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1. Introduction

We give explicit expressions for several Stiefel-Whitney classes of the real flag

manifold

�F (1, 1, n − 2) = O(n)
O(1)×O(1)×O(n− 2) , n � 3,

which is a smooth connected compact homogeneous manifold of dimension 2n− 3.
Then we deduce upper bounds for the span of �F (1, 1, n−2), where the span of a

manifold M is the maximal number of linearly independent tangent vector fields of

M . The upper bounds are found by using the fact that if the k-th Stiefel-Whitney
class wk(M) �= 0, then span M � m − k, where m is the dimension of M (cf. [9]).

This was used in [3] to obtain upper bounds for the span of the real Grassmannians.

The only known result on the span of �F (1, 1, n − 2), n > 4 is the lower bound
obtained for the general flag manifold in Theorem 1.3 of [2] in which it is proved that

provided n = (2a+ 1)2c+4d is even with a, c, d � 0, c � 3 and ν(n) = 2c + 8d− 1,

span�F (1, 1, n − 2) � ν(n).

Let γ1 and γ2 be the canonical line bundles over F = �F (1, 1, n − 2) and let
ω1(γ1) and ω1(γ2) be their first Stiefel-Whitney classes. According to [1], H∗(F ;�2)
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is generated by x = ω1(γ1) and y = ω1(γ2) subject to the relations σn−1 = 0 = σn

so that xn = 0 = yn, where

σi = σi(x, y) =
i∑

k=0

xi−kyk, i � 1

denotes the i-th complete symmetric function in x and y.

We shall prove

Theorem 1. We have the following Stiefel-Whitney classes for F = �F (1, 1,
n− 2), where we put σ1 = x+ y, σ2 = xy and ωk = ωk(F ):

(i) ω(F ) = 1 + σ1 + σ21 + . . .+ σn−2
1 , if n = 2r, r � 2.

(ii) ω2r+s = σ2
r+s
1 , if 0 � s < 2r, n ≡ 0 mod 2r+1 and r � 0.

(iii) ω2r+s = 0, if 0 � s < 2r, n ≡ 2r mod 2r+1 and r � 0.
(iv) ω2r+s = σ2

r+s−2p+1

1 σ2
p

2 , if 0 � s < 2r, n ≡ 2p mod2r+1, 0 � p < r and r � 1.
(v) ω2r+2s = σ2

r−1+s
2 , if 0 � s < 2r−1, n ≡ 2r−1 + s mod 2r+1 and r � 1.

Theorem 2. The following are upper bounds for the span of �F (1, 1, n − 2):
(i) span�F (1, 1, n − 2) � n− 1, if n is even or n ≡ 1 mod 4.
(ii) span�F (1, 1, n − 2) � n if n ≡ 3 mod 4.

Theorem 3.
(i) span�F (1, 1, 4) = 1.

(ii) span�F (1, 1, 6) = 7.

2. Proof of Theorem 1

If γ1 and γ2 are the two canonical line bundles, ξ is the complementary (n − 2)-
plane bundle and γ1⊕γ2⊕ξ is an n-plane trivial bundle, all over F = �F (1, 1, n−2),
then by [6], the tangent bundle of F is given by

τ(F ) = (γ1 ⊗ γ2)⊕ (γ1 ⊗ ξ)⊕ (γ2 ⊗ ξ).

If nξ stands for the n-fold Whitney sum of ξ, we have that

τ(F )⊕ (γ1 ⊗ γ1)⊕ nξ ⊕ (γ1 ⊗ γ2)⊕ (γ2 ⊗ γ2)

is an n2-plane trivial bundle.
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If ω is the dual total Stiefel-Whitney class to ω, taking the total Stiefel-Whitney

classes and using the Whitney product formula, we have ω(F ) = ω(nξ)ω(γ1 ⊗ γ2).
Then

(1) ω(F ) = (1 + σ1 + σ2)n(1 + σ1)−1.

(i) If n = 2r, then (1 + σ1 + σ2)n = 1 + σn
1 + σn

2 = 1 + xn + yn + xnyn = 1, since
xn = 0 = yn. Hence

ω(F ) = (1 + σ1)−1 = 1 + σ1 + σ21 + . . .+ σn−2
1 ,

since σn−1
1 = σn−1 = 0.

(ii) If 0 � s < 2r, then 2r + s < 2r+1. Let n = 2r+1m, m ∈ �. Then

ω(F ) = (1 + σ2
r+1

1 + σ2
r+1

2 )m(1 + σ1 + σ21 + σ31 + . . .).

Hence ω2r+s = σ2
r+s
1 , if 0 � s < 2r, r � 0.

(iii) Let n = 2r + 2r+1m, m ∈ �. Then

ω(F ) = (1 + σ2
r

1 + σ2
r

2 )(1 + σ2
r+1

1 + σ2
r+1

2 )m(1 + σ1 + σ21 + σ31 + . . .).

Hence ω2r+s = σ2
r+s
1 + σ2

r+s
1 = 0, if 0 � s < 2r.

(iv) Let n = 2p + 2r+1m, m ∈ �, 0 � p < r. Then

ω(F ) = (1 + σ2
r+1

1 + σ2
r+1

2 )m(1 + σ2
p

1 + σ2
p

2 )(1 + σ1 + σ21 + . . .).

Hence if 0 � s < 2r, the result follows.

(v) If 0 � s < 2r−1, then 2r + 2s < 2r+1. Let n = 2r−1 + s + 2r+1m, m ∈ �,

0 � s < 2r−1. Then

ω(F ) = (1 + σ1 + σ2)
s(1 + σ2

r−1
1 + σ2

r−1
2 )(1 + σ2

r+1

1 + σ2
r+1

2 )m(1 + σ1)
−1

= (1 + σ2
r+1

1 + σ2
r+1

2 )m(1 + σ2
r−1
1 + σ2

r−1
2 )

s∑

i=0

(
s

i

)
(1 + σ1)

i−1σs−i
2 .

Hence ω2r+2s = σ2
r−1+s
2 , if 0 � s < 2r−1.
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3. Proof of Theorem 2

Note that according to [1], an additive basis for H∗(F ;�2) is {xiyj | 0 � i � n−1,
0 � j � n− 2}, so that σs

1 �= 0, 1 � s � n− 2 and σk
2 �= 0, 1 � k � n− 2.

(i) From (1) in Section 2 above we have

ω(F ) =
n∑

i=0

(
n

i

)
(1 + σ1)

n−1−iσi
2,

ωn−2(F ) =





m−1∑

i=0

(
2m

m− 1− i

)(
m+ i

2i

)
σ2i1 σm−1−i

2 , if n = 2m is even,

2m−1∑

i=0

(
4m+ 1
2m− 1− i

)(
2m+ 1 + i

2i+ 1

)
σ2i+11 σ2m−1−i

2 , if n = 4m+ 1.

Also ωn−2(F ) =
2m−2∑
k=0

akx2m−2−kyk, if n = 2m where ak is either 0 or 1 and

a0 = coefficient of x2m−2 =

(
2m− 1
2m− 2

)
= 1 mod 2.

Hence ωn−2(F ) �= 0, if n is even and so

span�F (1, 1, n − 2) � (2n− 3)− (n− 2) = n− 1, if n is even.

If we put ωn−2(F ) =
4m−1∑
k=0

bkx4m−1−kyk where n = 4m+ 1, then b1 = coefficient

of x4m−2y in

(
4m
4m− 1

)
σ4m−1
1 +

(
4m+ 1
1

)(
4m− 1
4m− 3

)
σ4m−3
1 σ2

is 0 + (4m+ 1)(4m− 1)(4m− 2)/2 = 1 mod 2.
Hence ωn−2(F ) �= 0, if n ≡ 1 mod 4, and so span�F (1, 1, n − 2) � n − 1, if

n ≡ 1 mod 4. This completes the proof of (i).

(ii) ωn−3(F ) =
2m∑

i=0

(
4m+ 3
2m− i

)(
2m+ 2 + i

2i

)
σ2i1 σ2m−i

2 , if n = 4m+ 3.

If ωn−3(F ) =
4m∑
k=0

ckx4m−kyk, then

c0 = coefficient of x
4m =

(
4m+ 2
4m

)
= (4m+ 2)(4m+ 1)/2 ≡ 1 mod 2.
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Hence ωn−3(F ) �= 0, if n ≡ 3 mod 4, and so

span�F (1, 1, n − 2) � (2n− 3)− (n− 3) = n,

if n ≡ 3 mod 4. This proves (ii).

4. Proof of Theorem 3

(i) ω(�F (1, 1, 4)) = (1+σ1+σ2)6(1+σ1+σ21 +σ31 + . . .). Then ω8(�F (1, 1, 4)) =
σ42 �= 0, since n = 6. Thus span�F (1, 1, 4) � 1. But by Theorem 1.3 in [2],
span�F (1, 1, 4) � 1. Hence the result follows.
(ii) From Theorem 2 (i), span�F (1, 1, 6) � 7, when n = 8. The result now follows

since by Theorem 1.3 in [2], span�F (1, 1, 6) � 7.

Remark. Korbaš in [2] obtained span�F (1, 1, 2) to be 3.
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