. Another characterization says that a completely

regular space X is scattered-K-analytic if and only if it is the result of the Souslin op-
eration applied to sets which are elements of the smallest σ-algebra containing Borel

sets and closed to the unions of scattered families in some (or every) compactification
of X (see [10, Theorem 2]).

The statement [1, Theorem 1] claims that X is Iσ-K-complete if and only if X is

isolated-K-analytic. This is not correct as was shown by H. Junnila and J. Pelant
(their example can be found in [5, Example 6.22]). A modification of Frolík’s state-
ment under a supplementary restriction is stated in [5, Theorem 6.19] and it is covered

by Theorem 2 below. We use Definition 6 with D standing for isolated families now.

Theorem 2. Let X be a regular space. Then the following assertions (a), (b),

and (c) are equivalent if X has the property of σ-isolated refinements.

(a) The space X is isolated-K-analytic;

(b) the space X is Iσ-K-complete;

(c) the space X is the projection of some I-K-complete subspace of X × �� .

The implications (a) implies (b) and (c) implies (a) do not need the property of

σ-isolated refinements for X to hold.

Also the assertions (a′), (b′), and (c′) are equivalent, where
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(a′) The space X is isolated-analytic;

(b′) the space X is Iσ-complete;

(c′) the space X is the projection of some I-complete subspace of X × �� .

�����. The implications (a) implies (b) and (a′) implies (b′) follow from
Proposition 1 because Iσ has the property of unions, the trace property and the

heredity property.
By Proposition 4 (b) and (b′), we get that (b) implies (c) and (b′) implies (c′).

Finally, using Lemma 1 and Proposition 3 (a), we get (c) implies (a) and (c′)
implies (a′). �

The following characterization of Čech-analytic spaces was announced by Z. Frolík

in [4, Theorem 1]. The proof can be found in [5, Theorem 5.7, the proof of (a) is
equivalent to (c)]. (Notice that the statement (b) of Theorem 5.7 in [5] is formulated
a little stronger than the one which is really proved, as R.W. Hansell remarked later.)

We prove the analogous equivalence for a slightly more general class of not necessarily
completely regular spaces. Since we do not use the embedding of the space admitting

a complete sequence of σ-relatively open covers into a compactification K and we do
not use the characterization of Čech-analytic spaces as spaces that are the results

of the Souslin operation applied to Borel subsets of K, our proof is rather more
straightforward. Since we have no analogue of the characterization (a) of Theorem 1

by a parameterization for Čech-analytic spaces, we have to prove the existence of the
complete sequence of covers directly from the description by a projection as described

by Proposition 2.

Theorem 3. Let X be a regular space. Then the following are equivalent.

(a) The space X is the projection of some O-K-complete subspace of X × �
� .

(b) X is Oσ-K-complete.

Also (a′) and (b′) are equivalent, where

(a′) The space X is the projection of some O-complete subspace of X × �
� .

(b′) X is Oσ-complete.

�����. It follows from Propositions 2 (a) and 4 (c) and (c′). �

Let us remark that we don’t know if there is some natural characterization of

Čech-analytic spaces X in terms of an usc-K map f : M → X of a complete metric
spaceM ontoX . E.g. the assumption that (f(C) ; C ∈ C) is point-countable and has
a σ-relatively open network for C discrete cannot be fulfilled for every Čech-analytic
space as the following example shows.

Example. The interval [0, ω1) of ordinals less than ω1 endowed with the order
topology is Čech-analytic but there is no usc-K map of a metric space M onto

808



[0, ω1) such that {f(C) ; C ∈ C} has a σ-relatively open refinement for every discrete

family C of subsets ofM and {f(C) ; C ∈ C} is point-countable. In particular, [0, ω1)
is not O-K-analytic.

�����. Let there be such a parameterization f : M → [0, ω1). Since every
compact set in [0, ω1) is contained in a countable open set and f is usc-K, there is

a subfamily {Ia ; a ∈ A} of a σ-discrete base for M such that f(Ia) is countable for
every a ∈ A and f(Ia), a ∈ A, form a cover of [0, ω1).

The family {f(Ia) ; a ∈ A} of countable sets is point-countable because {Ia ; a ∈
A} is σ-discrete. So we may find a partition Bb, b ∈ C, of A to countable subsets
such that the family {f(Jb) ; b ∈ C} is disjoint, where Jb =

⋃
a∈Bb

Ia.

Moreover, the family {f(Jb) ; b ∈ C} has a σ-relatively open refinement and being

pairwise disjoint it has a σ-isolated refinement. We thus obtain a σ-isolated cover of
[0, ω1) by countable sets.

We realize that the complement to the union of any isolated family {Sa ; a ∈ A}
of countable sets in [0, ω1) contains a closed uncountable subset. It is immediate
if the family is countable. If not, choose sa ∈ Sa, a ∈ A, and consider the set

F = {sa ; a ∈ A} \ ⋃
a∈A

{sa}. The set F is closed and uncountable.

Let Cn be the isolated families of countable sets such that
⋃

n∈�

⋃ Cn = [0, ω1). Let

Fn be some closed unbounded subset of [0, ω1) \
⋃ Cn. Then the intersection

∞⋂
n=1

Fn

is nonempty which is a contradiction to the assumption that
⋃

n∈�
Cn is a cover of

[0, ω1). �

2. Some subclasses of scattered-K-analytic spaces

We begin with a result containing our [8, Theorem 1] that can be now derived

easily from our knowledge of complete sequences of covers.

Theorem 4. Every completely regular isolated-K-analytic space is Čech-

analytic and every Čech-analytic space X is scattered-K-analytic.

�����. The first part follows by the implication (a) implies (b) of Theorem 2,
using the fact that the property of σ-isolated refinements is not needed for it, and
by the implication (b) implies (a) of Theorem 3.

The other part follows from the implication (a) implies (b) of Theorem 3 and the
implication (b) implies (a) of Theorem 1. �
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Now we shall characterize those scattered-K-analytic spaces which are scattered-

analytic or even analytic, i.e. continuous images of some complete separable metric
space.

Theorem 5.
(a) A regular Hausdorff space X is scattered-analytic if and only if it is scattered-

K-analytic and has a σ-scattered network.

(b) A regular Hausdorff space X is analytic if and only if it is scattered-K-analytic

and has a countable network.

(c) A regular Hausdorff space X is isolated-analytic if and only if it is scattered-K-

analytic and has a σ-isolated network.

�����. (a) If X is scattered-analytic, then there is a complete sequence of
σ-scattered covers Cn of X with the property (b) of Definition 5. For simplicity we

shall suppose that Cn+1 refines Cn. This is possible due to the heredity property and
the cross-section property of scattered families. If x ∈ X , then there is a sequence

of sets Cn ∈ Cn such that x ∈ ⋂
n∈�

Cn. So the sequence Cn is centered and
n⋂

k=1
Ck

converges to {x}. In particular, for every open neighbourhood G of x, there is an
n ∈ � such that x ∈ Cn ⊂ Cn ⊂ G and thus

⋃
n∈�

Cn is a σ-scattered network for open

sets in X .

Let X be scattered-K-analytic. Due to Theorem 1 there is a complete sequence
of σ-scattered covers Cn of X . As above we may suppose that Cn are disjoint and

that Cn+1 refines Cn. Let N =
⋃

n∈�
Nn be a network for the open sets of X and Nn

be scattered.

We may put N ∗
n = Nn ∪ {X \⋃Nn} and then En = N ∗

1 ∧ . . . ∧ N ∗
n ∧ Cn. As Cn

form a complete sequence of covers of X , also En form a complete sequence. As N
is a network for X , the families Nn are disjoint, and X is regular, the sequence of
covers En of X is a complete sequence, which proves that X is scattered-analytic.

(b) If X is analytic, then there is a continuous map f of a separable complete

metric space M onto X . The metric space M has a countable basis and the images
of elements of such a basis form a network for the open sets in X . Since every discrete

family in M is countable, the map f fulfils the assumptions on f of the definition
of the scattered-analytic space and X is scattered-analytic and also scattered-K-

analytic.

If X is scattered-K-analytic and if it has a σ-scattered network for open sets, then
according to (a) above X is scattered-analytic. Hence there is a complete sequence of

σ-scattered covers Cn of X which has the property from Definition 5 (b). Every scat-
tered system of sets in a space that has a countable network is at most countable and
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so Cn is a complete sequence of countable covers which fulfils
∣∣ ⋂
n∈�

C1 ∩ . . . ∩ Cn

∣∣ = 1
for every centered sequence Cn ∈ Cn. This is sufficient for the analyticity of a regular

space (see e.g. the proof of [3, Theorem 9.3] or Remark 2 above and notice that the
images of the corresponding usc-K map f are singletons if we construct it using our

complete sequence of covers).

(c) If X is isolated-analytic, then it is clearly isolated-K-analytic, and hence also

scattered-K-analytic. It can be easily verified thatX has a σ-isolated network formed
by the elements of the covers from the complete sequence of covers the existence of

which is ensured by Theorem 2, (a′) implies (b′).

Let X be scattered-K-analytic and let X have a σ-isolated network. By (a) above,
X is scattered-analytic. By Theorem 1, (a′) implies (b′), it is Sσ-complete. The

covers of the corresponding complete sequence of covers can be refined by σ-isolated
covers due to Lemma 3.5 of [6]. In this way we obtain that X is Iσ-complete and

using Theorem 2, (b′) implies (a′), we have that X is isolated-analytic. �

Remark 7. We used, in (a), only the existence of a σ-scattered system N sep-
arating points in the sense that, for x, y ∈ X, x 
= y, there is an N ∈ N which
contains exactly one element of x, y.

If X is regular and Hausdorff, then X is analytic if and only if it is K-analytic
and has a countable network and also if and only if X is Čech-analytic and has

a countable network. This follows from the fact that both K-analytic spaces are
scattered-K-analytic by the definitions and Čech-analytic spaces are scattered-K-

analytic by Theorem 4, and from Theorem 5 (b).

For K-analytic spaces this assertion is contained in [13, Theorem 5.5.1]. Our proof

could be also done with the use of usc-K maps. The procedure which decomposes
our proof to the parts (a) and (b) of Theorem 5 causes that the proof of Theorem 5,

which is similar to the proof of [13, Theorem 5.5.1, (h) ⇒ (a)], is in a sense “more
straightforward”. This is, roughly speaking, due to the fact that open subsets of a

K-analytic space need not be K-analytic, but they are scattered-K-analytic.

For Čech-analytic spaces this assertion was shown to me by C. Stegall using es-
sentially different arguments.

It should be noted that the assumption that X has a countable network is equiva-
lent to the assumption that X is a continuous image of some separable metric space.
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3. Fragmentability by a metric

In what follows we have in mind mainly the following examples. The space X =
C(K) of continuous functions on a compact space K or the space X = Cb(T ) of

bounded continuous functions on a topological space T . In these cases we consider
the uniform metric and the topology of pointwise convergence.

For most of the following results it is essential that one of the topologies is (com-
pletely) metrizable by a metric 
 that is lower semi-continuous with respect to a

weaker topology τ .

Our [8, Theorem 5 and Theorem 6] were based on the use of results that were not
published yet or which were published in a different form ([12] and [6]). We give

a different, perhaps more straightforward proof, and we improve the statements to
include more general situations. Another characterizations of σ-fragmented spaces

and sets are contained in [15] and [16]. Using Theorem 1, our Proposition 5 restricted
to scattered-K-analytic completely regular spaces follows from [15, Theorem 5.2].

We formulate our propositions below for general collections D although the main
examples are S and I. We hope that the reasons of the validity of Theorem 6 become
more transparent.

Definition 7. Let D be a collection of families of subsets of a topological space X

and 
 be a metric on X . Then X is called D-fragmented by the metric 
 if, for any

ε > 0, X has a cover from D by sets of 
-diameter less than ε.

We say that X is fragmented by the metric 
 if it is scattered-fragmented, i.e.

S-fragmented, by 
.

Remark 8. The notion σ-fragmented means σ-scattered fragmented, i.e. Sσ-
fragmented, and was introduced in [11].

We prove the following crucial proposition first.

Proposition 5. Let D be a collection of families of subsets of a regular topolog-
ical space X such that D has the property of unions, the property of cross-sections,
the trace property, and the heredity property.

Let X have the property of Dσ refinements, let X be Dσ-K-complete, and 
 be

any lower semi-continuous metric on X .

If every compact subset of X is fragmented by 
, then X is Dσ-fragmented by 
.

Remark 9. It is proved in [11, Corollary 3.1.1] that every compact (or even
every hereditarily Baire) space K with the topology τ is σ-fragmented by a lower
semi-continuous (with respect to τ) metric 
 if and only if K is fragmented by 
.
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Notice also that the claim of Proposition 5 assumes the fragmentability, and not

D-fragmentability, of compact subsets of X .

Lemma 2. Let the assumptions of Proposition 5 be fulfilled. If there is no cover
from Dσ of the topological space X by sets of 
-diameter less than ε, then there are

distinct x0, x1 ∈ X such that no open set containing at least one of x0, x1 has a

cover from Dσ by sets of 
-diameter less than ε and 
(x0, x1) � ε.

Moreover, there are open neighbourhoods U0 and U1 of x0 and x1 such that

dist�(U0, U1) � ε/2 and both U0 and U1 cannot be covered by a family from Dσ

of sets having 
-diameter less than ε.

�����. Let us consider a subspace X0 of X obtained by omitting all points

having a neighbourhood which has a cover from Dσ by sets of 
-diameter less than ε.

Now every point of x ∈ X \ X0 has a neighbourhood Ux that has a cover Cx

from Dσ by sets of 
-diameter less than ε.

Since X has the property of Dσ refinements and the cross-section property, there

is a Dσ cover E of X \X0 that is a refinement of {Ux ; x ∈ X \X0}.
Now every element E of E is a subset of some Ux. By the trace property, the

family HE = {E ∩ C ; C ∈ Cx} is in Dσ and it covers E. So, using the property of
unions, the family

⋃{HE ; E ∈ E} is in Dσ, covers X \ X0, and its elements have


-diameter less than ε.

Therefore X0 is nonempty and every its nonempty open subset has no cover

from Dσ by sets of 
-diameter less than ε.

Therefore there are x0, x1 ∈ X0 such that 
(x0, x1) � ε and no open subset of X

which contains at least one of x0, x1 has a Dσ cover by sets of 
-diameter less than ε.

Since 
 is lower semi-continuous, we find neighbourhoods V0, V1 of x0, x1 such

that 
(y0, y1) > ε/2 if y0 ∈ V0 and y1 ∈ V1. We choose neighbourhoods U0 and U1
of x0 and x1 such that their closures are contained in V0 or V1, respectively. Here

we use the regularity of X . �

����� of Proposition 5. Let Cn be a complete sequence of covers of X from Dσ

such that every cover in this sequence refines the preceding ones. This is possible

due to our assumption on D. Let us suppose that X is not Dσ-fragmented by the
metric 
. Then there is a positive ε such that there is no cover of X from Dσ by sets

of 
-diameter less than ε. We fix such an ε for the rest of our proof.

Using induction, we find, for (i1, . . . , in) ∈ {0, 1}n, n ∈ �, sets Ci1,...,in ∈ Cn and

open sets Ui1,...,in ⊂ X such that:

(i) Ui1,...,in,in+1 ⊂ Ui1,...,in ;

(ii) dist(Ui1,...,in,0, Ui1,...,in,1) � ε/2;

(iii) Ci1,...,in,in+1 ⊂ Ci1,...,in ;
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(iv) Ci1,...,in ∩ Ui1,...,in does not have a cover from Dσ by sets of 
-diameter less

than ε.

To this end we proceed as follows. Using Lemma 2, we find U0 and U1. As C1 is
in Dσ, we may find by the trace property and the property of unions some C0, C1 ∈ C1
such that Ci1 ∩Ui1 has no cover from Dσ by sets of diameter less than ε for i1 = 0, 1.

In the next steps we proceed similarly, with the difference that instead of X we
consider Ci1,...,in ∩Ui1,...,in to get Ci1,...,in,0, Ci1,...,in,1 and Ui1,...,in,0, Ui1,...,in,1, using

Lemma 2, such that (i) to (iv) are satisfied in the corresponding form.

We consider the set K =
⋃

i∈{0,1}�

⋂
n∈�

Ci1,...,in ∩ Ui1,...,in . Due to the fact that

the sequence Cn is complete and Ci1,...,in ∩ Ui1,...,in is a monotone sequence of non-

empty sets, we know that Ci1,...,in ∩ Ui1,...,in converge to a compact set K(i) =
∞⋂

n=1
Ci1,...,in ∩ Ui1,...,in for every i ∈ {0, 1}�. From (i) we get that K(i) ⊂ Ui1,...,in

for all n ∈ �. According to (ii) we get that dist(K(i), K(i′)) � ε/2 for i 
= i′,

i, i′ ∈ {0, 1}�. Thus we may define a map p : K → {0, 1}� by the prescription
p(x) = i if x ∈ K(i) and p is a continuous map of K onto {0, 1}�. The map which
assignsK(i) to i ∈ {0, 1}� is usc-K since, for every open set U containing K(i), there
is an n ∈ � such that K(i) ⊂ Ci1,...,in ∩ Ui1,...,in ⊂ U . Thus K(j) ⊂ U if j|n = i|n.
So K is compact as the image of the compact space {0, 1}� under an usc-K map.
We finish the proof of Proposition 5 using the following lemma. �

Lemma 3 ([11], Lemma 4.4). If there is a continuous map p of a compact

space K onto {0, 1}� such that dist(p−1(i), p−1(i′)) � δ for some positive δ and all

pairs of distinct i, i′ ∈ {0, 1}�, then K is not fragmented.

�����. The proof of this lemma is easy. It is enough to consider p : K0 →
{0, 1}�, whereK0 is some minimal compact subset of K with respect to the inclusion
for which p(K0) = {0, 1}�. Any nonempty open subset of K0 must then contain the
preimage of some nonempty open subset of {0, 1}�. �

Using Lemma 3, we see that K is not fragmented which is a contradiction to our

assumptions, and this also finishes the proof of Proposition 5. �

Notice that, due to the characterizations by complete sequences of covers that we
gave above, the preceding proposition can be applied to special classes of generalized

analytic spaces.

First of all we draw our attention to the question which Dσ-fragmented spaces are
D-K-analytic (or Dσ-K-complete).

Remark 10. Let us recall that the following properties of a metric space X are
equivalent (discrete means discrete in the metric of X).
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(a) X is a Souslin subset of its completion;

(b) X is σ-discrete-complete;

(c) X is Sσ-complete.

It can be verified e.g. as follows.

Let (a) be fulfilled. By [10, Theorem 2], mentioned already in Remark 6 above,

X is S-K-analytic. Due to the metrizability of X there is a σ-discrete, and so σ-
scattered, network and the space X is S-analytic by Theorem 5 (a). Theorem 1 ((a′)
implies (b′)) shows that X is Sσ-complete. So (a) implies (c).

Assume now that (c) holds. Notice that every family of subsets of X from Sσ is
point-finite and has a σ-scattered network (or “base” in the terminology of [8]). Such

a family is “sbd-σ-decomposable” in the terminology of [8] by [8, Lemma 2], and as
such it is discrete σ-decomposable in the metric space X by [8, Lemma 3]. Thus it

has a σ-discrete refinement. Replacing now each element of a complete sequence of
covers from Sσ by its σ-discrete refinement, we get the validity of (b).

Finally, every σ-discrete-complete metric space is Iσ-complete since every discrete
family is isolated. Using Theorem 2, (b′) implies (a′), X is I-analytic. By Theorem 4,
X is Čech-analytic and so it is in Souslin (Borel) in some compactification of its
completion and thus X is Souslin in its completion, and we have proved that (b)

implies (a).

Proposition 6. Let D fulfil the heredity property and the cross-section property.
Let (X, τ) be Dσ-fragmented by the metric 
. Let the metric topology defined by 
 be

finer than τ and (X, 
) be Souslin in its completion. Then (X, τ) is Dσ-K-complete.

If 
 is moreover lower semi-continuous in τ , then (X, τ) is Dσ-complete.

�����. Due to Remark 10, there is a complete sequence of σ-discrete covers Hn

of the metric space (X, 
). Thus we can writeHn =
⋃

k∈�
Hn(k), whereHn(k) is εn(k)-

discrete in (X, 
), with εn(k) > 0. As X is Dσ-fragmented, there are partitions
Cn(k) ∈ Dσ of (X, τ) to sets of 
-diameter less than εn(k). Thus the family Cn(k) ∧
Hn(k) is a refinement of Cn(k) such that for every element N of the partition Cn(k)
there is at most one nonempty element of Cn(k) ∧ Hn(k) which is a subset of N .

Therefore Cn(k)∧Hn(k) is Dσ in τ . Hence, the collection En =
⋃

k∈�
Cn(k)∧Hn(k) is

in Dσ.

Let now F be a filter containing some En ∈ En for every n ∈ �. Then ⋂
F∈F

F
� 
= ∅

becauseHn form a complete sequence of covers of (X, 
). Since the τ -closures contain

the 
-closures, we have obviously that
⋂

F∈F
F

τ 
= ∅ and the sequence En is a complete

sequence of Dσ covers of (X, τ).
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We may suppose that each element of Hn has 
-diameter at most 1/n. If 
 is

lower semi-continuous in τ , the τ -closure of each H ∈ Hn has 
-diameter at most
1/n. So, obviously, Hn form a complete sequence of Dσ covers of X , witnessing that
(X, τ) is Dσ-complete. �

Now we show that the assumption on X to be Souslin in its completion in Theo-
rem 6 below is necessary.

Proposition 7. Let (X, τ) be a regular topological space. Let 
 be a lower semi-

continuous metric on (X, τ) and let the topology induced by 
 on X be finer than τ .

Let Dτ be a collection of families of subsets of (X, τ) and D� a collection of families

of subsets of (X, 
) such that both Dτ and D� satisfy the cross-section property and

Dτ ⊂ D�. Let (X, τ) be Dτ
σ-K-complete and let (X, τ) be Dτ

σ-fragmented by 
. Then

(X, 
) is D�
σ-complete.

�����. As (X, τ) is Dτ
σ-K-complete, there is a complete sequence of Dτ

σ covers
En of (X, τ). As (X, τ) is Dτ

σ-fragmented, there is a sequence of Dτ
σ covers Cn of X

such that diam� C � 1/n for each element C of Cn. Now Pn = En ∧ Cn ∈ Dτ since
Dτ has the cross-section property. The covers Pn of X form a complete sequence

of (X, τ) since they refine the covers En that form a complete sequence of covers
of (X, τ). Let us consider a centered sequence of elements Pn ∈ Pn and denote

Qn = P1 ∩ . . . ∩ Pn for each n ∈ N . By the completeness of Pn in the regular
space (X, τ) we get that the sequence of Qn’s converges to the compact set K =
∞⋂

n=1
Qn
(X,τ) ⊂ X in (X, τ). Using that 
 is lower semi-continuous in (X, τ), we deduce

that diam� Qn
(X,τ) � diam� Pn

(X,τ) � diam� Pn � 1/n. Hence K = {x} ⊂ X for

some x ∈ X . Now diam� Qn
(Y,�) � diam� Qn � diam� Pn � 1/n where (Y, 
) is a

completion of (X, 
). Since Qn
(Y,�)

form a decreasing sequence of closed nonempty

subsets of the complete metric space (Y, 
), and the diameters of Qn
(Y,�)
’s tend to

zero, we have
∞⋂

n=1
Qn
(Y,�)

= {y} ⊂ Y and the sequence of Qn
(Y,�)
’s converges to {y}

in (Y, 
). As diam� Qn
(Y,�) ∪ Qn

(X,τ)
tends to zero and {x, y} ⊂ Qn

(Y,�) ∪ Qn
(X,τ)

for every n ∈ N , we get that x = y ∈ X and Pn form a complete sequence of covers
of (X, 
) which shows that (X, 
) is D�

σ-complete because Dτ ⊂ D�. �

Remark 11. We consider also the case of collections Dc of countable families of

subsets of a space in the following theorem. Hence, the cases of K-analytic, analytic,
and “countably fragmented” (i.e. Dc

σ-fragmented) spaces are included. The property

of Dc refinements of X is thus equivalent to X being hereditarily Lindelöf. Notice
that Dc-fragmentability by a finer metric gives that X has a countable network.

816



Theorem 6. Let every compact subset of (X, τ) be fragmented by a lower semi-

continuous metric 
 giving a finer topology than the regular topology τ . Let (X, τ)
have the property of Dσ refinements, where D = S, or D = I, or Dc. Then the

following are equivalent.

(a) (X, τ) is D-analytic.
(b) (X, τ) is D-K-analytic.
(c) (X, τ) is Dσ-fragmented by 
 and (X, 
) is Souslin in its completion.

�����. By Theorems 1 and 2, and [3, Theorem 9.3], with the same proof

for analytic instead of K-analytic, (X, τ) is Dσ-(K-)complete if and only if it is
D-(K-)analytic.
Obviously, (a) implies (b). Let (b) be satisfied. Then (X, τ) is Dσ-fragmented due

to Proposition 5. Using Proposition 7, we get that (X, 
) is D�
σ-complete, and so it

is Souslin in its completion due to Remark 10 above. Finally, using Proposition 6,
we conclude that (c) implies (a). �

In the particular case of spaces C(K) of continuous functions on a compact space,
where the Namioka theorem [14, Corollary 4.2] says that every compact set with

respect to the topology of pointwise convergence is fragmented by the supremum
norm, we get

Corollary. Let X ⊂ C(K), where C(K) is the set of all continuous functions
on a compact space K, τp be the topology of pointwise convergence, and 
 be the

supremum metric on C(K). Then the following are equivalent.

(a) (X, τ) is scattered-K-analytic.

(b) (X, τ) is scattered-analytic.

(c) (X, 
) is a Souslin subset of its completion and (X, τ) is σ-fragmented by 
.
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